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Abstract. Interpolation of functions on the basis of Lagrange’s polynomials is widely used. However
in the case when the function has areas of large gradients, application of polynomials of Lagrange leads
to essential errors. It is supposed that the function of one variable has the representation as a sum
of regular and boundary layer components. It is supposed that derivatives of a regular component are
bounded to a certain order, and the boundary layer component is a function, known within a multiplier;
its derivatives are not uniformly bounded. A solution of a singularly perturbed boundary value problem
has such a representation. Interpolation formulas, which are exact on a boundary layer component, are
constructed. Interpolation error estimates, uniform in a boundary layer component and its derivatives are
obtained. Application of the constructed interpolation formulas to creation of formulas of the numerical
differentiation and integration of such functions is investigated.
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Introduction

Lagrange polynomials for interpolation of functions are widely used. However, accord-
ing to [1], application of Lagrange polynomials for interpolation of functions with large
gradients can lead to large interpolation errors. We suppose that the function under in-
terpolation has the representation as the sum of regular and boundary layer components.
Derivatives of the regular component are bounded up to some order. The boundary layer
component is known to within a multiplier and has large gradients. It is known that the
solution of a singularly perturbed boundary value problem has such representation [2].
We construct the interpolation formula which is exact on the boundary layer component.
Then we use the constructed interpolation formula for the creation of formulas of nu-
merical differentiation and integration of functions with the boundary layer component.
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Through the paper C' and C; denote generic positive constants independent of ¢ and
mesh size.

1. Interpolation formula and its properties

We suppose that function u(z) has a form:
u(z) = p(x) +7®(x), © € [a,b], (1)

where the function u(x) is smooth enough, the boundary layer component ®(x) is known,
but its derivatives are not uniformly bounded. Regular component p(x) and its deriva-
tives are uniformly bounded up to some order, the constant v is not known.

The solution of the following singular perturbed problem has the representation (1):

eu(x) + ay(x)u/(x) — az(z)u(z) = f(z), w(0)=A, u(l) =B, (2)

where a;(z) > a > 0, as(z) > 0, ¢ € (0,1], functions a;(z), az(z), f(x) are smooth
enough, the constant « is separated from zero. According to [2, 3], the solution of
problem (2) has exponential boundary layer near point z = 0 and can be written in the
form (1).

For example, we will define

() = exp(—ape '), ag = a1(0), v = —eu'(0)/ao.

Then for some Cy |p/(z)]| < Cy, |v| < Cp. Derivatives of function ®(z) are not e-uniformly
bounded.

Let us Q" be an uniform grid of interval [a, b]:
Q" ={2,: zn=a+n—-1Dh, z1=a, 2 =0, n=1,2,...,k}.

We suppose that the function u(z) with the representation (1) is given at mesh nodes,
Up, = u(zy).

Let L,(u,x) is Lagrange polynomial for function u(z) with interpolation conditions
at nodes x1, T, ..., x,. Now we will show that application of a polynomial of Lagrange
for interpolation of function (1) can lead to considerable errors. We define u(z) = e~%/¢.
Then for e < b Lo(u, h/2) —u(h/2) ~ 1/2. The accuracy of the interpolation doesn’t
increase with decrease of a step h.

In [4] for the interpolation of function of a form (1) the following interpolation formula
was constructed:

[:Ula s 7$k]u
Los(t,2) = L (v, —[cp — L (@, ] 3
oal18) = Lia(,3) + (722 E 00) - Lia(0.) 3)
where [x1, ..., zg]u is the divided difference for a function u(z) [5, p. 43].
It is possible to verify that the formula (3) is interpolation at nodes of z1, xo, ..., xy,

which is exact for polynomials of degree of (k—2) and for component y®(x). This formula
is correctly defined if ®*~V(z) # 0, x € (a,b). In [4] the following lemma was proved.
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Lemma 1. Let

O(x) — Lyp_1(P, )

My(®,z) = P(xy) — Lp—1(P, )

(4)

Then
Lo x(u,7) — u(x)| < max|p®(s)] [|Me(®, 2)] + 1] (5)

According to estimate (5), the constructed interpolation formula (3) has the error of
order O(h¥~1) uniformly in ®(z) if the function M (®,z) is bounded. We proved in [6]
that |My(®,z)| < 1if &' (z) # 0,2 € (a,b).

Lemma 2. Let
¢ (2) >0, @V (x) 20 or ¢ V(@) <0, @ (2) <0, w€(ab).  (6)

Then
| M (P, z)| < 1. (7)

Proof. Consider the first case in conditions (6). According to [5, p. 44]
O(x)—Lip_1(P,x) = rp_1(x)[x1, T2y . ., Tp1, 2] P, TR_1(x) = (z—21)(T—22) - - (T—T)_1).
Therefore, from (4) we obtain

Tk,1($)[$1,$2,...,.’L‘k,hl‘]q)
M, (D = . 8
H® ) Te—1(Tr)[T1, T2, .. ., Ty, 7] P ®)

According to [5] for some s € (a,b)
[21, T, ..., T, 2] = F V() /(k — 1)L 9)

Considering the condition ®*~1(x) > 0, we obtain z(z) = [x1,7,..., 251, 2]® > 0.
According to [5, p. 79] 2/(x) = [z1, 2, ..., 7k_1, 7, 2]®. We use the condition ®*)(z) > 0
and (9) to obtain 2'(z) > 0, = € [a,b]. So, the function z(x) is positive and increasing
on the interval [a,b]. Using the inequality |ry_1(z)| < 7x—1(x) we obtain (7) from (8).
The lemma is proved.

Conditions (6) are satisfied in a case of function ®(z) = =1/ corresponding to
exponential boundary layer [3].

Using the relation [5, p. 45]

Li(u,x) — Ly (u, ) = rp_q(2)[z1, 22, . . ., k1,
the interpolation formula (3) can be written in a form

['xla ce 7xl€]u

Lo i (u,z) = Li(u, z) + O(x) — Li(P,x)|. (10)

[5131, ce ,xk]Q)
From (10) obviously follows that Lg j(u,x) is interpolation, which is exact for ®(x).
We will notice that the formula (10) uses Lagrange’s polynomials of bigger degree in
comparison with the formula (3).
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2. Formulas of numerical differentiation

Classical difference formulas for approximate calculation of derivatives are based on
polynomials of Lagrange. However, in the case of the function with large gradients
the interpolation error of this polynomials can be considerable that affects the accuracy
of difference formulas. For such functions it is offered to build formulas of numerical
differentiation on the basis of the constructed interpolant (3).

Differentiating the interpolant (3), we obtain

[‘rh s ,Z’k]u

W (z) — LY (d >0, (11
D (z) = Li2(®,2) |, j > (11)

u (z) ~ LY (u, ) = LY | (u,x) +

The formula (11) is exact for function ®(x). The analysis of accuracy of the formula (11)
is of interest.

We investigate the accuracy of calculation of the first derivative of function u(z),
when the difference formula uses two nodes of any grid interval [z,,_1, z,].

The classical formula for a derivative has the form

Up — Un—1

h 9

u'(z) ~ Ly(u,z) = Tpog < < Ty (12)

Let u(z) = e=®/¢. Then ¢|(u; — uo)/h — u/(0)| = e~! if ¢ = h. So, the relative error of
formula (12) doesn’t decrease at decrease of a step h.
Now we consider the formula (11) with j =1,k =2

Up — Up—1

mqy(l’), Tp—1 S i S Tp. (13)

u'(w) & L o(u, ) =

Lemma 3. Suppose that the function u(z) has the representation (1) on the interval
[0,1], where

§(@)] < Cr, ()] < Cr /e, B(x) = e 7/° or B(x) = e/, £, a9 > 0.
Then for some constant C
|lLgo(u,z) —u'(2)] < Ch, 2y <2 < . (14)

Proof. We consider the case ®(x) = e~%%/¢, We take into account that the formula (13)
is exact for y®(x) and obtain

e[ Ly o(u, x) —u'(7)] = €Ly o (p,x) —p'(x)| < €Ly o(p, x) — Ly(p, v)| + €| Ly(p, x) — p'(z)].
For the second module we have

elLy(p,x) — p'(x)| < eh max Ip"(s)| < Cih. (15)

Now we estimate first module. We use the inequality |p'(z)| < Cy and obtain

elLga(p, ) — Ly(p, o) < CrLh|F(2)], (16)
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where
€

F(:C) — _aoefaox/e/ [efaoxn/a . efaoxn_1/5:| . E
It is obvious that function F(z) decreases on the interval [z,_1,z,]. We will show
that this function is uniformly bounded at the ends of the interval. Let 7 = agh/e. Then

F(zp,-1) = %[1 _TeiT —1], 0<7<o0.
Considering separately cases 7 > 1 and 7 < 1, we prove that |F(x,_1)| < 2aq.

The similar estimate is correct for |F'(x,)|. Therefore, |F(z)| < 2ao. We obtain (14)
from (15), (16). The lemma is proved.

Thus, in the case of exponential boundary layer the advantage in accuracy of the
offered formula (13) over classical formula (12) is proved.

3. Construction of the quadrature formula

Now we consider a question of creation of the quadrature formula for the integral

I(u) = /u(x) dx (17)

in the case of the function u(z), having the form (1).
We show that application of formulas of Newton-Cotes can lead to the essential errors.
For this purpose we consider the composite Simpson’s formula

N-1
h
S5(u) = 3 Z (un,l +4un—|—un+1>, To=a, 2y =b,Nh=b—a, a=0,b=1.
n=1,2

It is known that the composite formula of Simpson has the error about O(h*) if the
derivative u¥)(x) is uniformly bounded.

We consider function u(z) = exp(—e~'x). Derivatives of this function are large for
small €. We write the error of Simpson’s formula for the interval [0, 2h]

2h
h
A= /exp(—a_lx) dx — 5(1 + 4exp(—e'h) + exp(—2¢7'h)).
0

It follows that A = O(h%) if e ~® 1 and A = O(h) if ¢ < h. So, in the presence of a
boundary layer component the error of Simpson’s formula can increase to the quantity
about O(h).

In [7] is offered to build quadrature formulas for functions of the form (1) which
are exact on the boundary layer component ®(x). For this purpose the function under
the integral was replaced by interpolant (3), as a result the quadrature formula was
constructed. Quadrature formulas with two and three nodes have been constructed. In
8, 9] has been similarly constructed quadrature formulas with four and five nodes. In
these works it is proved that the constructed composite formulas have the error of order
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O(h*=1), where k is the number of nodes of the quadrature formula. There was only
restriction ®*~V(z) £ 0, x € (a,b).

In [10] the quadrature formula with & nodes, which is exact on a boundary layer
component, was constructed.

Substitution of the interpolant (10) into integral (17) leads to a quadrature formula:

b b
(1, X9, ..., Tu

[xl,xg,...,xk]é[/q}(x)dx_sk(q))}’ Sk(u):/Lk(U,x)dx, (18)

a a

S(p,k(u) = Sk('LL) +

where Si(u) is closed Newton-Cotes formula with £ nodes. It is obvious that the quadra-
ture formula (18) is exact for the function ®(z).
In [10] the estimate of the error of formula (18) is proved.

Lemma 4. Suppose that the function u(x) has the form (1) and the derivative pt*=1)(x)
is uniformly bounded on [a,b],

FV(z) >0, z € (a,b), Sp_1(P) < I(P) < Si(P)

" d*-D(1) <0, 2 € (a,), Sp(P) < I(®) < Sj_1 (D).
Then 5
Sa4(00 = 1(0)] < =5 max (5 b= o) (19)

The error estimate (19) does not depend on the boundary layer component ®(x) and
its derivatives. The composite quadrature formula, based on a formula (18), has the
error of order O(h*™1).

As it was told above, in the most usable cases 2 < k < 5 the estimate (19) is fullfiled
under one condition ®*~1(x) £0, a < z < b.

If at creation of a quadrature formula to use the interpolation formula (3), then we
will receive simpler quadrature formula. In particular, at odd k& Newton-Cotes’s formula
in (18) changes on a quadrature formula of open type with smaller number of nodes.

4. Numerical results

Consider the function u(z) = cos &F + e~ @) g e [0,1], € > 0.

Table 1 contains the maximum error of piecewise polynomial interpolation in the case
k = 4, computed at the midpoints between the nodes. At small values of ¢ the accuracy
does not increase with decreasing of step h.

Table. 2 contains the interpolation error and the computed order of accuracy of the
interpolation (3) with k = 4, which is used in subintervals of the length 3h. At small ¢
the order of accuracy becomes third, which corresponds to the estimate (5).
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Table 1. The error of piecewise-polynomial interpolation with & =4

€ N
24 48 96 192 384 768

1 4.43e —7 | 2.80e —8 | 1.84¢ — 9 | 1.16e — 10 | 7.31le — 12 | 4.58e — 13
107! [ 4.04e —4 | 2.85¢ —5 | 1.88¢ —6 | 1.2le—7 | 7.64e —9 | 4.80e — 10
1072 [ 2.03e —1|7.14e —2 | 1.28e —2 | 1.44e —3 | 1.23e —4 | 8.99% — 6
1073 [ 3.12e — 1| 3.12e—1 | 3.07e—1| 244e—1 | 1.08e —1 | 2.4le —2
10741 312e—1 (312 —1[312e—1] 3.12¢e—1 | 3.12e—1 | 3.1le—1
1075 [ 3.12e —1 {312 —1|3.12e—1| 3.12e—1 | 3.12¢e—1 | 3.12e —1

Table 2. The error and the order of accuracy of interpolation formula (3) with k& = 4

€ N

24 48 96 192 384 768

1 |120e—5]|755¢e—7|47le—8|294c—9 | 1.84¢ — 10 | 1.15e — 11
3.99 4.00 4.00 4.00 4.00 4.00

10T [ 4126 —5 | 2.50e — 6 | 1.52¢ — 7 | 9.44e — 9 | 5.87¢ — 10 | 3.66¢ — 11
4.04 4.04 4.01 4.01 4.00 4.01

102 [ 468 —4 299 —5 | 1.70e — 6 | 9.81e — 8 | 5.86c — 9 | 3.57¢ — 10
3.97 4.14 4.12 4.07 4.04 4.01

103 | 6.89c —4 | 8.72¢c —5 | 1.08¢ —5 | 1.08¢ — 6 | 7.46¢ — 8 | 4.28¢ — 9
2.98 3.01 3.32 3.86 4.12 4.12

107689 —4 872 —5|1.09¢ —5 | 1.37e—6 | 1.7le—7 | 2.13¢ — 8
2.98 3.00 2.99 3.00 3.01 3.17

107° | 6.89c —4 | 8.72¢ —5 | 1.09¢ —5 | 1.37e — 6 | 1.7le — 7 | 2.14e — 8
2.98 3.00 2.99 3.00 3.01 3.00

References

1]
2]

3]

4]

[5]

[6]

17l

Zadorin A.I., “Method of interpolation for a boundary layer problem”, Suberian journal
of numerical mathematics, 10:3 (2007), 267-275, (in Russian).

Shishkin G.I., Discrete Approximations of Singularly Perturbed FElliptic and Parabolic
Fquations, Russian Academy of Sciences, Ural Branch, Ekaterinburg, 1992, (in Russian).

Miller J.J.H., O’Riordan E., Shishkin G.I., Fitted Numerical Methods for Singular Per-
turbation Problems: Error Estimates in the Mazximum Norm for Linear Problems in One
and Two Dimensions, Revised Edition, World Scientific, Singapore, 2012.

Zadorin A.I., Zadorin N. A., “Interpolation formula for functions with a boundary layer
component and its application to derivatives calculation”, Siberian FElectronic Mathemat-

ical Reports, 9 (2012), 445-455.

Bakhvalov N.S., Zhidkov N.P., Kobel’kov G.M., Numerical Methods, Nauka, Moskow,
1987, (in Russian).

Zadorin A.1., Zadorin N. A., “Spline interpolation on a uniform grid for functions with a
boundary-layer component”, Computational Mathematics and Mathematical Physics, 50:2
(2010), 211-223.

Zadorin A.1., Zadorin N. A., “Quadrature formulas for functions with a boundary-layer
component”, Computational Mathematics and Mathematical Physics, 51:11 (2011), 1837—
1846.



Modeauposanue u anarud ungopmayuoroir cucmenm. T.23, Ne3 (2016)
384 Modeling and Analysis of Information Systems. Vol. 23, No 3 (2016)

[8] Zadorin A.I., Zadorin N. A., “An analogue of the four-point Newton-Cotes formula for a
function with a boundary-Layer Component”, Numerical Analysis and Applications, 6:4
(2013), 268-278.

[9] Zadorin A., Zadorin N., “Quadrature formula with five nodes for functions with a boundary
layer component”, Lect. Notes in Comput. Sci., 8236 (2013), 540-546.

[10] Zadorin A.I., Zadorin N. A., “Analogue of Newton-Cotes formulas for numerical integra-
tion of functions with a boundary-layer component”, Computational Mathematics and

Mathematical Physics, 56:3 (2016), 358-366.

Banopun A. U., "Narepnonanuonabie hOpMyJIbl i GYHKINNE ¢ OOIBITIMA TPaIneH-
TaMU B TIOIPAHUIHOM cJjioe 1 ux npumerenne, Modeauposarue U aHaAu3 uHHOPMaAUUO-
nux cucmem, 23:3 (2016), 377-384.

DOI: 10.18255/1818-1015-2016-3-377-384

Annorarus. Mareprnossinust HyHKIMI HA OCHOBE MHOIOWIEHOB JlarpaH»Kka IOJIydd/ia IIMPOKOE
npumenenne. OHAKO B Cydae, KOT/Ia WHTEPIOupyeMas (DyHKIUS uMeeT 00/1acTu OOJIBINTUX IPaIieH-
TOB, IPUMEHEHNE MHOTOYWICHOB Jlarpam:ka IPUBOIUT K CyIIECTBEHHBIM ITOTPEITHOCTSAM. B pabore mpe-
[I0JIATAeTCs, YTO UHTEpIoIupyeMast (DyHKINS 0/IHOM IepeMeHHON IPEICTABIMA B BUJE CYMMBI PEryJIsp-
HOH ¥ TOTpaHC/IONHOMN cocTaBsaomuX. [Ipeamosaraercs, ITO TPOU3BOIHBIE PETYJISPHON COCTABJIAIONIEH
JI0 OIIPEJIEJIEHHOTO MTOPSIJIKA OTPAHUYIEHBI, & MOTPAHCIONHAS COCTABJISIIONIA SIBJIsIeTCsl (DYHKIMEH 00I1ero
BHJA, U3BECTHAs C TOYHOCTBHIO JO MHOXKHTEJd, €€ IIPOU3BOAHbBIC He SBJIAIOTCS PABHOMEPHO OIDaHUYECH-
HBIMH. TaKOe MpeICTaBIeHNEe NMEET PellleHrne CHHTYISPHO BO3MYIIIEHHOH KpaeBoii 3agadn. CTpodarcs nH-
TEePIOJISIINOHHBIE (DOPMYJIbI, TOYHDBIE HA IOIPAHCIONHON COCTABJISAIONIEN, IOy I€HBI OIEHKH ITOTPENTHO-
CTU MHTEPIONIANNN, PABHOMEPHBIE 10 TIOTPAHCJIONHON COCTABIIAIONIEN U ee TPOU3BOAHBIM. VlccieroBano
MIPUMEHEHNE MOCTPOEHHBIX UHTEPIOJIANMOHHBIX (GOPMYJT K MOCTPOEHUIO (hOpMYJI YuCIeHHOro qudde-
PEHIINPOBaHWS U MHTEIPUPOBAHUS (DYHKIUI pacCMaTPUBAEMOIO BUIA.

KuroueBbie cjoBa: (QyHKIUs OJHOI IepEMEHHO, TOrPaHC/IONHAS COCTABJISIIONIAS, HEITOJTMHOMUA Th-
Hasl MHTEPIIOJIANNS, KBAIPATyPHbIE (DOPMYJIbI, (DOPMYJIbI YUCIEHHOTO juddepeHITnpoBaHms
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