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Abstract.

A two-point boundary value problem on the interval [0, 1] is considered, where the highest-order
derivative is a Caputo fractional derivative of order 2 — § with 0 < § < 1. A necessary and sufficient
condition for existence and uniqueness of a solution u is derived. For this solution the derivative u’ is
absolutely continuous on [0, 1]. It is shown that if one assumes more regularity — that u lies in C?[0, 1]
— then this places a subtle restriction on the data of the problem.
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Introduction

Fractional derivatives are very fashionable at present: they are used in many recent
models to give results that seem to be unattainable by classical integer-order deriva-
tives. Consequently there is a huge amount of current research activity in the area of
numerical methods for the solution of differential equations that involve fractional-order
derivatives. Unfortunately, many papers analysing numerical methods for fractional-
derivative problems neglect to discuss existence, uniqueness and regularity of the the
solution to the problem they are solving — these fundamental and crucial properties are
simply assumed to be true!

In the present paper, which is partly based on [5], we consider a Caputo two-point
boundary value that is defined in Section 1.. This problem models superdiffusion of
particle motion when convection is present; see [3, Section 1] and its references. In Sec-
tion 2. we shall derive a necessary and sufficient condition for existence and uniqueness
of a solution to this problem in a certain space of functions that lies between C*[0, 1]
and C?[0,1]. Then in Section 3. we show that if one assumes that u lies in C?[0,1] —
i.e., one assumes more regularity of the solution — then this places a subtle restriction
on the data of the problem.
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Notation. All functions are real valued. C(I) comprises those functions that are
continuous on an interval I, and C*(I) denotes the space of functions defined on I
whose derivatives up to order k lie in C'(I), for k = 1,2,... We follow the convention that
C°(I) = C(I). Denote by L1[0,1] the standard Lebesgue space of integrable functions
defined almost everywhere on [0, 1].

1. The Caputo two-point boundary value problem

The following definitions are needed to describe our boundary value problem.
For r € R with » > 0, and all g € L]0, 1], the Riemann-Liouville fractional integral
operator J" of order r is defined by

(J'g)(x) = [%r) /:O(x — )" g(t) dt} for 0 <z <1. (1)

Let the parameter § satisfy 0 < § < 1. Let g € C[0, 1] with ¢’ absolutely continuous
on [0,1]. Then the Caputo fractional derivative D*=°g of order 2— ¢ is defined for almost
all z € (0,1) (see, e.g., [4, Theorem 2.1]) by

1

D?0g(z) = (J°¢")(z) = (o) /:0(37 — )7 1g"(t)dt for 0 <z <1. (2)

Since the integral in D?~%g(z) is associated with the point = 0, many authors write
instead Dfaég(x), but for simplicity of notation we omit the subscript 0.
We shall consider the two-point boundary value problem

—D*u(z) + b(x) (x) + c(x)u(z) = f(x) for x € (0,1), (3a)
subject to the boundary conditions

u(0) — agu’(0)
uw(l) + agu'(1) =

0 (3b)
1, (3C)

where the constants ag, a1, 79,71 and the functions b, c and f are given. We assume that
b,c, f € C?0,1] for some integer ¢ > 1.

Remark 1. If one also assumes that ¢ > 0 on [0,1], ap > 1/(1—0) and oy > 0, then (3)
satisfies a comparison/maximum principle, from which existence and uniqueness of the
solution u of (3) follows; see [7]. But if the Robin boundary condition at v = 0 is
replaced by a Dirichlet boundary condition, then the comparison/mazimum principle may
no longer be true: a counterexample is given in [7, Example 2.4).

A more general class of boundary value problems is considered in [6]. Numerical
methods for the solution of (3) are presented and analysed rigorously in, for instance,
3, 5, 6, 7].

The present paper will discuss some theoretical aspects of (3): existence, uniqueness
and regularity of solutions. Existence and uniqueness of a solution using the space
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C%°(0,1] defined below was proved in [5] by means of a reformulation in terms of Volterra
integral equations of the second kind, under the additional hypotheses that

c>0, ag>0 and oy > 0. (4)

We shall use the same Volterra reformulation here but interpret its conclusions in a
more general way that yields conditions on the data that are necessary and sufficient for
existence and uniqueness of a solution to (3).

When discussing solutions of (3), the following setting is natural [1, 8]. Let C%°(0, 1]
be the space of all functions y € C[0,1] N CY(0, 1] such that

q

lyllgs == sup [y()[+ > sup [z" D |yP(@)] < oc.
0<z<1 1 0<z<1

That is, one has |y(z)| < C and |[y®) (2)] < C20=9F for k =1,...,q. By [8], C%(0,1]
is a Banach space. Note that C?]0, 1] C C99(0, 1].
Define the space of functions

C#(0,1] := {y € C'0,1]NCT(0,1] : yf € C*°(0,1]} .

We are interested only in those solutions  of (3) that lie in C%°(0, 1]. This is a reasonable
class of candidates for solutions of (3), since then D?~°y is defined everywhere in (0, 1]
by Lemma 1 below, and as we shall see in Section 3., imposing more regularity on u” by
requiring v € C?[0, 1] would lead to certain difficulties.

Lemma 1. Let y € C*°(0,1]. Then D2 %y(z) is defined for all z € (0,1].

Proof. Let z € (0,1]. Then DX °y(z) = (1/T(0)) [i_,(x — t)°'y"(¢) dt, provided this
integral exists. Invoking the hypothesis that y € Cf’a(O, 1], one has

by a standard formula for Euler’s Beta function [2, Theorem D.6]. Hence the integral

exists in the Lebesgue sense, i.e., D> y(z) is defined. O

Example 1. Consider the simple problem D?>~%u = T'(3—3) on (0,1), u(0) = 0, u(1) = 1.
From [2, pages 55 and 193] it is easy to see that the unique solution w of this problem is
w(z) = 2279, Hence u € C7°(0,1] for any positive integer m, but u ¢ C2[0, 1].

The regularity of the solution of Example 1 is typical of solutions to the general
boundary value problem (3).

2. Existence and uniqueness of a solution

Define the Volterra operator L by

Lz(z) = 2(z) — ﬁ /:0(:15 —1)7° {b(t)z(t) + c(t)/o 2(s) ds] dt for0 <z <1,
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It is shown in the proof of [5, Lemma 2.1] that L : C%°(0,1] — C%°(0,1] is a compact
operator.
Consider now two Volterra integral equations of the second kind: for 0 <z <1,

1

Lo(z) = m /txo(:c — ) 7°[b(t) + (t + ag)e(t)] dt (5)

and

mmw—faéglim—w5m4w—ﬂmw. (6)

From [5, Lemma 4.1], the solutions v and w are well defined and lie in C'%°(0, 1].

Theorem 1 (Existence and uniqueness of a solution to (3)). Set
1
0 =y + aq[1 +v(1)] +/ 1+ v].
0
1. If 0 #0, then (3) has a unique solution
) =0+ oo+ [ [u(1+ o(0) + ()] de
t=0

with uw € C°(0,1], where

/L:'Yl_'YO_Oélew(l)_fow. (7>

2. If 0 = 0, then (3) has either no solution or infinitely many solutions in C*°(0,1].

Proof. The analysis of [5] shows that for any p € R the function
u(z) = u(0) + px + / (pv 4+ w)(t) dt (8)
0

lies in C9°(0, 1] and will satisfy the differential equation (3a) and the boundary condition
(3b); it is also shown in [5] that if a function u € C*°(0, 1] satisfies (3a) and (3b), then
satisfies (8). Thus it remains only to choose p in (8) such that u satisfies the boundary
condition (3c): u(1) + aqu/(1) = 1.

Using (8) and eliminating «(0) by means of (3b), one has

MU+@W@J—M®+M+mm+uww+w@ﬂ+A(W+w)
=%+mw+ww+u+mm+uwﬂ+wﬂﬂ+é(w+w)

1
= + pf + ajw(l) —i—/ w.
0
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If 0 # 0, then the unique choice of u given by (7) yields u(1) + a;u’(1) = 7, and the
solution of (3) is then specified by (8).

If § = 0, there are two possibilities: if vy + ajw(1) + fol w # 1 then the boundary
condition (3c) cannot be satisfied and (3) has no solution, while if yo+ajw(1)+ fol w =1,
then the boundary condition (3c) is satisfied for any choice of  and we have infinitely
many solutions given by (8) where 1 € R is arbitrary. O

In [5, Theorem 4.1] it was shown that when (4) is satisfied, one then has 6 > 0
and consequently (3) has a unique solution, but the more general situation described in
Theorem 1 was not discussed.

3. Effect of assuming that u € C?[0, 1]

In Sections 1. and 2., solutions of (3) lying in the space C%°(0, 1] were considered. These
solutions are smooth on (0, 1] but typically much less smooth on the closed interval
[0,1]. The present section examines the effect of assuming that the solution w lies not
just in C°(0,1] but in the space C2[0,1] for which u” is bounded on [0,1]. We show
that with this assumption, the class of problems under consideration is restricted more
severely than one would expect.

Higher regularity of solutions on the closed interval [0, 1] is commonly assumed in
numerical analyses of fractional-derivative problems, but many researchers seem unaware
of the consequences of this assumption. We describe here what v € C?[0,1] implies for
our problem (3); our results can easily be generalised to Caputo differential equations
(boundary value problems and initial-value problems) of any order.

The crucial observation is the following result (see, e.g., [2, Lemma 3.11]), whose
short elementary proof we include for completeness.

Lemma 2. Let g € C?[0,1]. Then
lim D?>™°g(z) = 0.

z—0t

Proof. For any x € (0, 1),

T

D2g(a) = 7 [ =07 )

=0
But g € C?[0,1] implies that |¢”(t)] < C for 0 <t < 1 and some constant C. Hence

B * N Cax®

|D>% 6g(x)‘§W/ (l‘—t)é 1dt:m—>0asx—>0+
t=0

O]

Remark 2. The converse of Lemma 2 is false. For suppose g(z) = x>~ with 0 < § < .
Then g € C*°(0,1] but g ¢ C2[0,1], and

where we used the standard formula for Euler’s Beta function [2, Theorem D.6] to eval-
uate the integral.
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Remark 3. By imitating the calculation of Remark 2, one can replace the hypothesis
g € C2[0,1] of Lemma 2 by the weaker assumption that g € C2*(0,1] for some § € (0,0).

Assume now that (3) has a solution u € C?[0,1]. Then by Lemma 2 we can apply
lim, ,o+ to (3a), obtaining

b(0)er (0) + c(0)u(0) = £(0). (9)
One also has the boundary condition (3b); combining this with (9) yields
£(0) = [b(0) + oc(0)]u'(0) + 70¢(0). (10)

Assume that u is the unique solution of (3), i.e., assume that 6 # 0 in Theorem 1. Then
the value of w/(0) is given by (7). Thus f must satisfy the equation

5(0) + c0c(0)][1 =20 — caw(l) = fyw]

O L o T [+

70¢(0). (11)

As w depends on f by (6), the necessary condition (11) places a difficult-to-verify restric-
tion on f that is completely unnatural, and is due entirely to the arbitrary assumption
that u € C?[0, 1].

Remark 4. In the special case where b =0 and oy = 0, the problem (3) becomes
—D?>u+cu= f on (0,1), with u(0) =7, u(1) + ayu'(1) = 7.

If u € C?[0,1] here, we can work directly from Lemma 2 without appealing to [5]: taking
the limit of the differential equation as x — 0% shows that

F(0) = e(0)u(0) = c(0)0
is a necessary condition for a solution u in C?[0,1].

The analysis of this section shows that making excessive regularity assumptions on
the solution to a fractional-derivative is not only unjustified (recall Example 1) but also
restricts the class of problems under consideration by imposing a condition (11) on the
data that may be difficult to check in any concrete example.
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Amnnoranusa. PaccmarpuBaercs IByXTodYedHas KpaeBas 3ajada Ha npomexxyrtke [0, 1], B koTopoii
crapIiast IPOU3BOHAS SBJIAETCs APOoOHOI mpousBoaHoi Karmyro nopsiika 2 — 6 npu 0 < § < 1. TTomyqe-
HO HEOOXOJIMMOE ¥ JIOCTATOYHOE YCJIOBUE CYNECTBOBAHUS U €IMHCTBEHHOCTH perenus u. [IpousBogaast
u’ 3TOrO perreHns okasblBaeTCsl abCoNOTHO HenpepbiBHOH Ha [0, 1]. TIoka3aHo, YTO HpEINOIOKEHNEe O
Gostbimieit perysstprocT — uTo u npunaiexut C2[0, 1] — naxjiajpBaeT J0BOJILHO TOHKOE OIPAHUYEHIe
Ha JAHHBIE 3a/[a9H.

KiroueBbie ciioBa: npobHast Tpou3BOHAS, KPaeBas 3a/ada, CyNIeCTBOBAHUE, eIMHCTBEHHOCTD, pe-
TYJISPHOCTD
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