УДК 519.7

Контекстно-свободная грамматика одной ритмической модели русского стиха

Бойков В. $H.^1$

Институт космических исследований РАН

e-mail: boykov_bh@bk.ru

получена 1 марта 2012 года

Ключевые слова: тактовая группа, акцентный сегмент, стих, поэтология, стиховедение, формальный язык, КС-грамматика, распознавание

Предложена и рассмотрена формальная модель русского стиха, основанная на акцентной сегментации его структуры. Построена контекстно-свободная грамматика в смысле Н. Хомского, порождающая правильные ритмические формы представленной модели стиха.

Существуют две противоположные оценки развития науки о стихе. Согласно первой «метрика, ритмика, рифма, строфика – разработаны уже так хорошо, что новых революций там в ближайшее время не предвидится» [1, с. 7]. С точки зрения второй: «заостряя проблему, можно сказать, что теории стиха как единой отрасли знания до сих пор не существует» [2, с. 13]. Предлагаемая здесь формальная модель русского стиха не претендует на решение этой проблемы, но позволяет указать на ритмические потенции русского стиха за пределами традиционных систем стихосложения.

Известно естественное членение речевого ритма на такие сегменты, как «тактовая группа» и «просодический комплекс» [3, с. 118–121, 817–826], а также «ритмическая группа», состоящая, «по крайней мере, из одного ударного слога и примыкающих к нему безударных слогов» [4, с. 416]. Акцентно самостоятельная словоформа может представлять собой тактовую группу и присоединять к себе так называемые клитики, не обладающие таким свойством словоформы.

В основе рассматриваемой модели трехчастное членение стиха (стихотворной строки) на акцентные сегменты, отделяемые друг от друга словоразделами. Акцентный сегмент S(r) может состоять из r ($r \ge 1$) тактовых групп, также разделяемых словоразделами.

_

 $^{^{1}~}$ Работа выполнена при поддержке РФФИ (проект № 10-06-00248)

Акцентные сегменты специфически различаются в зависимости от их положения в стихе: в начале — $S_1(r')$, в середине — $S_2(r'')$ или в конце — $S_3(r''')$. Для традиционного метрического стиха, построенного на основе периодической повторности определенной группы слогов, в частности стопы в силлабо-тоническом стихосложении, членение стиха на части также известно. Оно проявляется в таком явлении, как цезура — обусловленный постоянный словораздел, расчленяющий стих на два полустишия или (реже) на три сегмента [5, с. 284, 6, с. 331]. Обозначив словораздел между тактовыми группами и акцентными сегментами через с, можно представить общую структуру 3-сегментного стиха в виде

$$S_1cS_2cS_3. (1)$$

В частности, стих может быть усеченным и состоять из одного или двух акцентных сегментов

$$S_1$$
, S_2 и S_3 ; S_1 c S_2 , S_2 c S_3 и S_1 c S_3 . (2)

Тактовую группу или одноакцентный сегмент S(1) можно символически записать в виде цепочки $S(1)=b_1...b_iab_1...b_j$, где а обозначает ударный слог, b — безударный слог, и нижний индекс символа b означает условный номер его вхождения в подцепочки слева и справа от a, или в свернутом виде

$$S(1) = b^i a b^j, \tag{3}$$

где показатели степени при b указывают на число его вхождений в цепочку подряд. Для данной модели выделять клитики в тактовой группе не обязательно. Назовем в составе тактовой группы цепочки b^i анакрузой, b^j клаузулой, число (i+j+1) длиной цепочки. Тактовая группа может состоять только из ударного слога а, тогда (i+j)=0. Акцентный сегмент S(r), состоящий из r тактовых групп, представляется цепочкой тактовых групп (3), последовательно обособленных словоразделами, обозначенными символом c:

$$S(r) = b^{i(1)} a b^{j(1)} c_{(1)} b^{i(2)} a b^{j(2)} \dots c_{(k)} b^{i(k+1)} a b^{j(k+1)} \dots c_{(r-1)} b^{i(r)} a b^{j(r)}, \tag{4}$$

где нижний индекс символа с – условный номер его вхождения в цепочку.

Выделим основные характеристики и элементы акцентного сегмента:

r – количество ударных слогов, равно тактовых групп в сегменте;

- i(1) количество безударных слогов в начале сегмента до первого ударного слога, иначе говоря, в анакрузе;
- j(r) количество безударных слогов в окончании сегмента от последнего ударного слога, иначе говоря, в клаузуле;
- (j(k)+i(k+1)), количество слогов в межакцентных интервалах сегмента.

3-сегментный стих образуется из акцентных сегментов $S_1(r')$, $S_2(r'')$ и $S_3(r''')$ и представляется цепочкой сегментов (4), последовательно обособленных словоразделами:

$$S(S_1,S_2,S_3) = S_1(r')cS_2(r'')cS_3(r''').$$
 (5)

Специфика акцентных сегментов S_1 , S_2 и S_3 стиха определяется наличием или отсутствием в них регулятива, определенного сопрягающего и разделяющего признака (или фигуры), повторяющегося в смежных или соотнесенных по структуре стихах стихотворного произведения. В метрических стихах регулятив задается также в движении стиха от начала к концу, т.е. по горизонтали, например, для силлабо-тонического стиха в повторении стопы (группы слогов с одним ударением на определенном месте). В предлагаемой модели достаточно регулятива по вертикали в смежных или соотнесенных стихах. Регулятивом, как правило, служит определенный ритмический или звуковой признак и рифма в

частности. Для русского стиха регулятив более органичен в конечном сегменте, в первую очередь такой, как рифма или же как число слогов в клаузуле стиха – j(r'''), если сегмент одноакцентный, r'''=1. Конечный сегмент может быть двухакцентным и тогда межакцентный интервал (j(r'''-1)+i(r''')) может являться регулятивом, r'''=2. Регулятив может содержаться и в начальном сегменте в виде анафоры или анакрузы – i(1'), если сегмент одноакцентный, r'=1. В двухакцентном начальном сегменте регулятивом также может служить межакцентный интервал j(1')+i(2'), r'=2. В речевой практике трудно представить регулятив в трехакцентном сегменте, поэтому в членении стиха целесообразно рассматривать не более чем двухакцентные начальный и конечный сегменты, имеющие межакцентный регулятив. Средний или промежуточный сегмент может содержать больше чем две тактовые группы, где также могут иметь место регулятивы.

Может показаться странным, что регулятивом может служить межакцентный интервал, не содержащий ни одного слога, но и такой интервал может успешно справляться со своей регулятивной функцией [7, с. 438–452].

Еще одним местом для регулятива, но уже по горизонтали, наряду с внутрисегментными межакцентными интервалами, могут служить межакцентные интервалы или интервалы сопряжения акцентов смежных сегментов, т.е. суммарное число слогов в клаузуле предшествующего и в анакрузе последующего сегментов: j(r')+i(1") — число безударных слогов между последним ударением первого сегмента и первым ударением второго сегмента, j(r")+i(1"") — число безударных слогов между последним ударением второго сегмента и первым ударением третьего сегмента. Такой регулятив может быть характерен, например, для силлаботоники. Тогда как для силлабики регулятивом является заданное число слогов в стихе, а для тонического стиха — число ударений.

Число слогов в клаузуле стиха может быть довольно большим, но для регулятива можно ограничиваться определенным конечным их числом $m \ge j(r''')$. Такое же ограничение можно накладывать на анакрузу и на межакцентный интервал в начальном и конечном сегментах: $m \ge i(1')$; $m \ge j(1') + i(2')$; $m \ge j(r''') + i(r''')0$. Наложим то же ограничение на анакрузы тактовых групп среднего сегмента, $m \ge i(k'')$, $r'' \ge k'' \ge 1$, но его межакцентным интервалам ограничений, кроме естественно речевых, не требуется, подчеркнем, даже если они служат регулятивом. Таким образом, мы не ограничили только клаузулы всех тактовых групп стиха, за исключением конечной, тем не менее, определенное конвенциональное ограничение на них наложить следует в виде некоторой конечной величины: $n \ge j(r')$, $n \ge j(k'')$, n > m.

В изложенных выше условиях (5) можно представить в виде

$$S(S_1,S_2,S_3)=S_1(2)cS_2(r)cS_3(2).$$
 (6)

Надо думать, что представленная модель акцентной сегментации стиха при некоторых дополнительных требованиях может моделировать стихи различных систем стихосложения – как метрические, так и дисметрические: к примеру, ритмические формы 4-стопного ямба [8, с. 8–9] моделируются 2-сегментной моделью $S_2(r")cS_3(1"")$, $3 \ge r" \ge 1$, с варьируемой анакрузой i(1")=1 или 3, а верлибр (свободный стих) может представляться сегментными моделями $S_2(r)$ и $S_1(2)cS_2(r)$. Следовательно, модель может быть полезной при изучении специфики поэтического произведения и его стихового строения и для формальной спецификации стиха с разметкой различных его параметров, в первую очередь таких, как метро-ритмические характеристики [9, с. 7]. Поскольку решение задач такого

рода связано с распознаванием метро-ритмических параметров поэтического текста, данную модель стиха целесообразно привести к математической форме и представить в виде формального языка [10, с. 19–25].

Язык $L_{S(r)}$ ={S(r)} акцентных сегментов, содержащих ровно r тактовых групп, представляется множеством цепочек S(r) вида (4), каждая из которых представлена произведением цепочек тактовых групп и словоразделов:

$$L_{S(r)} = \{c_{(0)}b^{i(1)}ab^{j(1)}...c_{(k-1)}b^{i(k)}ab^{j(k)}...c_{(r-1)}b^{i(r)}ab^{j(r)}\}, \tag{7}$$

с учетом принятых выше ограничений $m \ge i(k) \ge 0$, $n \ge j(k) \ge 0$, $r \ge k \ge 1$. Здесь b^0 и $c_{(0)}$ – пустые цепочки, и $b^0 a = ab^0 = a$, $c_{(0)}b^{i(1)}ab^{j(1)} = b^{i(1)}ab^{j(1)}$. Выражение (7) можно представить как произведение множеств:

$$L_{S(r)} = \prod_{k=1,\dots,r} \{c_{(k-1)}b^{i(k)}ab^{j(k)}\}. \tag{8}$$

Представим язык $L_{S^*(r)} = \{S^*(r)\}$ как множество акцентных сегментов, содержащих от 1 до r тактовых групп:

$$L_{S^*(r)} = U_{i=1,...,r} \{S(i)\} = \{S(1)\}U...U\{S(k)\}U...U\{S(r)\}, \tag{9}$$

так что сегментные цепочки из (5) $S_1(2)$, $S_2(r'')$, $S_3(2) \in L_{S^*(r)}$, и при r''=r $L_{S^*(r)}=\{S_2(r)\}$.

В конечном счете модель стиха можно представить в виде формального языка как множество цепочек вида (1) и (2):

$$L(S_1,S_2,S_3,c)=\{S_1, S_2, S_3, S_1cS_3, S_2cS_3, S_1cS_2, S_1cS_2cS_3\},\$$

или с уточнениями

$$L(S_1,S_2,S_3,c) = \{S_1(2)\}U\{S_2(r)\}U\{S_3(2)\}U\{S_1(2)cS_2(r)\}U\{S_1(2)cS_3(2)\}U\{S_2(r)cS_3(2)\}U\{S_1(2)cS_2(r)cS_3(2)\}.$$
(10)

Для решения указанных выше аналитических задач следует построить порождающую грамматику для каждого из языков (8), (9) и (10), т.е. упорядоченную четверку $\Gamma=\langle V,W,N,P\rangle$, где $V=\{a,b,c\}$ – алфавит основных символов; W – непустой конечный алфавит вспомогательных символов и $N\in W$ – начальный символ Γ ; P (схема Γ) – конечное множество цепочек вида $\omega=\phi\to\psi$, называемых правилами вывода, где ϕ и ψ – цепочки символов из алфавита VUW и символ $\to \notin VUW$. Поскольку известно, что распознавание принадлежности некоторого текста языку алгоритмически разрешимо для контекстносвободного языка (КС-языка), то целесообразно строить именно такую КС-грамматику, в которой по определению правила вывода имеют вид $\omega=A\to\psi$, где $A\in W$ – вспомогательный символ, ψ – произвольная непустая цепочка в VUW [10, c. 25–33].

Для построения грамматики языка, моделирующего стих в алфавите $V=\{a,b,c\}$, необходимо для начала построить грамматику в алфавите $V=\{a,b\}$ языка тактовых групп вида (3) $L_{S(1)}=\{b^iab^j\}$, $m\ge i\ge 0$, $n\ge j\ge 0$.

Вывод (последовательность правил) $G_{S(1)}(N,m,n)$ порождаемых цепочек языка $L_{S(1)}$, выделенных в правой части таблицы, представлен ниже:

Таблица 1

Правила вывода	Порождаемые цепочки
N→a	a
$N \rightarrow A_1 a$,	A ₁ a,
$A_1 \rightarrow A_2 b, A_1 \rightarrow b$	A ₂ ba, ba

A . A . B . A . B	A hio hio
$A_i \rightarrow A_{i+1}b, A_i \rightarrow b$	$A_{i+1}b^{i}a, \mathbf{b}^{i}\mathbf{a}$
 A A A A A A	$A_{m}b^{m-1}a, b^{m-1}a$
$A_{m-1} \rightarrow A_m b, A_{m-1} \rightarrow b$	$\mathbf{b}^{\mathbf{m}}\mathbf{a}$
$A_{\rm m} \rightarrow b$	
$N \rightarrow aB_1$,	aB ₁ ,
$B_1 \rightarrow bB_2, B_1 \rightarrow b$	abB_2 , ab
 D .ID D .I	alin ali
$B_j \rightarrow bB_{j+1}, B_j \rightarrow b$	$ab^{j}B_{j+1}, ab^{j}$
 D 1D!! D 1	
$B_m \rightarrow bB''_{m+1}, B_m \rightarrow b$	$ab^{m}B''_{m+1}, ab^{m}$
	n-lp n-1
$B"_{n-1} \rightarrow bB"_n, B"_{n-1} \rightarrow b$	$ab^{n-1}B_n$, ab^{n-1}
$B''_n \rightarrow b$	ab ⁿ
$N \rightarrow A_1 a B_1$,	A_1aB_1 ,
$A_1 \rightarrow A_2 b, A_1 \rightarrow b$	A_2 ba B_1 , ba B_1
•••	
$A_i \rightarrow A_{i+1}b, A_i \rightarrow b$	$A_{i+1}b^iaB_1, b^iaB_1$
$A_{m-1} \rightarrow A_m b, A_{m-1} \rightarrow b,$	$A_{m}b^{m-1}aB_{1}, b^{m-1}aB_{1}$
$A_{m-1} \rightarrow b$	b ^m aB ₁
$B_1 \rightarrow bB_2, B_1 \rightarrow b$	babB ₂ , bab
$B_2 \rightarrow bB_3, B_2 \rightarrow b$	bab^2B_3 , bab^2
$B_j \rightarrow bB_{j+1}, B_j \rightarrow b$	${\sf bab}^{\sf j}{ m B}_{{\sf j}+1},{f bab}^{\sf j}$
$B_m \rightarrow bB''_{m+1}, B_m \rightarrow b$	bab ^m B" _{m+1} , bab^m
$B''_{n-1} \rightarrow bB''_{n}, B''_{n-1} \rightarrow b$	bab ⁿ⁻¹ B" _n , babⁿ⁻¹
$B''_n \rightarrow b$	bab ⁿ
$B_1 \rightarrow bB_2, B_1 \rightarrow b$	b^2aB_2 , b^2ab
$B_j \rightarrow bB_{j+1}, B_j \rightarrow b$	$b^2ab^jB_{j+1}$, b^2ab^j
···	
$B_m \rightarrow bB''_{m+1}, B_m \rightarrow b$	$b^2ab^mB_{m+1}$, b^2ab^m
$B"_{n-1} \rightarrow bB"_n, B"_{n-1} \rightarrow b$	b ² ab ⁿ⁻¹ B" _n , b²abⁿ⁻¹
$B''_n \rightarrow b$	b ² ab ⁿ
$B_1 \rightarrow bB_2, B_1 \rightarrow b$	$b^{i}abB_{2}$, $b^{i}ab$
$B_{j} \rightarrow bB_{j+1}, B_{j} \rightarrow b$	$b^{i}ab^{j}B_{j+1}$, $b^{i}ab^{j}$
	ı

$B_m \rightarrow bB''_{m+1}, B_m \rightarrow b$	$b^{i}ab^{m}B_{m+1}, b^{i}ab^{m}$
$B''_{n-1} \rightarrow bB''_n, B''_{n-1} \rightarrow b$	b ⁱ ab ⁿ⁻¹ B" _n , bⁱabⁿ⁻¹
B" _n →b	b ⁱ ab ⁿ
$B_1 \rightarrow bB_2, B_1 \rightarrow b$	$b^{m-1}abB_2$, $b^{m-1}ab$
$B_{j} \rightarrow bB_{j+1}, B_{j} \rightarrow b$	$b^{m-1}ab^{j}B_{i+1}, b^{m-1}ab^{j}$
$B_m \rightarrow bB''_{m+1}, B_m \rightarrow b$	$b^{m-1}ab^mB''_{m+1}, b^{m-1}ab^m$
$B''_{n-1} \rightarrow bB''_{n}, B''_{n-1} \rightarrow b$	$b^{m-1}ab^{n-1}B''_n, b^{m-1}ab^{n-1}$
$B''_n \rightarrow b$	b ^{m-1} ab ⁿ
$B_1 \rightarrow bB_2, B_1 \rightarrow b$	b ^m abB ₂ , b^mab
$B_{j} \rightarrow bB_{j+1}, B_{j} \rightarrow b$	$b^{m}ab^{j}B_{j+1}$, $b^{m}ab^{j}$
$B_m \rightarrow bB''_{m+1}, B_m \rightarrow b$	$b^m a b^m B''_{m+1}, b^m a b^m$
$B"_{n-1} \rightarrow bB"_n, B"_{n-1} \rightarrow b$	b ^m ab ⁿ⁻¹ B'' _n , b^mabⁿ⁻¹
B" _n →b	b ^m ab ⁿ

Очевидно, что построенная грамматика является КС-грамматикой:

$$\begin{split} &\Gamma(L_{S(1)}) = \triangleleft V = \{a,b\}, \quad W = \{N,A_1,\dots,A_m,B_1,\dots,B_m,B''_{m+1,\dots,B}B''_n\}, \quad N, \quad P = \{N \to a, \quad N \to A_1a, \quad N \to aB_1, \\ &N \to A_1aB_1, \quad A_1 \to A_2b, \quad A_1 \to b,\dots,A_{m-1} \to A_mb, \quad A_{m-1} \to b, \quad A_m \to b, \quad B_1 \to bB_2, \quad B_1 \to b,\dots,B_m \to bB''_{m+1}, \\ &B_m \to b,\dots,B''_{n-1} \to bB''_n, \quad B''_{n-1} \to b, \quad B''_n \to b\} \rangle. \end{split}$$

Схема Р построенной грамматики $\Gamma(L_{S(1)})$ является достаточной для порождения языка тактовых групп $L_{S(1)}$, поскольку при построении правил вывода мы перебрали все цепочки вида b^iab^j , где $m \ge i \ge 0$, $n \ge j \ge 0$.

Следует заметить, что построенная грамматика $\Gamma(L_{S(1)})$ неоднозначна, цепочка b^iab^j . может быть выведена разными способами, например:

1.
$$N \rightarrow A_1 a B_1$$
, $A_1 \rightarrow A_2 b$, $A_2 \rightarrow A_3 b$,..., $A_{i-1} \rightarrow A_i b$, $A_i \rightarrow b$ $B_1 \rightarrow B_2 b$, $B_2 \rightarrow B_3 b$,..., $B_{j-1} \rightarrow B_j b$, $B_j \rightarrow b$;
2. $N \rightarrow A_1 a B_1$, $B_1 \rightarrow B_2 b$, $B_2 \rightarrow B_3 b$,..., $B_{j-1} \rightarrow B_j b$, $B_j \rightarrow b$, $A_1 \rightarrow A_2 b$, $A_2 \rightarrow A_3 b$,..., $A_{i-1} \rightarrow A_i b$, $A_i \rightarrow b$.

Можно было бы каждое из множеств вспомогательных символов $\{A_1,A_2,...,A_m\}$ и $\{B_1,B_2,...,B_m,B^{"}_{m+1,...,}B^{"}_n\}$ заменить одним A и B соответственно и последовательности правил из схемы P, связанных с ними, $\{A_1 \rightarrow A_2 b, A_1 \rightarrow b,..., A_{m-1} \rightarrow A_m b, A_{m-1} \rightarrow b, A_m \rightarrow b\}$ и $\{B_1 \rightarrow bB_2, B_1 \rightarrow b,...,B_m \rightarrow bB^{"}_{m+1}, B_m \rightarrow b,...,B^{"}_{n-1} \rightarrow bB^{"}_n, B^{"}_n \rightarrow b\}$ свести к $\{A \rightarrow Ab, A \rightarrow b\}$ и $\{B \rightarrow bB, B \rightarrow b\}$, но тогда подцепочкам построенного языка b^m и b^n затруднительно задавать специфические ограничения длины, присущие естественному языку и тем более стихотворному.

Теперь можно построить грамматику для языка акцентных сегментов, содержащих от 1 до г тактовых групп, представив выражение (9) в виде:

$$L_{S^*(r)} = \{b^i a b^j\} U \{b^i a b^j c_{(1)} b^i a b^j\} U ... U \{b^i a b^j c_{(1)} b^i a b^j ... c_{(k)} b^i a b^j\} U ... U \{b^i a b^j c_{(1)} b^i a b^j ... c_{(k)} b^i a b^j ... c_{(r-1)} b^i a b^j\},$$
(11)

или с учетом (8)

 $L_{S^*(r)} = U_{s=1,\dots,r} \prod_{k=1,\dots,s} \{c_{(k-1)}b^iab^j\}, \ m \ge i \ge 0, \ n \ge j \ge 0, \ r-1 \ge k \ge 1.$

Вывод $G_{S^*(r)}(N,m,n)$ порождаемых цепочек языка $L_{S^*(r)}(S)$ представлен ниже:

	Таблица 2
Правила вывода	Порождаемые цепочки
$N \rightarrow D_1$	D_1
$N \rightarrow D_1 c_{(1)} C_1, C_1 \rightarrow D_2$	$D_1c_{(1)}D_2$
$C_1 \rightarrow D_2 c_{(2)} C_2, C_2 \rightarrow D_3$	$D_1c_{(1)}D_2c_{(2)}D_3$
$C_{k-1} \rightarrow D_k c_{(k)} C_k, C_k \rightarrow D_{k+1}$	$D_1c_{(1)}D_2c_{(2)}D_3D_kc_{(k)}D_{k+1}$
$C_{r-2} \rightarrow D_{r-1}c_{(r-1)}C_{r-1}, C_{r-1} \rightarrow D_r$	$D_1c_{(1)}D_2c_{(2)}D_3D_kc_{(k)}D_{k+1}D_{r-1}c_{(r-1)}D_r$
$D_1 \rightarrow G_{S(1)}(D_1,m,n)$	$\{b^iab^j\},$
	$\{b^{i}ab^{j}\}c_{(1)}D_{2},$
	$\{b^{i}ab^{j}\}c_{(1)}D_{2}c_{(2)}D_{3}D_{k}c_{(k)}D_{k+1},$
	···.
	$\{b^{1}ab^{j}\}c_{(1)}D_{2}c_{(2)}D_{3}D_{k}c_{(k)}D_{k+1}D_{r-1}c_{(r-1)}D_{r}$
$D_2 \rightarrow G_{S(1)}(D_2,m,n)$	$\{b^iab^j\}c_{(1)}\{b^iab^j\},$
	$\{b^{1}ab^{1}\}c_{(1)}\{b^{1}ab^{1}\}D_{k}c_{(k)}D_{k+1},$
	$ \begin{cases} \cdots \\ \{b^i a b^j\} c_{(1)} \{b^i a b^j\} \dots D_k c_{(k)} D_{k+1} \dots D_{r-1} c_{(r-1)} D_r \end{cases} $
	$\{ \bigcup_{k \in \mathcal{K}} \{ \bigcup_$
$D_k \rightarrow G_{S(1)}(D_k,m,n)$	$\{b^{i}ab^{j}\}c_{(1)}\{b^{i}ab^{j}\}\{b^{i}ab^{j}\}c_{(k-1)}\{b^{i}ab^{j}\},$
	$\{b^{i}ab^{j}\}c_{(1)}\{b^{i}ab^{j}\}\dots\{b^{i}ab^{j}\}c_{(k)}\{b^{i}ab^{j}\}\dots D_{r-1}c_{(r-1)}D_{r}$
$D_{r-1} \rightarrow G_{S(1)}(D_{r-1}, m, n)$	$\{b^iab^j\}c_{(1)}\{b^iab^j\}\{b^iab^j\}c_{(k-1)}\{b^iab^j\}\{b^iab^j\},$
	$\{b^iab^j\}c_{(1)}\{b^iab^j\}\dots\{b^iab^j\}c_{(k-1)}\{b^iab^j\}\dots\{b^iab^j\}\dots\{b^iab^j\}c_{(r-1)}D_r$
$D_r \rightarrow G_{S(1)}(D_r,m,n)$	$\{b^iab^j\}c_{(1)}\{b^iab^j\}\{b^iab^j\}c_{(k)}\{b^iab^j\}\{b^iab^j\}c_{(r\text{-}1)}\{b^iab^j\}$

Здесь в правилах $D_k \rightarrow G_{S(1)}(D_k,m,n)$ вывод $G_{S(1)}(D_k,m,n)$ получается из $G_{S(1)}(N,m,n)$ подстановкой $N \rightarrow D_k$, $r \ge k \ge 1$. Построенная грамматика также является КС-грамматикой и соответственно неоднозначна:

$$\begin{split} &\Gamma(L_{S^*(r)}) = (V = \{a,b,c\}, W = \{N,A_1,\dots,A_m,B_1,\dots,B_m,B''_{m+1},\dots,B''_n,C_1,\dots,C_{r-1},D_1,\dots &,D_r\}, \quad N, \\ &P = \{N \to D_1, \quad N \to D_1c_{(1)}C_1, \quad C_1 \to D_2, \quad C_1 \to D_2c_{(2)}C_2, \quad C_2 \to D_3,\dots,C_{k-1} \to D_k, \quad C_{k-1} \to D_kc_{(k)}C_k, \quad \dots,C_{r-2} \to D_{r-1}, \quad C_{r-2} \to D_{r-1}c_{(r-1)}C_{r-1}, \quad C_{r-1} \to D_r, \quad D_1 \to a, \quad D_1 \to A_1a, \quad D_1 \to aB_1, \quad D_1 \to A_1aB_1,\dots, \quad D_k \to a, \\ &D_k \to A_1a, \quad D_k \to aB_1, \quad D_k \to A_1aB_1,\dots, \quad D_r \to a, \quad D_r \to A_1a, \quad D_r \to aB_1, \quad D_r \to A_1aB_1, \quad A_1 \to b, \quad A_1 \to A_2b, \\ &A_2 \to b,\dots, \quad A_{m-1} \to A_mb, \quad A_m \to b, \quad B_1 \to b, \quad B_1 \to bB_2, \quad B_2 \to b,\dots,B_{m-1} \to bB_m, \quad B_{m-1} \to b, \quad B_m \to bB''_{m+1}, \\ &B_m \to b,\dots,B''_{n-1} \to bB''_n, \quad B''_n \to b\} \rangle. \end{split}$$

Построим КС-грамматики для языков $L_{S^*(2)}$ и $L_{S^*(2)}$, имея в виду (11) и наложенные ограничения на сегменты $S_1(2)$ и $S_3(2)$.

В записи для языка начального сегмента $S_1(2)$

 $L_{S^*(2')} = \{b^{i(1)}ab^{j(1)}\}U\{b^{i(1)}ab^{q(1)}c_{(1)}b^{m-q(2)}ab^{j(2)}\}, m\ge i(1)\ge 0, n\ge j(1)\ge 0, m\ge q(1)\ge 0, m\ge q(1$

$$L_{S^*(2')} = \{b^i a b^j\} U\{b^i a\} \{b^q c b^{m-q}\} \{a b^j\}, \tag{12}$$

 $m \ge i \ge 0$, $n \ge j \ge 0$, $m \ge q \ge 0$.

Вывод $G_{S^*(2)}(N,m,n)$ порождаемых цепочек языка $L_{S^*(2)}$ представлен ниже:

Таблица 3

	Таблица 3
Правила вывода	Порождаемые цепочки
$N \rightarrow G_{S(1)}(N,m,n)$	$\{b^iab^j\}$
$N \rightarrow aE_1E_2$	aE_1E_2
$N \rightarrow A_1 a E_1 E_2$	$A_1aE_1E_2$,
$A_1 \rightarrow A_2 b, A_1 \rightarrow b$	$A_2baE_1E_2$, baE_1E_2
$A_2 \rightarrow A_3 b, A_2 \rightarrow b$	$A_2b^2aE_1E_2, b^2aE_1E_2$
$A_{i-1} \rightarrow A_i b, A_{i-1} \rightarrow b,$	$A_{i-1}b^{i-1}aE_1E_2, b^{i-1}aE_1E_2$
$A_{m-1} \rightarrow A_m b, A_{m-1} \rightarrow b$	$A_{m}b^{m-1}aE_{1}E_{2}, b^{m-1}aE_{1}E_{2}$
$A_{m}\rightarrow b$	$b^{m}aE_{1}E_{2}$
	$\{b^{i}a\}E_{1}E_{2}$
$E_1 \rightarrow c$	$\{b^{i}a\}cE_{2}$
$E_1 \rightarrow A'_1 c$	$\{b^{i}a\}A'_{1}cE_{2}$
$E_1 \rightarrow cB'_1$	$\{b^{i}a\}cB'_{1}E_{2}$
$E_1 \rightarrow A'_1 cB'_1$	$\{b^{i}a\}A'_{1}cB'_{1}E_{2}$
$A'_1 \rightarrow A'_2 b, A'_1 \rightarrow b$	$\{b^{i}a\}A'_{2}bcE_{2},\{b^{i}a\}bcE_{2}$
	$\{b^{i}a\}A'_{2}bcB'_{1}E_{2}, \{b^{i}a\}bcB_{1}E_{2}$
$A'_2 \rightarrow A'_3 b, A'_2 \rightarrow b$	$\{b^{i}a\}A'_{3}b^{2}cE_{2}, \{b^{i}a\}b^{2}cE_{2}$
	$\{b^{i}a\}A'_{3}bcB'_{1}E_{2}, \{b^{i}a\}b^{2}cB'_{1}E_{2}$
$A'_{q-1} \rightarrow A'_{q}b, A'_{q-1} \rightarrow b$	$\{b^{i}a\}A'_{q}b^{q-1}cE_{2}, \{b^{i}a\}b^{q-1}cE_{2}$
	$\{b^{i}a\}A'_{q}b^{q-1}cB'_{1}E_{2}, \{b^{i}a\}b^{q-1}cB'_{1}E_{2}$
$A'_{m-1} \rightarrow A'_{m}b, A'_{m-1} \rightarrow b$	$\{b^{i}a\}A'_{q}b^{q-1}cE_{2}, \{b^{i}a\}b^{m-1}cE_{2}$
	$\{b^{i}a\}A'_{q}b^{q-1}cB'_{1}E_{2}, \{b^{i}a\}b^{m-1}cB'_{1}E_{2}$
A' _m →b	$\{b^{i}a\}b^{m}cE_{2}$
	$\{b^{i}a\}b^{m}cB'_{1}E_{2}$
	$\{b^{i}a\}\{b^{q}c\}E_{2}$
	${b^{i}a}{b^{q}c}B'_{1}E_{2}$
$B'_1 \rightarrow bB'_2, B'_1 \rightarrow b$	${b^{i}a}{b^{q}c}bB'_{2}E_{2}, {b^{i}a}{b^{q}c}bE_{2}$
B' ₂ →bB' ₃ , B' ₂ →b	${b^{i}a}{b^{q}c}b^{2}B'_{3}E_{2}, {b^{i}a}{b^{q}c}b^{2}E_{2}$

$B'_{m-q-1} \rightarrow bB'_{m-q}, B'_{m-q-1} \rightarrow b$	${b^{i}a}{b^{q}c}b^{m-q-1}B'_{m-q}E_{2}, {b^{i}a}{b^{q}c}b^{m-q-1}E_{2}$
B' _{m-q} →b	${b^{i}a}{b^{q}c}b^{m-q}E_{2}$
	$\{b^{i}a\}\{b^{q}cb^{m-q}\}E_{2}$
$E_2 \rightarrow a$	$\{b^{i}a\}\{b^{q}cb^{m-q}\}a$
$E_2 \rightarrow aB_1$	$\{b^ia\}\{b^qcb^{m-q}\}aB_1$
$B_1 \rightarrow bB_2, B_1 \rightarrow b$	${b^{i}a}{b^{q}cb^{m-q}}abB_{2}, {b^{i}a}{b^{q}cb^{m-q}}ab$
$B_2 \rightarrow bB_3, B_2 \rightarrow b$	${b^{i}a}{b^{q}cb^{m-q}}ab^{2}B_{3}, {b^{i}a}{b^{q}cb^{m-q}}ab^{2}$
$B_{j-1} \rightarrow bB_j, B_{j-1} \rightarrow b$	${b^{i}a}{b^{q}cb^{m-q}}ab^{j-1}B_{j}, {b^{i}a}{b^{q}cb^{m-q}}ab^{j-1}$
$B_{m-1} \rightarrow bB_m, B_{m-1} \rightarrow b$	${b^{i}a}{b^{q}cb^{m-q}}ab^{m-1}B_{m}, {b^{i}a}{b^{q}cb^{m-q}}ab^{m-1}$
$B_m \rightarrow bB''_{m+1}, B_m \rightarrow b$	${b^{i}a}{b^{q}cb^{m-q}}ab^{m}B''_{m+1}, {b^{i}a}{b^{q}cb^{m-q}}ab^{m}$
$B''_{n-1} \rightarrow bB''_{n}, B''_{n-1} \rightarrow b$	${b^{i}a}{b^{q}cb^{m-q}}ab^{2}B''_{n}, {b^{i}a}{b^{q}cb^{m-q}}ab^{n-1}$
$B''_n \rightarrow b$	$\{b^{i}a\}\{b^{q}cb^{m-q}\}ab^{n}$
	${b^{i}a}{b^{q}cb^{m-q}}{ab^{j}}$

Выпишем построенную КС-грамматику:

$$\begin{split} &\Gamma(L_{S^*(2')}) \!\!=\!\! <\!\! V \!\!=\!\! \{a,b,c\}, W \!\!=\!\! \{N,\!E_1,\!E_2,\!A_1,\!\dots,\!A_m,\!B_1,\!\dots,\!B_m,\!B''_{m+1},\!\dots,\!B''_n,\!A'_1,\!\dots,\!A'_m,\!B'_1,\!\dots,\!B'_m\},\\ &N,\; P \!\!=\!\! \{N \!\!\to\!\! a,\; N \!\!\to\!\! A_1a,\; N \!\!\to\!\! aB_1,\; N \!\!\to\!\! A_1aB_1,\; A_1 \!\!\to\!\! b,\; A_1 \!\!\to\!\! A_2b,\; A_2 \!\!\to\!\! b,\!\dots,\!A_{m-1} \!\!\to\!\! A_mb,\; A_m \!\!\to\!\! b,\\ &B_1 \!\!\to\!\! b,\; B_1 \!\!\to\!\! bB_2,\; B_2 \!\!\to\!\! b,\!\dots,\!B_{m-1} \!\!\to\!\! bB_m,\; B_{m-1} \!\!\to\!\! b,\; B_m \!\!\to\!\! bB''_{m+1},\; B_m \!\!\to\!\! b,\!\dots,\!B''_{n-1} \!\!\to\!\! bB''_n,\; B''_n \!\!\to\!\! b,\\ &N \!\!\to\!\! aE_1E_2,\; N \!\!\to\!\! A_1aE_1E_2,\; E_1 \!\!\to\!\! c,\; E_1 \!\!\to\!\! A'_1c,\; E_1 \!\!\to\!\! cB'_1,\; E_1 \!\!\to\!\! A'_1cB'_1,\; E_2 \!\!\to\!\! a,\; E_2 \!\!\to\!\! aB_1,\; A'_1 \!\!\to\!\! A'_2b,\\ &A'_1 \!\!\to\!\! b,\; A'_{q-1} \!\!\to\!\! A'_qb,\; A'_{q-1} \!\!\to\!\! b,\; A'_{m-1} \!\!\to\!\! A'_mb,\; A'_{m-1} \!\!\to\!\! b,\; A'_m \!\!\to\!\! b,\; B'_1 \!\!\to\!\! bB'_2,\; B'_1 \!\!\to\!\! b,\; B'_{m-q-1} \!\!\to\!\! bB'_{m-q},\\ &B'_{m-q-1} \!\!\to\!\! b,\; B'_{m-q} \!\!\to\!\! b,\; E_2 \!\!\to\!\! a,\; E_2 \!\!\to\!\! aB_1\} \rangle. \end{split}$$

Представим в записи (11) для языка конечного сегмента $S_3(2)$ $L_{S^*(2^m)} = \{b^{i(1)}ab^{j(1)}\}U\{b^{i(1)}ab^{j(1)}c_{(1)}b^{i(2)}ab^{j(2)}\},\ m\ge i(1)\ge 0,\ m\ge j(1)\ge 0,\ m=j(1)\ge i(2)\ge 0,\ m\ge j(2)\ge 0,\ вторую часть объединения как произведение множеств$

$$L_{S^*(2^m)} = \{b^i a b^q\} U\{b^i a\} \{b^q c b^{m-q}\} \{a b^q\},$$
(13)

 $m \ge i \ge 0$, $m \ge q \ge 0$.

Вывод $G_{S^*(2^m)}(N,m,n)$ порождаемых цепочек языка $L_{S^*(2^m)}$ представлен ниже:

Правила выводаПорождаемые цепочки $N \rightarrow G_{S(1)}(N,m,m)$ $\{b^iab^q\}$ $N \rightarrow aE_1E_2$ aE_1E_2 $N \rightarrow A_1aE_1E_2$ $A_1aE_1E_2$ $A_1 \rightarrow A_2b$, $A_1 \rightarrow b$ $A_2baE_1E_2$, baE_1E_2 $A_2 \rightarrow A_3b$, $A_2 \rightarrow b$ $A_2b^2aE_1E_2$, $b^2aE_1E_2$ $A_{i-1} \rightarrow A_ib$, $A_{i-1} \rightarrow b$, $A_{i-1}b^{i-1}aE_1E_2$, $b^{i-1}aE_1E_2$

$A_{m-1} \rightarrow A_m b, A_{m-1} \rightarrow b$	$A_m b^{m-1} a E_1 E_2, b^{m-1} a E_1 E_2$
$A_m \rightarrow b$	$b^{m}aE_{1}E_{2}$
	$\{b^{i}a\}E_{1}E_{2}$
$E_1 \rightarrow c$	$\{b^{i}a\}cE_{2}$
$E_1 \rightarrow A'_1 c$	$\{b^ia\}A'_1cE_2$
$E_1 \rightarrow cB'_1$	{b ⁱ a}cB' ₁ E ₂
$E_1 \rightarrow A'_1 cB'_1$	$\{b^{i}a\}A'_{1}cB'_{1}E_{2}$
$A'_1 \rightarrow A'_2 b, A'_1 \rightarrow b$	$\{b^ia\}A'_2bcE_2, \{b^ia\}bcE_2$
	$\{b^ia\}A'_2bcB'_1E_2, \{b^ia\}bcB_1E_2$
$A'_2 \rightarrow A'_3 b, A'_2 \rightarrow b$	$\{b^{i}a\}A'_{3}b^{2}cE_{2}, \{b^{i}a\}b^{2}cE_{2}$
2 3 , 2	$\{b^{i}a\}A'_{3}bcB'_{1}E_{2}, \{b^{i}a\}b^{2}cB'_{1}E_{2}$
$A'_{q-1} \rightarrow A'_q b, A'_{q-1} \rightarrow b$	$\{b^{i}a\}A'_{q}b^{q-1}cE_{2}, \{b^{i}a\}b^{q-1}cE_{2}$
41 47 41	$\{b^{i}a\}A'_{q}b^{q-1}cB'_{1}E_{2}, \{b^{i}a\}b^{q-1}cB'_{1}E_{2}$
$A'_{m-1} \rightarrow A'_m b, A'_{m-1} \rightarrow b$	$\{b^{i}a\}A'_{0}b^{q-1}cE_{2}, \{b^{i}a\}b^{m-1}cE_{2}$
,	$\{b^{i}a\}A_{q}^{q}b^{q-1}cB_{1}^{\prime}E_{2}, \{b^{i}a\}b^{m-1}cB_{1}^{\prime}E_{2}$
A' _m →b	$\{b^{i}a\}b^{m}cE_{2}$
	$\{b^{i}a\}b^{m}cB'_{1}E_{2}$
	$\{b^{i}a\}\{b^{q}c\}E_{2}$
	$\{b^{i}a\}\{b^{q}c\}B'_{1}E_{2}$
$B'_1 \rightarrow bB'_2, B'_1 \rightarrow b$	${b^{i}a}{b^{q}c}bB'_{2}E_{2}, {b^{i}a}{b^{q}c}bE_{2}$
B' ₂ →bB' ₃ , B' ₂ →b	${b^{i}a}{b^{q}c}b^{2}B_{3}E_{2}, {b^{i}a}{b^{q}c}b^{2}E_{2}$
$B'_{m-q-1} \rightarrow bB'_{m-q}, B'_{m-q-1} \rightarrow b$	$\{b^{i}a\}\{b^{q}c\}b^{m-q-1}B'_{m-q}E_{2},\{b^{i}a\}\{b^{q}c\}b^{m-q-1}E_{2}$
B' _{m-q} →b	$\{b^{i}a\}\{b^{q}c\}b^{m-q}E_{2}$
	${b^{i}a}{b^{q}cb^{m-q}}E_{2}$
$E_2 \rightarrow a$	$\{b^{i}a\}\{b^{q}cb^{m-q}\}a$
$E_2 \rightarrow aB_1$	$\{b^{i}a\}\{b^{q}cb^{m-q}\}aB_{1}$
$B_1 \rightarrow bB_2, B_1 \rightarrow b$	${b^{i}a}{b^{q}cb^{m-q}}abB_{2}, {b^{i}a}{b^{q}cb^{m-q}}ab$
$B_2 \rightarrow bB_3, B_2 \rightarrow b$	${b^{i}a}{b^{q}cb^{m-q}}ab^{2}B_{3}, {b^{i}a}{b^{q}cb^{m-q}}ab^{2}$
$B_{q-1} \rightarrow bB_q, B_{q-1} \rightarrow b$	${b^{i}a}{b^{q}cb^{m-q}}ab^{q-1}B_{q}, {b^{i}a}{b^{q}cb^{m-q}}ab^{q-1}$
$B_{m-1} \rightarrow bB_m, B_{m-1} \rightarrow b$	${b^{i}a}{b^{q}cb^{m-q}}ab^{2}B_{m},$ ${b^{i}a}{b^{q}cb^{m-q}}ab^{m-1}$
$B_m \rightarrow b$	$\{b^{i}a\}\{b^{q}cb^{m-q}\}ab^{m}$
	$\{b^ia\}\{b^qcb^{m-q}\}\{ab^q\}$

Здесь в правиле $N \to G_{S(1)}(N,m,m)$ вывод $G_{S(1)}(N,m,n)$ представлен в укороченном варианте, где исключены правила $B_m \to bB''_{m+1}$, $B''_{m+1} \to bB''_{m+2}$, $B''_{m+1} \to b$, ..., $B''_{n-1} \to bB''_n$, $B''_{n-1} \to b$.

Выпишем построенную КС-грамматику:

$$\begin{split} &\Gamma(L_{S^*(2'')}) \!\!=\!\! \langle V \!\!=\!\! \{a,b,c\}, W \!\!=\!\! \{N,\!E_1,\!E_2,\!A_1,\!\dots,\!A_m,\!B_1,\!\dots,\!B_m,\!A'_1,\!\dots,\!A'_m,\!B'_1,\!\dots,\!B'_m\}, \qquad N, \\ &P \!\!=\!\! \{N \!\!\to\!\! a, N \!\!\to\!\! A_1 a, N \!\!\to\!\! aB_1, N \!\!\to\!\! A_1 aB_1, A_1 \!\!\to\!\! b, A_1 \!\!\to\!\! A_2 b, A_2 \!\!\to\!\! b,\!\dots, A_{m-1} \!\!\to\!\! A_m b, A_m \!\!\to\!\! b, B_1 \!\!\to\!\! b, \\ &B_1 \!\!\to\!\! bB_2, B_2 \!\!\to\!\! b,\!\dots,\!B_{m-1} \!\!\to\!\! bB_m \ , B_{m-1} \!\!\to\!\! b, B_m \!\!\to\!\! b, N \!\!\to\!\! aE_1 E_2, N \!\!\to\!\! A_1 aE_1 E_2, E_1 \!\!\to\!\! c, E_1 \!\!\to\!\! A'_1 c, \\ &E_1 \!\!\to\!\! cB'_1, E_1 \!\!\to\!\! A'_1 cB'_1, E_2 \!\!\to\!\! a, E_2 \!\!\to\!\! aB_1, A'_1 \!\!\to\!\! A'_2 b, A'_1 \!\!\to\!\! b, A'_{q-1} \!\!\to\!\! A'_q b, A'_{q-1} \!\!\to\!\! b, A'_{m-1} \!\!\to\!\! A'_m b, \\ &A'_{m-1} \!\!\to\!\! b, A'_m \!\!\to\!\! b, B'_1 \!\!\to\!\! bB'_2, B'_1 \!\!\to\!\! b, B'_{m-q-1} \!\!\to\!\! bB'_{m-q}, B'_{m-q-1} \!\!\to\!\! b, B'_{m-q} \!\!\to\!\! b\} \rangle. \end{split}$$

С учетом (11), (12) и (13) можно построить грамматики языков 2-сегментных цепочек $L(S_1, S_2) = \{S_1(2)cS_2(r)\}, L(S_1, S_3) = \{S_1(2)cS_3(2)\}$ и $L(S_2, S_3) = \{S_2(r)cS_3(2)\}$.

Вывод $G_{S^*(2',r)}(N,m,n)$ порождаемых цепочек языка $L(S_1,S_2) = \{S_1(2)\}c\{S_2(r)\} = (\{b^iab^j\}U\{b^ia\}\{b^qcb^{m-q}\}\{ab^j\})c(U_{i=1,\dots,r}\prod_{k=1,\dots,i}\{c_{(k-1)}b^iab^j\}), \qquad m \geq i \geq 0,$ $n \geq j \geq 0$, представлен ниже:

Таблица 5

Правила вывода	Порождаемые цепочки
$N \rightarrow F_1 c F_2$	F_1cF_2
$F_1 \rightarrow G_{S*(2)}(F_1,m,n)$	$(\{b^{i}ab^{j}\}U\{b^{i}a\}\{b^{q}cb^{m-q}\}\{ab^{j}\})cF_{2}$
$F_2 \rightarrow G_{S*(r)}(F_2,m,n)$	$(\{b^{i}ab^{j}\}U\{b^{i}a\}\{b^{q}cb^{m-q}\}\{ab^{j}\})c(U_{i=1}, \Pi_{k=1}, \{c_{(k-1)}b^{i}ab^{j}\})$

Здесь в правилах $F_1 \rightarrow G_{S^*(2)}(F_1,m,n)$ и $F_2 \rightarrow G_{S^*(r)}(F_2,m,n)$ выводы $G_{S^*(2)}(F_1,m,n)$ и $G_{S^*(r)}(F_2,m,n)$ получаются из $G_{S^*(2)}(N,m,n)$ и $G_{S^*(r)}(N,m,n)$ подстановками $N \rightarrow F_1$ и $N \rightarrow F_2$. Выпишем построенную КС-грамматику:

$$\begin{split} &\Gamma(L(S_1,S_2)) = & \langle V = \{a,b,c\}, W = \{N,F_1,F_2,E_1,E_2,A_1,\dots,A_m,B_1,\dots,B_m,B''_{m+1},\dots,B''_n,A'_1,\dots,A'_m,B'_1,\dots,B'_m,C_1,\dots,C_{r-1},D_1,\dots,D_r\}, \ N, \ P = \{N \to F_1cF_2, \ F_1 \to a, \ F_1 \to A_1a, \ F_1 \to aB_1, \ F_1 \to A_1aB_1, \ F_1 \to aE_1E_2, \\ & F_1 \to A_1aE_1E_2, \ E_1 \to c, \ E_1 \to A'_1c, \ E_1 \to cB'_1, \ E_1 \to A'_1cB'_1, \ E_2 \to a, \ E_2 \to aB_1, \ A_1 \to b, \ A_1 \to A_2b, \\ & A_2 \to b,\dots,A_{m-1} \to A_mb, \ A_m \to b, \ B_1 \to b, \ B_1 \to bB_2, \ B_2 \to b,\dots,B_{m-1} \to bB_m, \ B_{m-1} \to b, \ B_m \to bB''_{m+1}, \\ & B_m \to b,\dots,B''_{n-1} \to bB''_n, \ B''_n \to b, \ A'_1 \to A'_2b, \ A'_1 \to b, \ A'_{q-1} \to A'_qb, \ A'_{q-1} \to b, \ A'_{m-1} \to A'_mb, \ A'_{m-1} \to b, \\ & A'_m \to b, \ B'_1 \to bB'_2, \ B'_1 \to b, \ B'_{m-q-1} \to bB'_{m-q}, \ B'_{m-q-1} \to b, \ B'_{m-q} \to b, \ F_2 \to D_1, \ F_2 \to D_1c_{(1)}C_1, \ C_1 \to D_2, \\ & C_1 \to D_2c_{(2)}C_2, \ C_2 \to D_3,\dots,C_{k-1} \to D_k, \ C_{k-1} \to D_kc_{(k)}C_k, \ \dots,C_{r-2} \to D_{r-1}, \ C_{r-2} \to D_{r-1}c_{(r-1)}C_{r-1}, \ C_{r-1} \to D_r, \\ & D_1 \to a, \ D_1 \to A_1a, \ D_1 \to A_1aB_1,\dots, \ D_k \to a, \ D_k \to A_1a, \ D_k \to A_1aB_1,\dots, \ D_r \to a, \\ & D_r \to A_1a, \ D_r \to A_1aB_1 \} \rangle. \end{split}$$

Вывод $G_{S^*(2',2''')}(N,m,n)$ порождаемых цепочек языка $L(S_1,S_3)=\{S_1(2)\}c\{S_2(3)\}=(\{b^iab^j\}cF_2U\{b^ia\}\{b^qcb^{m\cdot q}\}\{ab^j\})c(\{b^iab^q\}U\{b^ia\}\{b^qcb^{m\cdot q}\}\{ab^q\}),\qquad m\geq i\geq 0,$ $n\geq j\geq 0,$ $m\geq q\geq 0,$ представлен ниже:

Таблица 6

Правила вывода	Порождаемые цепочки
$N \rightarrow F_1 c F_3$	F_1cF_3
$F_1 \rightarrow G_{S*(2')}(F_1,m,n)$	$(\{b^{i}ab^{j}\}U\{b^{i}a\}\{b^{q}cb^{m-q}\}\{ab^{j}\})cF_{3}$
$F_3 \rightarrow G_{S*(2"')}(F_3,m,m)$	$(\{b^{i}ab^{j}\}cF_{2}U\{b^{i}a\}\{b^{q}cb^{m-q}\}\{ab^{j}\})c(\{b^{i}ab^{q}\}U\{b^{i}a\}\{b^{q}cb^{m-q}\}\{ab^{q}\})$

Здесь в правилах $F_1 \rightarrow G_{S^*(2')}(F_1,m,n)$ и $F_3 \rightarrow G_{S^*(2'')}(F_3,m,m)$ выводы $G_{S^*(2)}(F_1,m,n)$ и $G_{S^*(2'')}(F_3,m,n)$ получаются из $G_{S^*(2)}(N,m,n)$ и $G_{S^*(2'')}(N,m,m)$ подстановками $N \rightarrow F_1$ и $N \rightarrow F_3$. Выпишем построенную КС-грамматику:

$$\begin{split} &\Gamma(L(S_1,\!S_3)) \!\!=\!\! <\!\! V \!\!=\!\! \{a,\!b,\!c\}, W \!\!=\!\! \{N,\!E_1,\!E_2,\!A_1,\ldots,\!A_m,\!B_1,\ldots,\!B_m,\!B''_{m+1},\ldots,\!B''_n,\!A'_1,\ldots,\!A'_m,\!B'_1,\ldots,\!B'_m\}, \ N, \\ &P \!\!=\!\! \{N \!\!\to\!\! F_2 \!\!c \!\!F_3, \ F_1 \!\!\to\!\! a, \ F_1 \!\!\to\!\! A_1 a, \ F_1 \!\!\to\!\! a \!\!B_1, \ F_1 \!\!\to\!\! A_1 a \!\!B_1, \ A_1 \!\!\to\!\! b, \ A_1 \!\!\to\!\! b, \ A_1 \!\!\to\!\! b, \ A_2 \!\!\to\!\! b,\ldots,\!A_{m-1} \!\!\to\!\! A_m b, \\ &A_m \!\!\to\!\! b, \ B_1 \!\!\to\!\! b, \ B_1 \!\!\to\!\! b, \ B_2 \!\!\to\!\! b,\ldots,\!B_{m-1} \!\!\to\!\! b \!\!B_m, \ B_{m-1} \!\!\to\!\! b, \ B_m \!\!\to\!\! b \!\!B''_{m+1}, \ B_m \!\!\to\!\! b,\ldots,\!B''_{n-1} \!\!\to\!\! b \!\!B''_n, \\ &B''_n \!\!\to\!\! b, \ F_1 \!\!\to\!\! a \!\!E_1 \!\!E_2, \ F_1 \!\!\to\!\! A_1 a \!\!E_1 \!\!E_2, \ E_1 \!\!\to\!\! c, \ E_1 \!\!\to\!\! A'_1 c, \ E_1 \!\!\to\!\! A'_1 c \!\!B'_1, \ E_2 \!\!\to\!\! a, \ E_2 \!\!\to\!\! a \!\!B_1, \end{split}$$

 $A'_{1} \rightarrow A'_{2}b, \ A'_{1} \rightarrow b, \ A'_{q-1} \rightarrow A'_{q}b, \ A'_{q-1} \rightarrow b, \ A'_{m-1} \rightarrow A'_{m}b, \ A'_{m-1} \rightarrow b, \ A'_{m} \rightarrow b, \ B'_{1} \rightarrow bB'_{2}, \ B'_{1} \rightarrow b, \ B'_{m-q-1} \rightarrow b, \ B'_{m-q} \rightarrow b, \ F_{3} \rightarrow a, \ F_{3} \rightarrow A_{1}a, \ F_{3} \rightarrow aB_{1}, \ F_{3} \rightarrow A_{1}aB_{1}, \ F_{3} \rightarrow aE_{1}E_{2}, \ F_{3} \rightarrow A_{1}aE_{1}E_{2}\} \rangle.$

Вывод $G_{S^*(r,2^m)}(N,m,n)$ порождаемых цепочек языка $L(S_2,S_3)=\{S_2(r)\}c\{S_3(3)\}=(U_{i=1,\dots,r}\prod_{k=1,\dots,i}\{c_{(k-1)}b^iab^j\})c(\{b^iab^j\}cU\{b^ia\}\{b^qcb^{m-q}\}\{ab^j\}),$ $m\ge i\ge 0,\ n\ge j\ge 0,\ m\ge q\ge 0,\$ представлен ниже:

Таблица 7

Правила вывода	Порождаемые цепочки
$N \rightarrow F_2 c F_3$	F_2cF_3
$F_2 \rightarrow G_{S*(r')}(F_2,m,n)$	$(U_{i=1,,r}\prod_{k=1,,i}\{c_{(k-1)}b^{i}ab^{j}\})cF_{3}$
$F_3 \rightarrow G_{S*(2"')}(F_3,m,m)$	$(U_{i=1,\dots,r}\prod_{k=1,\dots,i}\{c_{(k-1)}b^{i}ab^{j}\})c(\{b^{i}ab^{q}\}cU\{b^{i}a\}\{b^{q}cb^{m-q}\}\{ab^{q}\})$

Здесь в правилах $F_2 \rightarrow G_{S^*(r)}(F_2,m,n)$ и $F_3 \rightarrow G_{S^*(2^{""})}(F_3,m,m)$ выводы $G_{S^*(r)}(F_2,m,n)$ и $G_{S^*(2^{""})}(F_3,m,n)$ получаются из $G_{S^*(r)}(N,m,n)$ и $G_{S^*(2^{""})}(N,m,m)$ подстановками $N \rightarrow F_2$ и $N \rightarrow F_3$. Выпишем построенную КС-грамматику:

$$\begin{split} &\Gamma(L(S_2,S_3)) = & \langle V = \{a,b,c\}, W = \{N,F_2,F_3,E_1,E_2,A_1,\dots,A_m,B_1,\dots,B_m,A'_1,\dots,A'_m,B'_1,\dots,B'_m,B''_{m+1},\dots,B''_n,C_1,\dots,C_{r-1},D_1,\dots,D_r\}, \ N, \ P = \{N \to F_2cF_3, \ F_2 \to D_1, \ F_2 \to D_1c_{(1)}C_1, \ C_1 \to D_2, \ C_1 \to D_2c_{(2)}C_2, \ C_2 \to D_3,\dots,C_{k-1} \to D_k, \ C_{k-1} \to D_kc_{(k)}C_k, \ \dots,C_{r-2} \to D_{r-1}, \ C_{r-2} \to D_{r-1}c_{(r-1)}C_{r-1}, \ C_{r-1} \to D_r, \ D_1 \to a, \ D_1 \to A_1a, \ D_1 \to a_1a_1, \ D_1 \to A_1aB_1,\dots,D_k \to a, \ D_k \to A_1a, \ D_k \to a_1b_1, \ D_k \to A_1aB_1,\dots,D_r \to a, \ D_r \to A_1a, \ D_r \to a_1a_1, \ D_r \to A_1aB_1, \ A_1 \to b, \ A_1 \to A_2b, \ A_2 \to b,\dots, \ A_{m-1} \to A_mb, \ A_m \to b, \ B_1 \to b, \ B_1 \to bB_2, \ B_2 \to b,\dots,B_{m-1} \to bB_m, \ B_{m-1} \to b, \ B_m \to bB''_{m+1}, \ B_m \to b,\dots,B''_{n-1} \to bB''_n, \ B''_n \to b, \ F_3 \to a, \ F_3 \to A_1a, \ F_3 \to aB_1, \ F_3 \to A_1aB_1, \ F_3 \to aE_1E_2, \ F_3 \to A_1aE_1E_2, \ E_1 \to c, \ E_1 \to A'_1c, \ E_1 \to CB'_1, \ E_1 \to A'_1cB'_1, \ E_2 \to a, \ E_2 \to aB_1, \ A'_1 \to A'_2b, \ A'_1 \to b, \ A'_{q-1} \to A'_qb, \ A'_{q-1} \to b, \ A'_{m-1} \to b, \ A'_{m-1} \to b, \ A'_m \to b, \ B'_1 \to bB'_2, \ B'_1 \to b, \ B'_{m-q-1} \to b, \ B'_{m-q-1} \to b, \ B'_{m-q} \to b\} \rangle. \end{split}$$

Наконец, построим грамматику языка 3-сегментных цепочек вида (6) $L(S_1,S_2,S_3)=\{S_1(2)cS_2(r)c\ S_3(2)\}=\{S_1(2)\}c\{S_2(r)\}c\{S_3(2)\}=(\{b^iab^j\}U\{b^ia\}\{b^qcb^{m-q}\}\{ab^j\})\\c(U_{i=1,\dots,r}\prod_{k=1,\dots,i}\{c_{(k-1)}b^iab^j\})c(\{b^iab^j\}U\{b^ia\}\{b^qcb^{m-q}\}\{ab^q\}),\\m\geq i\geq 0,\ n\geq j\geq 0,\ m\geq q\geq 0.$

Вывод $G_{S^*(2',r,2''')}(N,m,n)$ порождаемых цепочек языка $L(S_1,S_2,S_3)$ представлен ниже:

Таблица 8

Правила вывода	Порождаемые цепочки
$N \rightarrow F_1 c F_2 c F_3$	$F_1cF_2cF_3$
$F_1 \rightarrow G_{S^*(2')}(F_1,m,n)$	$(\{b^{i}ab^{j}\}U\{b^{i}a\}\{b^{q}cb^{m-q}\}\{ab^{j}\})cF_{2}$
$F_2 \rightarrow G_{S^*(r)}(F_2,m,n)$	$(\{b^{i}ab^{j}\}U\{b^{i}a\}\{b^{q}cb^{m-q}\}\{ab^{j}\})c(U_{i=1,,r}\prod_{k=1,,i}\{c_{(k-1)}b^{i}ab^{j}\})$
$F_3 \rightarrow G_{S^*(2"")}(F_1,m,m)$	$(\{b^{i}ab^{j}\}U\{b^{i}a\}\{b^{q}cb^{m-q}\}\{ab^{j}\})c(U_{i=1,\dots,r}\prod_{k=1,\dots,i}\{c_{(k-1)}b^{i}ab^{j}\})c \qquad (\{b^{i-1}ab^{j}ab^{j}ab^{j}\})c$
	$ab^{j}U\{b^{i}a\}\{b^{q}cb^{m-q}\}\{ab^{q}\})$

Здесь в правилах $F_1 \rightarrow G_{S^*(2')}(F_1,m,n)$, $F_2 \rightarrow G_{S^*(r)}(F_2,m,n)$ и $F_3 \rightarrow G_{S^*(2'')}(F_3,m,m)$ выводы $G_{S^*(2')}(F_1,m,n)$, $G_{S^*(r)}(F_2,m,n)$ и $G_{S^*(2'')}(F_3,m,n)$ получаются из $G_{S^*(2)}(N,m,n)$, $G_{S^*(r)}(N,m,n)$ и $G_{S^*(2'')}(N,m,m)$ подстановками $N \rightarrow F_1$, $N \rightarrow F_2$ и $N \rightarrow F_3$.

Выпишем построенную КС-грамматику:

$$\begin{split} B_{m} \to b, \dots, B''_{n-1} \to b B''_{n}, \ B''_{n} \to b, \ A'_{1} \to A'_{2}b, \ A'_{1} \to b, \ A'_{q-1} \to A'_{q}b, \ A'_{q-1} \to b, \ A'_{m-1} \to A'_{m}b, \ A'_{m-1} \to b, \\ A'_{m} \to b, \ B'_{1} \to b B'_{2}, \ B'_{1} \to b, \ B'_{m-q-1} \to b B'_{m-q}, \ B'_{m-q-1} \to b, \ B'_{m-q} \to b, \ F_{2} \to D_{1}, \ F_{2} \to D_{1}c_{(1)}C_{1}, \ C_{1} \to D_{2}, \\ C_{1} \to D_{2}c_{(2)}C_{2}, \ C_{2} \to D_{3}, \dots, C_{k-1} \to D_{k}, \ C_{k-1} \to D_{k}c_{(k)}C_{k}, \ \dots, C_{r-2} \to D_{r-1}, \ C_{r-2} \to D_{r-1}c_{(r-1)}C_{r-1}, \ C_{r-1} \to D_{r}, \\ D_{1} \to a, \ D_{1} \to A_{1}a, \ D_{1} \to A_{1}aB_{1}, \ D_{1} \to A_{1}aB_{1}, \dots, \ D_{k} \to a, \ D_{k} \to A_{1}a, \ D_{k} \to A_{1}aB_{1}, \ D_{k} \to A_{1}aB_{1}, \dots, \ D_{r} \to a, \\ D_{r} \to A_{1}a, \ D_{r} \to A_{1}aB_{1}, \ D_{r} \to A_{1}aB_{1}, \ F_{3} \to a, \ F_{3} \to A_{1}a, \ F_{3} \to A_{1}aB_{1}, \ F_{3} \to A_{1}aB_{1$$

Нетрудно видеть, что построенная грамматика для языка 3-сегментных цепочек является также грамматикой языка общей модели стиха

 $L(S_1,S_2,S_3,c) = \{S_1(2)\}U\{S_2(r)\}U\{S_3(2)\}U\{S_1(2)cS_2(r)\}U\{S_1(2)cS_3(2)\}U\{S_2(r)cS_3(2)\}U\{S_1(2)cS_2(r)cS_3(2)\},$

представленной в (10) и вывод которой представлен ниже:

Таблица 8

Правила вывода	Порождаемые цепочки
$N \rightarrow F_1$	F_1
$F_1 \rightarrow G_{S^*(2')}(F_1,m,n)$	$\{b^{i}ab^{j}\}U\{b^{i}a\}\{b^{q}cb^{m-q}\}\{ab^{j}\}$
$N \rightarrow F_2$	F_2
$F_2 \rightarrow G_{S^*(r')}(F_2,m,n)$	$U_{i=1,,r}\prod_{k=1,,i}\{c_{(k-1)}b^{i}ab^{j}\}$
$N \rightarrow F_3$	F_3
$F_3 \rightarrow G_{S^*(2"")}(F_3,m,m)$	$\{b^{i}ab^{q}\}U\{b^{i}a\}\{b^{q}cb^{m-q}\}\{ab^{q}\}$
$N \rightarrow F_1 c F_2$	F_1cF_2
$F_1 \rightarrow G_{S^*(2')}(F_1,m,n)$	$(\{b^{i}ab^{j}\}U\{b^{i}a\}\{b^{q}cb^{m-q}\}\{ab^{j}\})cF_{2}$
$F_2 \rightarrow G_{S^*(r)}(F_2,m,n)$	$(\{b^{i}ab^{j}\}U\{b^{i}a\}\{b^{q}cb^{m-q}\}\{ab^{j}\})c(U_{i=1,\dots,r}\prod_{k=1,\dots,i}\{c_{(k-1)}b^{i}ab^{j}\})$
$N \rightarrow F_1 c F_3$	F_1cF_3
$F_1 \rightarrow G_{S^*(2')}(F_1,m,n)$	$(\{b^{i}ab^{j}\}U\{b^{i}a\}\{b^{q}cb^{m-q}\}\{ab^{j}\})cF_{3}$
$F_3 \rightarrow G_{S^*(2"")}(F_3,m,m)$	$(\{b^{i}ab^{j}\}cF_{2}U\{b^{i}a\}\{b^{q}cb^{m-q}\}\{ab^{j}\})c(\{b^{i}ab^{q}\}U\{b^{i}a\}\{b^{q}cb^{m-q}\}\{ab^{q}\})$
$N \rightarrow F_2 c F_3$	F_2cF_3
$F_2 \rightarrow G_{S^*(r')}(F_2,m,n)$	$(U_{i=1,,r}\prod_{k=1,,i}\{c_{(k-1)}b^{i}ab^{j}\})cF_{3}$
$F_3 \rightarrow G_{S^*(2"")}(F_3,m,m)$	$(U_{i=1,\dots,r}\prod_{k=1,\dots,i}\{c_{(k-1)}b^{i}ab^{j}\})c(\{b^{i}ab^{q}\}cU\{b^{i}a\}\{b^{q}cb^{m-q}\}\{ab^{q}\})$
$N \rightarrow F_1 c F_2 c F_3$	$F_1cF_2cF_3$
$F_1 \rightarrow G_{S^*(2')}(F_1,m,n)$	$(\{b^{i}ab^{j}\}U\{b^{i}a\}\{b^{q}cb^{m-q}\}\{ab^{j}\})cF_{2}$
$F_2 \rightarrow G_{S^*(r)}(F_2,m,n)$	$(\{b^{i}ab^{j}\}U\{b^{i}a\}\{b^{q}cb^{m-q}\}\{ab^{j}\})c(U_{i=1,\dots,r}\prod_{k=1,\dots,i}\{c_{(k-1)}b^{i}ab^{j}\})$
$F_3 \rightarrow G_{S^*(2"")}(F_1,m,m)$	$(\{b^{i}ab^{j}\}U\{b^{i}a\}\{b^{q}cb^{m-q}\}\{ab^{j}\})c(U_{i=1,,r}\prod_{k=1,,i}\{c_{(k-1)}b^{i}ab^{j}\})c$
	$(\{b^{i}ab^{j}\}U\{b^{i}a\}\{b^{q}cb^{m-q}\}\{ab^{q}\})$

Предложенная модель русского стиха и построенная для нее КС-грамматика открывают перспективы для построения алгоритмов распознавания специфики стихотворного произведения и вместе с тем являются не только аналитическим инструментом поэтологии, но содержат также генеративные возможности для освоения новых ритмических форм в поэтической практике.

В заключение следует выразить глубокую признательность В.А. Соколову и И.А. Пильщикову за полезные обсуждения.

Список литературы

- 1. Гаспаров М.Л. Лингвистика стиха // Славянский стих: Стиховедение, лингвистика и поэтика: Материалы международной конференции 19—25 июня 1995 г. М.: Языки славянской культуры, 1996.
- 2. Шапир М.И. На подступах к общей теории стиха (основные методы и понятия) // Славянский стих: Лингвистическая и прикладная поэтика: Материалы международной конференции 23–27 июня 1998 г. М.: Языки славянской культуры, 2001.
- 3. Зализняк А.А. Труды по акцентологии. Том І. М.: Языки славянской культуры, 2010.
- 4. Торсуева И.Г. Ритм // Лингвистический энциклопедический словарь. М.: Советская энциклопедия, 1990. С. 416.
- 5. Иванюк Б.П. Поэтическая речь: словарь терминов. М.: Флинта: Наука, 2007.
- 6. Квятковский А.П. Поэтический словарь. М.: Сов. энциклопедия, 1966.
- 7. Бойков В.Н. По обе стороны глаз. Новосибирск: Свиньин и сыновья, 2008.
- 8. Гаспаров М.Л., Скулачева Т.В. Статьи о лингвистике стиха. М.: Языки славянской культуры, 2004.
- 9. Бойков В.Н., Захаров В.Е., Пильщиков И.А., Сысоев Т.М. Тезаурус как инструмент поэтологии // Моделирование и анализ информационных систем. 2010. Т. 17, №1. С. 5–24.
- 10. Гладкий А.В. Формальные грамматики и языки. М.: Наука, 1973.

A Context-Free Grammar of One Rhythmic Model of Russian Verse

Boykov V.N.

Keywords: rhythm group, accentual segment, verse, poetology, prosody, formal language, CF-grammar, recognition.

A formal model of the Russian verse based on the accentual segmentation of its structure is offered and considered. **A** context-free grammar (in N. Chomsky's sense) which generates correct rhythmic forms of the presented model is constructed.

Сведения об авторе: Бойков Владимир Николаевич,

Институт космических исследований РАН, консультант.