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Abstract.
A two-point boundary value problem on the interval [0, 1] is considered, where the highest-order

derivative is a Caputo fractional derivative of order 2 − δ with 0 < δ < 1. A necessary and sufficient
condition for existence and uniqueness of a solution u is derived. For this solution the derivative u′ is
absolutely continuous on [0, 1]. It is shown that if one assumes more regularity — that u lies in C2[0, 1]
— then this places a subtle restriction on the data of the problem.
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Introduction

Fractional derivatives are very fashionable at present: they are used in many recent
models to give results that seem to be unattainable by classical integer-order deriva-
tives. Consequently there is a huge amount of current research activity in the area of
numerical methods for the solution of differential equations that involve fractional-order
derivatives. Unfortunately, many papers analysing numerical methods for fractional-
derivative problems neglect to discuss existence, uniqueness and regularity of the the
solution to the problem they are solving — these fundamental and crucial properties are
simply assumed to be true!

In the present paper, which is partly based on [5], we consider a Caputo two-point
boundary value that is defined in Section 1.. This problem models superdiffusion of
particle motion when convection is present; see [3, Section 1] and its references. In Sec-
tion 2. we shall derive a necessary and sufficient condition for existence and uniqueness
of a solution to this problem in a certain space of functions that lies between C1[0, 1]
and C2[0, 1]. Then in Section 3. we show that if one assumes that u lies in C2[0, 1] —
i.e., one assumes more regularity of the solution — then this places a subtle restriction
on the data of the problem.
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Notation. All functions are real valued. C(I) comprises those functions that are
continuous on an interval I, and Ck(I) denotes the space of functions defined on I
whose derivatives up to order k lie in C(I), for k = 1, 2, . . . We follow the convention that
C0(I) = C(I). Denote by L1[0, 1] the standard Lebesgue space of integrable functions
defined almost everywhere on [0, 1].

1. The Caputo two-point boundary value problem

The following definitions are needed to describe our boundary value problem.
For r ∈ R with r > 0, and all g ∈ L1[0, 1], the Riemann-Liouville fractional integral

operator Jr of order r is defined by

(Jrg)(x) =

[
1

Γ(r)

∫ x

t=0

(x− t)r−1g(t) dt

]
for 0 ≤ x ≤ 1. (1)

Let the parameter δ satisfy 0 < δ < 1. Let g ∈ C1[0, 1] with g′ absolutely continuous
on [0, 1]. Then the Caputo fractional derivative D2−δ

∗ g of order 2−δ is defined for almost
all x ∈ (0, 1) (see, e.g., [4, Theorem 2.1]) by

D2−δ
∗ g(x) := (Jδg′′)(x) =

1

Γ(δ)

∫ x

t=0

(x− t)δ−1g′′(t) dt for 0 < x ≤ 1. (2)

Since the integral in D2−δ
∗ g(x) is associated with the point x = 0, many authors write

instead D2−δ
∗ 0 g(x), but for simplicity of notation we omit the subscript 0.

We shall consider the two-point boundary value problem

−D2−δ
∗ u(x) + b(x)u′(x) + c(x)u(x) = f(x) for x ∈ (0, 1), (3a)

subject to the boundary conditions

u(0)− α0u
′(0) = γ0, (3b)

u(1) + α1u
′(1) = γ1, (3c)

where the constants α0, α1, γ0, γ1 and the functions b, c and f are given. We assume that
b, c, f ∈ Cq[0, 1] for some integer q ≥ 1.

Remark 1. If one also assumes that c ≥ 0 on [0, 1], α0 ≥ 1/(1−δ) and α1 ≥ 0, then (3)
satisfies a comparison/maximum principle, from which existence and uniqueness of the
solution u of (3) follows; see [7]. But if the Robin boundary condition at x = 0 is
replaced by a Dirichlet boundary condition, then the comparison/maximum principle may
no longer be true: a counterexample is given in [7, Example 2.4].

A more general class of boundary value problems is considered in [6]. Numerical
methods for the solution of (3) are presented and analysed rigorously in, for instance,
[3, 5, 6, 7].

The present paper will discuss some theoretical aspects of (3): existence, uniqueness
and regularity of solutions. Existence and uniqueness of a solution using the space
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Cq,δ(0, 1] defined below was proved in [5] by means of a reformulation in terms of Volterra
integral equations of the second kind, under the additional hypotheses that

c ≥ 0, α0 ≥ 0 and α1 ≥ 0. (4)

We shall use the same Volterra reformulation here but interpret its conclusions in a
more general way that yields conditions on the data that are necessary and sufficient for
existence and uniqueness of a solution to (3).

When discussing solutions of (3), the following setting is natural [1, 8]. Let Cq,δ(0, 1]
be the space of all functions y ∈ C[0, 1] ∩ Cq(0, 1] such that

‖y‖q,δ := sup
0<x≤1

|y(x)|+
q∑

k=1

sup
0<x≤1

[
xk−(1−δ) |y(k)(x)|

]
<∞.

That is, one has |y(x)| ≤ C and |y(k)(x)| ≤ Cx(1−δ)−k for k = 1, . . . , q. By [8], Cq,δ(0, 1]
is a Banach space. Note that Cq[0, 1] ⊂ Cq,δ(0, 1].

Define the space of functions

Cq,δ
1 (0, 1] :=

{
y ∈ C1[0, 1] ∩ Cq+1(0, 1] : y′ ∈ Cq,δ(0, 1]

}
.

We are interested only in those solutions u of (3) that lie in Cq,δ
1 (0, 1]. This is a reasonable

class of candidates for solutions of (3), since then D2−δ
∗ u is defined everywhere in (0, 1]

by Lemma 1 below, and as we shall see in Section 3., imposing more regularity on u′′ by
requiring u ∈ C2[0, 1] would lead to certain difficulties.

Lemma 1. Let y ∈ Cq,δ
1 (0, 1]. Then D2−δ

∗ y(x) is defined for all x ∈ (0, 1].

Proof. Let x ∈ (0, 1]. Then D2−δ
∗ y(x) = (1/Γ(δ))

∫ x
t=0

(x − t)δ−1y′′(t) dt, provided this

integral exists. Invoking the hypothesis that y ∈ Cq,δ
1 (0, 1], one has

1

Γ(δ)

∫ x

t=0

∣∣(x− t)δ−1y′′(t)∣∣ dt ≤ C

Γ(δ)

∫ x

t=0

(x− t)δ−1t−δ dt = C Γ(1− δ)

by a standard formula for Euler’s Beta function [2, Theorem D.6]. Hence the integral
exists in the Lebesgue sense, i.e., D2−δ

∗ y(x) is defined.

Example 1. Consider the simple problem D2−δ
∗ u = Γ(3−δ) on (0, 1), u(0) = 0, u(1) = 1.

From [2, pages 55 and 193] it is easy to see that the unique solution u of this problem is
u(x) = x2−δ. Hence u ∈ Cm,δ

1 (0, 1] for any positive integer m, but u /∈ C2[0, 1].

The regularity of the solution of Example 1 is typical of solutions to the general
boundary value problem (3).

2. Existence and uniqueness of a solution

Define the Volterra operator L by

Lz(x) = z(x)− 1

Γ(1− δ)

∫ x

t=0

(x− t)−δ
[
b(t)z(t) + c(t)

∫ t

0

z(s) ds

]
dt for 0 ≤ x ≤ 1.
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It is shown in the proof of [5, Lemma 2.1] that L : Cq,δ(0, 1] → Cq,δ(0, 1] is a compact
operator.

Consider now two Volterra integral equations of the second kind: for 0 ≤ x ≤ 1,

Lv(x) =
1

Γ(1− δ)

∫ x

t=0

(x− t)−δ[b(t) + (t+ α0)c(t)] dt (5)

and

Lw(x) =
1

Γ(1− δ)

∫ x

t=0

(x− t)−δ[γ0c(t)− f(t)] dt. (6)

From [5, Lemma 4.1], the solutions v and w are well defined and lie in Cq,δ(0, 1].

Theorem 1 (Existence and uniqueness of a solution to (3)). Set

θ = α0 + α1[1 + v(1)] +

∫ 1

0

[1 + v].

1. If θ 6= 0, then (3) has a unique solution

u(x) = γ0 + µα0 +

∫ x

t=0

[µ(1 + v(t)) + w(t)] dt

with u ∈ Cq,δ
1 (0, 1], where

µ =
γ1 − γ0 − α1w(1)−

∫ 1

0
w

θ
. (7)

2. If θ = 0, then (3) has either no solution or infinitely many solutions in Cq,δ
1 (0, 1].

Proof. The analysis of [5] shows that for any µ ∈ R the function

u(x) = u(0) + µx+

∫ x

0

(µv + w)(t) dt (8)

lies in Cq,δ
1 (0, 1] and will satisfy the differential equation (3a) and the boundary condition

(3b); it is also shown in [5] that if a function u ∈ Cq,δ
1 (0, 1] satisfies (3a) and (3b), then u

satisfies (8). Thus it remains only to choose µ in (8) such that u satisfies the boundary
condition (3c): u(1) + α1u

′(1) = γ1.
Using (8) and eliminating u(0) by means of (3b), one has

u(1) + α1u
′(1) = u(0) + µ+ α1[µ+ µv(1) + w(1)] +

∫ 1

0

(µv + w)

= γ0 + α0µ+ u(0) + µ+ α1[µ+ µv(1) + w(1)] +

∫ 1

0

(µv + w)

= γ0 + µθ + α1w(1) +

∫ 1

0

w.
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If θ 6= 0, then the unique choice of µ given by (7) yields u(1) + α1u
′(1) = γ1 and the

solution of (3) is then specified by (8).

If θ = 0, there are two possibilities: if γ0 + α1w(1) +
∫ 1

0
w 6= γ1 then the boundary

condition (3c) cannot be satisfied and (3) has no solution, while if γ0+α1w(1)+
∫ 1

0
w = γ1,

then the boundary condition (3c) is satisfied for any choice of µ and we have infinitely
many solutions given by (8) where µ ∈ R is arbitrary.

In [5, Theorem 4.1] it was shown that when (4) is satisfied, one then has θ > 0
and consequently (3) has a unique solution, but the more general situation described in
Theorem 1 was not discussed.

3. Effect of assuming that u ∈ C2[0, 1]

In Sections 1. and 2., solutions of (3) lying in the space Cq,δ
1 (0, 1] were considered. These

solutions are smooth on (0, 1] but typically much less smooth on the closed interval
[0, 1]. The present section examines the effect of assuming that the solution u lies not
just in Cq,δ

1 (0, 1] but in the space C2[0, 1] for which u′′ is bounded on [0, 1]. We show
that with this assumption, the class of problems under consideration is restricted more
severely than one would expect.

Higher regularity of solutions on the closed interval [0, 1] is commonly assumed in
numerical analyses of fractional-derivative problems, but many researchers seem unaware
of the consequences of this assumption. We describe here what u ∈ C2[0, 1] implies for
our problem (3); our results can easily be generalised to Caputo differential equations
(boundary value problems and initial-value problems) of any order.

The crucial observation is the following result (see, e.g., [2, Lemma 3.11]), whose
short elementary proof we include for completeness.

Lemma 2. Let g ∈ C2[0, 1]. Then

lim
x→0+

D2−δ
∗ g(x) = 0.

Proof. For any x ∈ (0, 1),

D2−δ
∗ g(x) =

1

Γ(δ)

∫ x

t=0

(x− t)δ−1g′′(t) dt.

But g ∈ C2[0, 1] implies that |g′′(t)| ≤ C for 0 ≤ t ≤ 1 and some constant C. Hence∣∣D2−δ
∗ g(x)

∣∣ ≤ C

Γ(δ)

∫ x

t=0

(x− t)δ−1 dt =
Cxδ

Γ(δ + 1)
→ 0 as x→ 0+.

Remark 2. The converse of Lemma 2 is false. For suppose g(x) = x2−β with 0 < β < δ.
Then g ∈ Cq,δ

1 (0, 1] but g /∈ C2[0, 1], and

D2−δ
∗ g(x) =

(2− β)(1− β)

Γ(δ)

∫ x

t=0

(x− t)δ−1t−β dt =
Γ(3− β)

Γ(1 + δ − β)
xδ−β → 0 as x→ 0+,

where we used the standard formula for Euler’s Beta function [2, Theorem D.6] to eval-
uate the integral.
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Remark 3. By imitating the calculation of Remark 2, one can replace the hypothesis
g ∈ C2[0, 1] of Lemma 2 by the weaker assumption that g ∈ C2,β

1 (0, 1] for some β ∈ (0, δ).

Assume now that (3) has a solution u ∈ C2[0, 1]. Then by Lemma 2 we can apply
limx→0+ to (3a), obtaining

b(0)u′(0) + c(0)u(0) = f(0). (9)

One also has the boundary condition (3b); combining this with (9) yields

f(0) = [b(0) + α0c(0)]u′(0) + γ0c(0). (10)

Assume that u is the unique solution of (3), i.e., assume that θ 6= 0 in Theorem 1. Then
the value of u′(0) is given by (7). Thus f must satisfy the equation

f(0) =
[b(0) + α0c(0)][γ1 − γ0 − α1w(1)−

∫ 1

0
w]

α0 + α1[1 + v(1)] +
∫ 1

0
[1 + v]

+ γ0c(0). (11)

As w depends on f by (6), the necessary condition (11) places a difficult-to-verify restric-
tion on f that is completely unnatural, and is due entirely to the arbitrary assumption
that u ∈ C2[0, 1].

Remark 4. In the special case where b ≡ 0 and α0 = 0, the problem (3) becomes

−D2−δ
∗ u+ cu = f on (0, 1), with u(0) = γ0, u(1) + α1u

′(1) = γ1.

If u ∈ C2[0, 1] here, we can work directly from Lemma 2 without appealing to [5]: taking
the limit of the differential equation as x→ 0+ shows that

f(0) = c(0)u(0) = c(0)γ0

is a necessary condition for a solution u in C2[0, 1].

The analysis of this section shows that making excessive regularity assumptions on
the solution to a fractional-derivative is not only unjustified (recall Example 1) but also
restricts the class of problems under consideration by imposing a condition (11) on the
data that may be difficult to check in any concrete example.
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Аннотация. Рассматривается двухточечная краевая задача на промежутке [0, 1], в которой
старшая производная является дробной производной Капуто порядка 2− δ при 0 < δ < 1. Получе-
но необходимое и достаточное условие существования и единственности решения u. Производная
u′ этого решения оказывается абсолютно непрерывной на [0, 1]. Показано, что предположение о
большей регулярности — что u принадлежит C2[0, 1] — накладывает довольно тонкое ограничение
на данные задачи.

Ключевые слова: дробная производная, краевая задача, существование, единственность, ре-
гулярность
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