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Introduction

0.1. Motivation and General Problem

For a motivating example consider affine plane A? over a field k and two non-proportional
irreducible polynomials ¢, g» in two variables x, y over the same field. Let these polynom-
ials have zero sets Z(g1) C A% D Z(gz) and a set of common zeros Z(g1,92) = Z(g1) N
Z(ga). If k is algebraically closed Z(g;) are irreducible curves for any g¢;,i = 1,2, and
Z(g1, g2) is a discrete collection of points. A union of curves Z(g1) U Z(g2) is given by
zeros of the product polynomial g g9, i.e. Z(g91)U Z(g2) = Z(g192) and provides a simple
example of amalgamated sum Z(g1) [, ,,) Z(92) of algebraic schemes Z(g;),7 = 1,2
(precise definition will be given below). Transferring to algebraic counterpart one has
k-algebras A; = k[x,y]/(g;),i = 1,2 corresponding to curves Z(g;),i = 1,2 respectively,
and the k-algebra of intersection locus Ay = k[x,y]/(g1, g2). There are obvious k-algebra
homomorphisms f; : A; - A,. Formation of the algebra k[z, y|/(g192) for the union of two
components provides an example of universal (fibred) product of k-algebras A; x 4, As.

For our purposes it is enough to restrict by affine algebraic k-schemes of finite type,
i.e. prime spectra (sets of prime ideals with natural topology and collection of local rings
forming a structure sheaf on the spectrum) of commutative associative k-algebras of
finite type with unity (for complete theory cf. [1, ch.2]). We focus on algebraic side and
operate exclusively with underlying algebras.

We describe general quotient problem in the category of algebraic schemes over a field
k. The problem includes following ingredients:

e a scheme X;
e a subscheme R C X x X

e morphisms p; : R C X x X — X defined as composites of the immersion with the
projection on ith factor.

The subscheme R C X x X is said to be an equivalence relation; this means that it
satisfies three requirements as follows:

1. R is reflexive, i.e. R D diag(X) where diag(X) is an image of the diagonal
immersion diag : X — X x X;

2. R is symmetric, i.e. the immersion R C X x X is stable under the involution
intertwining first and second factors of the product X x X;

3. R is transitive, i.e. pris(R x X N X X R) C R where the intersection is taken in
X x X x X. Here pryj5 : X x X x X - X x X is the projection to the product of
the 1st and 3rd factors.

The question is |2, ch. 1, 4.3] to construct (if possible) the universal quotient X/R.
This is an object fitting into the commutative diagram

R—2.Xx

‘i

X —=X/R
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such that for any other commutative square

R X

|

X —T

there is a unique morphism 7 : X/R — T (in the appropriate category) fitting into the
commutative diagram

R-2.X

|

X —X/R
\T

The best result should be to know precisely when the universal quotient exist in some
category (for example, in the category of algebraic schemes) and when it does not.

0.2. Particular Cases

1. The notion of algebraic space [3] which appears when morphisms p;,i = 1,2
assumed to be étale. In this case the object X /R belongs to the category of algebraic
spaces.

2. Open covering of a scheme Y when X = | | U, is a disjoint union of open subschemes
of Y, R = | | Ros and morphisms R,s — U, and R,3 — U are local isomorphisms.
In this case the object X/R is the scheme Y whose open cover was considered.

3. Let the scheme X is acted upon by an algebraic group G and R is a subscheme
induced by G-equivalence [4]. In this case if X/G = X/R exists its universality
means that it is a categorical quotient of the scheme X by G.

0.3. Case of Several Components

Now let X be a disjoint union of schemes X = X | | X5. Then
X XX:Xl XX1|_|X1 XX2|_|X2 XX1|_|X2 XX2
and the equivalence relation is broken into 4 disjoint components

R=Ru| |Ruiz| |Ror| | R

The problem reduces to the search of the universal completion of the diagram

bj
Rij —X;

|

X;
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This universal completion is called an amalgam (or an amalgamated sum) of schemes X;
and X, with respect to I?;; and is denoted as X; HRZ,], X;. If for each pair 7,j = 1,2 the

amalgam X; [[ X; exists then X/R = X[ X =], ,(Xi [, X;)-

0.4. Schemes and algebras

We recall that affine Grothendieck’ scheme of finite type over a field k is a prime spectrum
Spec A of associative commutative algebra A of finite type with unity over k.

Recall that the k-algebra A is said to be of finite type if it admits a surjective
homomorphism of polynomial algebra in finite set of variables k[zy,...,z,] - A. In
particular this means that the algebra A under consideration can have any finite Krull
dimension (if A admits an epimorphism of polynomial algebra in n variables then the
Krull dimension of A is not greater than n). In this case the algebra A as k-vector space
can be infinitely-dimensional.

Generally, fibred product and amalgam (or product and corpoduct, or small limits)
are dual categorical notions |5, 1.17,1.18] and are not obliged to exist in any category.
The schemes under consideration are prime spectra of associative commutative algebras
of finite type over k. Duality is done by functorial correspondence taking k-algebra to
its prime spectrum. The fibred product of associative commutative k-algebras of finite
type as taken by this functor to the amalgam of corresponding spectra. The functorial
behavior of fibred product of algebras is analogous to one of fibred product of schemes.

Despite that existence of fibred product for associative commutative algebras is
known, the method of explicit computation of it is not described in the literature. We
fill this gap.

Let A be a commutative associative algebra of finite type with unity; then it can be

represented as a quotient algebra of n-generated polynomial algebra ¢ : k[z1,...,2,] - A
where n depends on the structure of A. The representing homomorphism ¢ corresponds
to the immersion of the scheme Spec A into k-affine space A" = Speck|xy,...,z,]. By

means of this immersion we interpret the abstract k-scheme Z as a closed subscheme
Z C A" of affine space. We call the isomorphism A = k[xy,...,z,|/ker ¢ (resp., the
immersion Z C A") the affine representation of the algebra A (resp., scheme 7). This is
the reason why any associative commutative algebra of finite type with unity is called
an affine algebra. Then the k-algebra is affine if and only if it has affine representation.
Any affine algebra has many different affine representations.

We prove the following result.

Theorem 1. The universal (fibred) product of affine algebras of finite type over a field
can be compute explicitly by means of generators and relations.

The method to compute fibred products of affine algebras constitutes the main subject
of this article and described below.

First we fix the terminology and describe the algorithm which constructs algebra to be
a universal product of algebras by means of their appropriate affine representations. Then
we confirm that choice of different appropriate affine representations leads to isomorphic
algebras. Finally we prove the universality and hence confirm that the obtained algebra
is indeed a fibred product.



Modeauposanue u anaausd ungopmavyuornoz cucmem. T.23, Ne5 (2016)
624 Modeling and Analysis of Information Systems. Vol. 23, No5 (2016)

[ would like to thank the Delaunau Laboratory for the support during my work on this
article and my Diploma student I. Chistousov for testing the finite-dimensional version
of the method by thoroughly computing various examples.

1. Construction

1.1. Glossary

We work with polynomial rings of view k[xy, ..., z,], its ideals and quotients.

The basis of the ideal I is any system of generators of I as k[xq,. .., z,]-module.

The basis is minimal if it does not span I whenever any of elements is excluded.

The k-basis of polynomial algebra (which is not obliged to be with unity) is its basis
if the algebra is considered as k-vector space.

The k-relation between elements of the algebra A (which is not obliged to be with
unity) is a nontrivial k-linear function (nontrivial k-linear combination) in these elements
which equals 0 in A. As usually, linear combinations with finite number of nonzero
coefficients are considered.

Fix the natural ordering of variables x4, ..., z,; then we can use shorthand notation
x® for the monomial x7" ... x%". The symbol o denotes the row of degrees a, ..., a,.

1.2. Algorithm

Reduction to surjective morphisms

We are given three algebras Ag, Ay, As with morphisms A; £> A ﬁ Ay. Show that
we can assume that both f;, i« = 1,2 are surjective. Since the morphisms f; must include
into commutative squares of the form

Ay < A, (1)

Ay < Ar

X1

then for any such a commutative square the composite morphisms f;oy; and fs0xs have
coincident images in Ag. By commutativity of the square im f; o x; = im fy 0 xo C im f;,
¢ = 1,2. This means that im f; o x; C im f; Nim f5 and the morphism y; factors through
the subalgebra f;'(im f; Nim f,) C A; for i = 1,2. Then all algebras of interest Ar
complete the square

im f; ﬂimfg«—féffl(imﬁ Nim fo)

i} [

fl_l(lm fl Nim fg) AT

to commute.
f f
Denote A} = Al & Al where A} = im f; Nim fo, A} = fi'(A)) and f] = filass

i=1,2.
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fi f3
Let there is a fibred product A} x4, A5 for the case A} = Al & Al,. Confirm that

Ay xa Ay is also a  universal product for the initial arbitrary data
Ay LN Ag LN A,. By the construction of algebras A}, i = 0, 1,2, and by the definition
of the algebra A} x 4, Aj it includes into the commutative diagram

f2

N,

Al Al

]

/ / /
A~ A Xy A

Ao Ay

A

Let Ap fit into the commutative diagram (1). Then by the universality of A} x4, Aj
as a product there is a unique homomorphism ¢ : Ap — A} x4 Al which fits in the
commutative diagram

This diagram provides universality of the algebra A x 4, A5 as a product for initial data,
le.

/ /
Al XA()AQ:AI XAOAQ.

Now we can replace everywhere our initial arbitrary data by the more special case
when morphisms f;, i = 1,2, are surjective.

Easy case

Assume that A; = kf[zy,...,2,]/L, i = 0,1,2, so that Ay = Ay Q... 2, A2. This
assumption says that the subscheme Spec Ay = Z; C A" is an intersection of subschemes
Zy CA™and Z, C A", Z; = Spec A;, i =1,2.

Choose minimal bases in ideals I;, © = 1,2. Consider set of those monomials in
klxi,...,x,] which are taken to 0 in both A; and As by homomorphisms f; and f,
respectively. It is clear that if ® is such a monomial that for all g € ZZ%, the monomial
z°tP is taken to 0 in both A;, A,. Then the set of monomials under consideration
generates an ideal J.
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Quotient algebra k[zy,...,x,]/J includes into the commutative square

Ag~—"L1 4,

d |

A1<<—]€[Qfl,...,l'n]/<]

Consider k-basis elements in k[zq,...,x,]/J. Since A; are not obliged to be finite-
dimensional over k, k[z,...,x,]|/J can also have infinite k-basis. We form the list L of
k-relations among k-basis elements of k[xy, ..., z,]/J as follows.

The k-relation ) a,x® between elements of k[xy,...,z,]|/J (possibly monomial) is
include into L if and only if it equals 0 in both of A;, As. It is clear that the linear span
< L > is an ideal in k[z1,...,z,]/J.

Now set A = (k[z1,...,2,)/J])) < L >=k[z1,...,2z,)/(J+ < L >).

Remark 1. By Hilbert’s basis theorem, ideals J, < L >, and J+ < L > admit finite
bases.

Remark 2. If A, and Ay finite-dimensional then dim A; X 4, Ay = dim A; 4+ dim A, —
dim Ag. This follows immediately from the algorithm described. If k is algebraically closed
then length A; = dim A;, i = 0,1, 2, and then length Ay x 4, A2 = length A; +length A, —
length Ay.

Hard case

How to build up affine representations of algebras Ag, A;, Ao to validate the Easy case,
i.e. such that AO = Al ®k[x1,...,wn} AQ?

Start with principal ideals in Ag: only those which are maximal under inclusion
are necessary. Take a generator of each such an ideal. Choose any maximal k-linearly
independent subset in the set of generators chosen. Since A, is an algebra of finite
type, this subset is obliged to be finite; let it consist of s elements g¢y,...,¢gs. Each
element g; corresponds to the variable x; in k[zy,...,x,]. The construction done fixes a
homomorphism of k-algebras hg : k[z1,...,zs] = Ag. Let Ky := ker hg. Since k[z1, ..., x,]
in Noetherian then K| is finitely generated ideal.

Let g; be one of preimages of the element g; € Ay in A, g7 be one of preimages

of the same element in A;. We complete the set g,..., g, to form the set of k-linearly
independent generators of the algebra A;, by adding elements g ,,....g), € A;. Similarly,
the set g7,...,g” is completed to the set of k-linearly independent generators of the
algebra A, by adding elements g, ,,...,g,. We put the variables xs1,..., 2, in the
correspondence to the elements g; ,,, ..., g,, and the variables z,,,11, . .., z, to the elements
)

This leads to homomorphisms h; : k[xq,...,2,] - A;, i = 0,1,2, n > s defined by
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following correspondences

ho(zj) =g5, j=1,...,s,

ho(z;) =0, j=s+1,...,n,

hi(zj) =g} j=1,...,m,

hi(zj) =0, j=m+1,...,n,

ho(z;) =gj, j=1,...,8,m+1,...,n,
ho(z;) =0, j=s+1,....,m

In particular, hy = f; o h;.

Affine representations of algebras Ay, Aj, As and their homomorphisms fi, fo lead
to closed immersions of their spectra into affine space A™ according to the following
commutative diagram

B
A" <2 Spec A,
¥
B : £

Spec A, <f—ﬁ) Spec Ay
1

By some modification of representing homomorphisms h;, i = 0, 1, 2, we will easily achieve
that in the appropriate affine space

hi(Spec Ag) = h(Spec Ay) N h(Spec As).

For this purpose choose any system of generators x1, . . ., k, of the ideal Ky (as k[xq, ..., x,]-
module). Add to the set of variables xy,...,z, additional variables (whose number
equals to the number r of generators if K, chosen) vy, ...,y,, and consider in A;-algebra

Aqlyi, ...,y anideal K[ generated by all relations of view y;—r;(g], ..., gl,), L = 1,...,7.
Then we have a commutative diagram

h/
]{7[1‘1,...,.’En,yl,...,yr]—Q»Ag

R} i h{ ifz

Al[ylyyr]/K(/) AQ

There hj(x;) = hi(z;) for j =1,...,n and for i = 0,1,2, but hl(y;) =0 for i = 0,2 and
g=1,...,7.

Lemma 1. There is an isomorphism of k-algebras Ailyi, .. .y.]/ K| = A;.

Proof. Let K; = ker hy. Denote by J' the ideal in the ring k[xy, ..., 2n, 41, .., ¥y,] which
is generated by relations y; — ki(x1,...,2,), | = 1,...,r. Obviously, J' C kerh}. The
isomorphism of k[xy,...,Zn, Y1, .., y-J-modules Ay, ...y.]/Kj = A, follows from the
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exact diagram of k[z1,...,x,, y1, ... y,]-modules
0 0
Jl;‘(yla SR 7y7“)
0——=kerh) —=k[z1,...,Zn, Y1, .-, Yr) —= A1ly1, ..., 4]/ K —0
jz
0 Kl k[:lfl,...,.l'n] Al 0
0 0
where the isomorphism J' = (yi,...,y,) is an isomorphism of free modules of equal
ranks done by the correspondence y; — ki(z1,...,2,) — y, L = 1,...,7. The k-algebra
isomorphism Ay, ...y, |/K; = A; follows from the fact that the quotient algebra
Ailyr, - - yr]/ K admits the same system of generators ¢, ..., gl as an algebra A;, with
same relations (equal to generators of the ideal Kj). O

Proposition 1. The homomorphisms h. lead to the expression

AD = A]_ ®k[$17...,$n7y17“'7y7“] AZ'

Proof. To prove the proposition one needs to confirm that Ag is universal as a coproduct.
Let Q be a k-algebra supplied with two homomorphisms A; = Q <2~ A, such that the
following diagram commutes:

h/
klzy, .. @,y Yr] — Ao

3

Ay h Ay \*?
\
Q

Commutativity of the ambient contour guarantees that 1(A;) = ¢2(As) and hence we
can replace Q by ¢1(A;) = p2(As). However we preserve the notation () but assume
that homomorphisms ¢; are surjective. By the construction of homomorphisms A}, the

algebra Ag is generated by the images of first s variables x1, ..., z.
Then by the commutativity of the ambient contour @1k} (z;) = p2hf(x;) for j =
1,...,n. In particular, by the construction of homomorphisms h; (and of homomorphisms

R built up by means of them), p1h}(z;) = pahh(z;) = 0 for j = s+ 1,...,n. For
j=1,...s we have 0 = ¢y o b (yi — Ki(x})) = 2 0 hy(y — Ki(x;)) = —pahbki(x;) for
I =1,...rsince hy(y;) = 0. This implies that homomorphisms p;, i = 1,2, factor through
the algebra Aj.

The homomorphism ¢q : Ay — @ is uniquely defined on generators hg(z;) of Ay by
the correspondence ho(z;) — @; 0 hj(x;),i=1,2,j=1,...,s. ]
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Remark 3. Proposition 1 means that affine representations constructed are such that
the intersection of images of schemes Spec Ay and Spec Ay under closed immersions into
Speck[z1, ..., Tn, 11, .., y:] = A"T" is the image of Spec Ay.

Remark 4. In further considerations we use the notation of the view
A1 (h—l k[xl,...,xn] 2} AQ

assuming that homomorphisms h;. 1 = 1,2, are surjective and that they admait application
of the Easy case, i.e. Proposition 1 holds for them.

2.  Well-Definedness and Universality

2.1. Different affine representations chosen

Proposition 2. Different affine representations of algebras Ao, A1, As lead to isomorphic
product algebras A.

Proof. Let we have two pairs of different affine representations defined by pairs of
homomorphisms

b ha hy ;1 e
Ay« klxqy, ...z, &> Ay and Ay « k[z), ..., 2] & A
such that Ay = Ay Qpe),..0r) A2 = A1 Opay,...e) A2. They correspond to two pairs of
closed immersions of prime spectra

ht hl hy* hhyF
Spec Ay — A" <> Spec Ay and Spec A; — A™ <= Spec Ay
such that hf(Spec Ay) N kY (Spec Ay) = hg(Specéo) and R)*(Spec Ay) N hhf(Spec Ay) =
hi*(Spec Ag). This leads to closed immersions k! : Spec 4; — A" x A™ = A" ag

composites with the diagonal immersion diag:
- diag (hg7h;ﬂ)
h? s Spec A; < Spec A; X Spec A; —— A" x A™.
Now confirm that in this case also h_ﬁ(Spec AN h_g(Spec Ay) = h_%(Spec Ap).
Homomorphisms h; are defined as composites

Kz, ... z0 @pklah, .. 2l ] — Aiop A B A,

G®g9 = hi(g) ®@hi(g2) = hi(g1) - hi(g2).

Let @ be an algebra together with two homomorphisms ¢; : A; — @ such that
@1 0 hy = 5 0 hy. To confirm that A, = A, Pkl ....zn]@ikla) ...zt A2 1t 18 necessary to
construct a unique homomorphism ¢y : Ag — Ar such that ¢; = ¢y o f;. Consider
commutative diagrams

A; ®p AiMAO ®p Ao
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for i = 1, 2. Let for any reducible tensor x ® 2’ € A; ®; A;

(fi.fi)z®@a) =77 € Ag®, Ap; (T RT) =7 T € Ay
filz - 2') =T ®T € Ay; Si(r@a)=xz-2' € A,

Since by universality of the product
Ag @1 Ag = (A1 Ok A1) Okl en)@rklal,at,] (A2 Ok Az)
the homomorphism ¢ is uniquely defined using homomorphisms
(@i, i) * Ai®r Ai = Q 1z @ 2" = () - i(2)

as
(T RT) = pi(z) - pi(z') € Q
then g : Ag — @ is also uniquely defined as ¢o(y) = i(y) for ¥ = fi(y), y € A;.
Now it rests to form product algebras for three different affine representations

[y, ... an) <2—kly, ... an] @ k2, 2l | L k2, .. 2]
hil’ hii ih;
Horizontal homomorphisms are defined by correspondences A : z; — 0, [ = 1,...,m and

prxj—0,5=1..,nrespectively. _
Denoting by A the product algebra for h; : kf[zi,...,x,] ®k k[z),...,2],] — A,
1 =0,1,2, we come to the commutative diagram

klxi, ..., x,] <<Lk[x1, e T R kX, 2] —p»k‘[m’l, o] (2)
hi Ei ih’
A DA A Py A

associated to closed immersions
A" — - A" X A" — > A™

(X1, ..y Tp) = (T1,...,2,,0,...,0),

0,...,0,2),....2 )<=—(2},..., 2 ).
Vertical homomorphisms in (2) define affine representations for product algebras built up
according to the Easy case. Lower horizontal morphisms are surjective by commutativity
of the diagram (2).

To prove isomorphicity of lower homomorphisms in (2) consider sections of homo-

A
morphisms k[xy, ..., x| « k[z1, ..., 2z, |Qck[x), ... 2 ] 5 klx1,..., 2y, 1.e. homomorph-
isms k[xy, ... xn] S Koy, .. ] Qu k[, . 2l ] & klx, ..., 2] defined by following

rules sy : f = f®1, s5: g 1®g. A nonzero element from A has nonzero preimage
in k[xq,...,x,] which has nonzero image in klxy, ..., z,| ® k[z],..., 2! |. This image is

rYm
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taken to nonzero element of at least one of algebras A;, As and hence has nonzero image
in A. This leads to a homomorphism of k-algebras s, : A — A. It is a section of the
homomorphism p4 by its construction.

Now remark that s, is surjective. Indeed, one can choose a system of k-generators
(which is not obliged to be a basis) in A which are images of reducible tensors f ® g
from k[zy, ...,z @ K[z}, ... 20, f € K[z, ..., 2], g € k[x),...,2,,]. This expression
is defined up to the action of k* = k '\ 0. A polynomial f has nonzero image at least in
one of algebras A;, A;. Hence it is taken to nonzero element in A. Since py 0 s4 = idy
then both s4 and p4 are isomorphisms.

[somorphicity of p/y is proven analogously. O]

2.2. Universality

Proposition 3. The construction of product algebra A is indeed universal, i.e. A is true
fibred product.

Proof. Let Ar be an affine k-algebra together with two homomorphisms y; : Ar — A,
1 = 1,2 such that y; o fi = x2 o fo. We construct a homomorphism ¢ to complete the

diagram
Ar
AR
Lo
__ V —
Al <; A ;' A2

Choose appropriate affine representations of algebras Ar, A, A;, i = 1,2. Perform the
manipulations as described in the Easy case. Namely, let J be an ideal in k[zy, ..., z,)
generated by all monomials taken to 0 in Ap, A and A;, i =1,2.

Quotient algebra k[zy,...,x,]/J includes in the commutative diagram

A

%IT ?1

A() AT A<<—k[$1,,l‘n]/<]

N

Ay

Choose an arbitrary element o € Arp; it is taken to xi(«) € A; and to xa(a) € Ay
so that fixi(a) = faxz(a). Any v of preimages of o in k[xy, ..., z,]/J is also taken to
fixi(a) = faxa(a) € Ap and to some element @ € A. We claim that @ does not depend
on the choice of .

Choose another v € k[zy,...,x,]/J taken to a, then v — 4" maps to zero in Ar and
hence it is mapped to zero in both A;, i = 1,2. Then by the construction of A (cf. Easy
case) v — 7' is taken to zero in A. This shows that there is a homomorphism ¢ : Ay — A
such that y; = po f,, i = 1,2, as required.

It rests to confirm ourselves that the homomorphism ¢ : Ar — A does not depend on
the choice of affine representations of algebras Ar, A;, i = 0,1,2. For this sake assume
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that there are two different collections of affine representations include into commutative
diagrams

klxy, ..., x,) xl, (3)
;
ha Ay ha
Ay A Ay Ay
Ao

Then consider the algebra k[zy,...,x,] ® k[x],..., 2 | and its homomorphisms on
quotient algebras k[z1, ..., ;) & klzy, ... zn) @kl ... 2l ] 25 k2!, ..., 2] which
are defined by their kernels ker A = (2], ... , xl ), kerp = (x1,...,x,) and correspond to

A

immersions of subspaces A" — A" x A™ <—* A™ as linear subvarieties. Representations
(3) define induced affine representations for algebras Ar, A;, 1=0,1,2, according to the
following rule: hr(z; ® @)) = hp(x;) - Byp(2), hi(z; @ o)) = hi(x;) - Bi(x]), i = 0,1,2,
jg=1,...,n,1=1,...,m. This rule corresponds to the composites of immersions of
prime spectra

— di (hfp i)

hﬁT : Spec Ar i>g Spec Ap x Spec Ap <5 T A" x A™,

— i gt
no Spec A; ‘—> Spec A; X Spec A; (<—> )A" A™.

Let J be the ideal generated by all monomials in k[zy,.. xn] taken to 0 in Ap
and in A;, i =0, 1,2, J' be the similar ideal in k[z], ..., 2] ], and J the similar ideal in

klxy, ..., z,| k[, ..., 2, ]. Quotient algebras by these ideals include into the following
commutative diagram

kg, ... ap) ~<—2—k[x1, ..., x0) @p k2, ... 2l | — L= k[z), ..., 2]
Elzy, ..., 25/ <~—K[z1,. .., 2, Qp k[, ... 20 1/ T —=kl2h, ... 2" ])J

Now we perform the construction of homomorphisms ¢, ¢" and ¥ using quotient algebras
Elzy,...,x,)/J ko, ... 20 1/J and k[zy, ..., z,|®@ckl2, ..., 2 ]/J respectively, as described
in the beginning of this subsection. This yields in two commutative diagrams

klzy, ... z,]/J klay, ... xn) @ k2, .2, ] /T
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k[[El, Ce ,l’n] ®k k[l’llv s 7x;n]/‘7

\ AT AT
/ /
A A
what implies that ¢ = ¢’ = . O

Example 1. For example consider Ay = Ay = klz,y|/(z* — y), Ay = k[z]/(x?), with
homomorphisms f; - x — x,y — 0, i« = 1,2. The "occasional” affine representation
used in the definition of these algebras cannot be involved to construct their product
since Ay Qpjzy A2 = klz,yl/(2® —y) # Ao. Then it is necessary to form a new affine
representation which fits for constructing a product, using Hard case.

The algebra Ay = k[z]/(x?) contains unique mazimal principal ideal. Its generating
element x corresponds to first variable x1 and gives rise to the affine representation
klx1] — Ao, 1 — x. Further, manipulations according to the Hard case lead to the
polynomial algebra klxy, xo, x3,y] and representations for algebras

Al - k[xl,fEQ’fﬁg,y]/(«r% - I‘Q,Ig,ﬂf% - y)7 A2 = k[x17‘r27x37y]/(‘r% - x37x27y)'

These algebras represent geometrically two parabolas with common tangent line in two
2-dimensional planes in 4-dimensional affine space. Planes meet along this tangent line.
In this case

2 2 2
Al ®k[x1,x2,x3,y} A? = k[$1,$27l’3, y]/(‘rl — X2, X3, T — Y, T — X3, T2, ?J)

= k[x1,$27x37y]/(‘xix%x?ﬂy) = AO-

This means that our two parabolas intersect along the subscheme defined by the algebra
Aqg. This validates application of Easy case to affine representations we’ve constructed.
The list J of monomials vanishing in both algebras A;, i = 1,2, is empty. The ideal < L >
has a form < L >= (23 — Ty — T3, To — Y, T2x3), and Ay X 4, Ay = k[x1, 29, 73,y]/ < L >=
klzy, v, w3, y]/ (22 — 29 — T3, 09 — Y, Tax3) = kw1, To, 3]/ (23 — 9 — 23, T973). From the
geometrical point of view this is union of two parabolas having a common tangent line
at the origin. Parabolas lie in different 2-planes which meet along parabolas’ common
tangent line.
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Awnnoranusa. B pa6ore jan u 060CHOBaH METOJ IIPSIMOIO BBIYUCIIEHHS YHIUBEPCAIBHOIO (PacCIoeH-
HOTO) TIPOM3BE/ICHNsI B KATETOPUN KOMMYTATHBHBIX ACCOIMATUBHBIX arebp KOHETHOTO THIIA C € TMHUIEH
Ha mosieM. [Tojie KoaduimeHToB He mpenoaraeTcs aaredpanaeckKu 3aMKHYTBIM U MOYKET UMEeTh JIFO-
Oyro xapakTepuctuky. PopMUpOBaHHIE PACCIOEHHOTO ITPOU3BEIECHUsST KOMMYTATHBHBIX ACCOIMATUBHBIX
aredp COCTABISET AJreOPAMIECKYI0 CTOPOHY IPOIELYyPhI CKICHMBAHUA AIreOpPandecKux CXeM 110 HEKO-
TOPOMY OTHOIIEHWIO SKBUBAJIEHTHOCTH B aJaredpamdeckoil reomerpun. Ecim ncxo Hbie areOphl siBJISIIOT-
Cs1 KOHETHOMEPHBIMU BEKTOPHBIMHU MTPOCTPAHCTBAME, TO PA3MEPHOCTb MX PACCIOEHHOTO IIPOU3BEICHUS
moTanHsieTcst (POpMyJie, aHAJOTUIHON POPMYJIe pa3MEPHOCTH CYMMBI ITOAIIPOCTPAHCTB. |'eomeTpruaecku
KOHEYHOMEPHBI CJIydail OCTAB/ISeT CTPOrYI0 BEPCUIO O0beIMHEHNUS JBYX HADOPOB TOYEK, UMEIOIIUX 00-
y1o 9acTb. MeTo ncmomb3yer 3ajanne aaredp 00pasyonuMy U ONPEIEISIONMMI COOTHOIIIEHUSIMI Ha
BXOJI€ U BBIJIAET aHAJOTUIHOE TPEJICTAB/ICHUE TTPOU3BeIeHusT Ha, Bbixoie. OH MPUTO/IEH ISt KOMITBIOTEP-
HOU peasim3aruu. [Ipoussesenne ajirebp ompejeseH0 KOPPEKTHO: BBIOOP WHBIX IPEJICTABJICHUA TeX Ke
aJsiredp IPUBOJUT K N30MOPGHOIT anredpe-npon3Be/ieHu0. TakKe oKa3aHo, YTO aaredpa-1pon3Be/ieHoe
00J1a1aeT CBOMCTBOM YHUBEPCAJILHOCTH, T.€. SIBJISIETCS HACTOSIIAM PaCCJIOEHHBIM Tpon3BeieHneM. Bxo-

HBIE JJAHHBIE — TO TPOUKa ajaredp u mapa romomopdusmos A hy Ag & Ay, Anrebpnr 1 TOMOMOPMU3MBI
MOTYT OBITH 33/IaHBI ITPOU3BOJIBLHBIM 00pa3oM. [TokazaHo, 9TO JJIst BEIYUC/IEHNST PACCIIOEHHOTO TIPOU3Be-
JIEHUsI IOCTATOYHO OMPAHUIHUTHLCS CIIyIaeM, Koriaa roMoMopdu3Mbl f;, i = 1,2 CIOpbEKTUBHBI, U OMUCAH
CIIocob PeIyKINU K CIOPBHEKTUBHOMY CJydaro. Takrke pacCMOTPEHO MPABUJIO BHIOOpPA 00PA3YIOIMIUX U
COOTHOIIIEHUH JIJIsI UCXO/HBIX aJireop.

Crarbs IyO/IMKYyeTCsl B aBTOPCKOI peIaKIli.

Kirouesnle cioBa: KOMMYTaTUBHbBIE aJIFe6pr Ha/ 110JIeM, a(l)(bI/IHHI)Ie CXeMbI FpOTeH,HI/IKa, yHuBep-
CaJIbHOE IIpOU3BEJCHUE, aMaJibl'aMUPDOBaHHad CyMMa
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