
Моделирование и анализ информационных систем. Т. 24, №2 (2017), с. 125–140
Modeling and Analysis of Information Systems. Vol. 24, No 2 (2017), pp. 125–140

c©Begicheva A.K., Lomazova I. A., 2017

DOI: 10.18255/1818-1015-2017-2-125-140

UDC 517.9

Discovering High-Level Process Models
from Event Logs

Begicheva A.K., Lomazova I.A.

Received January 11, 2017

Abstract. Process mining is a relatively new field of computer science, which deals with process
discovery and analysis based on event logs. In this paper we consider the problem of discovering a
high-level business process model from a low-level event log, i.e. automatic synthesis of process models
based on the information stored in event logs of information systems. Events in a high-level model are
abstract events, which can be refined to low-level subprocesses, whose behavior is recorded in event logs.
Models synthesis is intensively studied in the frame of process mining research, but only models and
event logs of the same granularity are mainly considered in the literature. Here we present an algorithm
for discovering high-level acyclic process models from event logs and some specified partition of low-level
events into subsets associated with abstract events in a high-level model.

Keywords: Petri nets, high-level process models, event logs, process mining, process discovery

For citation: Begicheva A.K., Lomazova I. A., “Discovering High-Level Process Models from Event Logs”, Modeling and
Analysis of Information Systems, 24:2 (2017), 125–140.

About the authors:
Antonina A. Begicheva, research assistant
National Research University Higher School of Economics, Laboratory of Process-Aware Information Systems
20 Myasnitskaya str., Moscow 101000, Russia, e-mail: akbegicheva@edu.hse.ru

Irina A. Lomazova, Doctor of science, professor
National Research University Higher School of Economics
20 Myasnitskaya str., Moscow 101000, Russia, e-mail: ilomazova@hse.ru

Acknowledgments:
This work is supported by the Basic Research Program at the National Research University Higher School of Economics
and Russian Foundation for Basic Research, project No.16-01-00546.

1. Introduction

Process mining is a technology that provides a variety of methods to discover, monitor
and improve real processes by extracting knowledge from event logs [1]. Process discovery
and conformance checking are the two most prominent process mining tasks. Process
discovery is needed to construct a process model, based on an event log, without any
additional information. Conformance checking helps us in diagnosing and quantifying
discrepancies between observed and modeled behavior. Process discovery uses only an
event log for recovery view of a system as a model by behavior which is seen in the log.
The general goal is to find out main events of the system and relations between them.

125

126
Моделирование и анализ информационных систем. Т. 24, №2 (2017)

Modeling and Analysis of Information Systems. Vol. 24, No 2 (2017)

After this we can use other techniques of process mining for further work with the model
of our system.

There are many software products which allow us to use these two techniques of
Process Mining. ProM [2] is an open-source tool supporting many techniques of Process
Mining, which are represented as plug-ins. Due to the flexibility of this environment, it
can be used both for research and applications.

When working with business processes we typically use detailed logs, which present
the full report about sequences of executed activities. Since logs are generated automa-
tically in most information systems, keeping detailed records is not a problem. However,
large and detailed models are not good to deal with. Such models are not clear and
readable for experts. Experts prefer working with more abstract (high-level) models.
More abstract models are easier to construct, understand and analyze. Process models
developed by people are, as a rule, not very large and abstract from technical details.
Although the field of process discovery is well developed, process mining projects still
face the problem of different levels of abstraction when comparing events with modeled
business activities. Current approaches for event log abstraction most often try to abstract
from the events in an automated way which does not capture the required domain
knowledge to fit business process.

In this work we consider process models represented by workflow nets – a special
class of Petri nets [3] for workflow modeling. We assume that a model contains no
cycles for correct handling with concurrency. In an abstract model each separate activity
represents a subprocess built from a set of more refined activities. For the presentation of
intermediate results we use transition systems. A history of a detailed process behavior is
recorded in low-level logs. We present an algorithm for discovering process as an abstract
model from a low-level event log. The algorithm will be tested on groups of input data
with different characteristics.

The work is organized as follows. Section 2 introduces the situation with existing
researches. In Section 3 we give a motivating example of handling a request for compensa-
tion in a particular airline company, in terms of Petri nets. Section 4 contains some basic
definitions and notions, including Petri nets, event log, transition system, and theory
of regions. In Section 5 we present a method for discovering an abstract process model
from a low-level event log, and Section 6 gives a precise description and validation of
this method. Section 7 concludes the paper.

2. Literature review

Research topics related to this article can be divided into several categories: event log
and model abstraction, discovering algorithms and existing methods for abstract models
synthesis.

There are many ways of abstracting models by reducing their size in order to make
them more convenient to work with. Each method may be useful depending on a group of
interrelated factors: the abstraction purposes, the presence of certain patterns of routine
constructions, the specifics of modeling notation. Reducing the size of the model by
abstraction can be done as “convolution” of some groups of elements, or implemented by
losing some parts (which are non-significant in a particular case). The importance of event

Begicheva A.K., Lomazova I. A.
Discovering High-Level Process Models from Event Logs 127

log abstraction is emphasized among others in [4]. The paper contains a more detailed
overview of models and abstraction techniques and formal definitions of this process
in general. In particular, the paper provides definitions for two prominent abstraction
operations: elimination and aggregation. A model which is generated by an elimination
operation contains no information about omitted insignificant objects. In contrast the
aggregation generates an abstract model, where relatively insignificant objects of abstrac-
tion combine together with several other abstraction objects into groups, each of which is
significant. According to this article, business process model abstraction is an operation
over the model, which transforms it into abstract model by the application of function
composition, where each component of the composition is some basic abstract operation.

The aggregation is divided into four types: sequential abstraction (Fig. 1 (a)), block
abstraction (Fig. 1 (b)), loop abstraction (Fig. 1. (c)), dead end abstraction (Fig. 1.
(d)). Based on these four aggregation rules and model transformation techniques a slider
approach is proposed in [5]. It provides a user control over the level of model abstraction
by different criteria, where the abstraction criterion is a pair: type of criteria and relation
between element property and its significance. A similar ability is used in many methods
of working with abstract models due to its convenience and an analogy with scalable
terrain maps.

Petri nets can be extended by adding a hierarchy e.g. in Colored Petri nets (CPN) [6].
The idea of high-level Petri nets was first described in [7] (1981), but only in 1987 this
idea extended to colored Petri nets. Hierarchy also allows construction of more compact,
readable and understandable models. Hierarchy can be applied as an abstraction, in the
case of two-level hierarchy there are two models of one process: a high-level abstract
model and a low-level refined model. In our paper the high-level model is a model with
abstract transitions. An abstract transition refers to a Petri net subprocess, which refines
the activity represented by this transition. The low-level model can be obtained from an
abstract model by substituting subprocess models for abstract transitions.

A “flat” synthesis (when model and log are at the same-level) is a popular process
mining task, and has been extensively studied in the literature. Each method [1, 8, 9]
has some advantages regarding a particular kind of data. For example the α-algorithm
[9] takes concurrency as a base, but this algorithm has some problems dealing with
complicated routing constructs and noise. The flat model, presented as a graph, becomes
more incomprehensible with each node. Hierarchical models are more suitable for humans
to work with because they are more structural.

Van Dongen et al in [10] described a Petri net discovery approach using transition
system. Firstly a transition system is constructed by deriving from an event log. It can
be modified to avoid over-fitting. Secondly, using the theory of regions [11], the Petri net
is synthesized. We note that currently only the theory of regions solves the problem of
Petri net synthesis from transition systems. The proposed in [10] method can deal with
complex control-flow constructs. It allows for duplicates, but does not allow for much
more behavior than is actually recorded in the log and produces models, which satisfy
some soundness requirements. The proposed algorithm also has some disadvantages, for
example it can’t deal with noise in an event log, unlike genetic [12] or heuristics [13]
miners.

There are some methods for discovering abstract models but they are based on finding
behavior patterns in event logs. For example in [14] the authors use recognition of

128
Моделирование и анализ информационных систем. Т. 24, №2 (2017)

Modeling and Analysis of Information Systems. Vol. 24, No 2 (2017)

Powered by TCPDF (www.tcpdf.org)

Fig 1. Aggregations for model abstraction

Begicheva A.K., Lomazova I. A.
Discovering High-Level Process Models from Event Logs 129

behavior patterns of the process by a structural clustering algorithm and then define
a specific workflow schema for each pattern. This helps to divide one complex model
into several more understandable, smaller pieces, convenient to analyze and discover.
Clustering of activities by their relation and role in the process was also used in [15].
The terrain maps analogy is also used here: activities in a process correspond to a certain
location on a map and the relations between activities are like the roads.

In [16] a supervised event abstraction method was presented. This method takes
an event log at a lower level of abstraction and transforms it to an event log at the
desired level of abstraction, using behavioral activity patterns: sequence, choice, parallel,
interleaving and repetition. This technique allows us to obtain a reliable abstraction
mapping from low-level events to activity patterns automatically and construct a high-
level event log using them. Another supervised event abstraction method is described in
[17]. The essence of the proposed method is as follows: we annotated each low-level event
with the correct high-level event using domain knowledge from the actual process model
by special type of attribute in XES log file. Also in this paper authors make the working
assumption that multiple high-level events are executed in parallel. This enables us to
interpret a sequence of identical label attribute values as a single instance of a high-level
event.

In [18] a two-phase approach to mining process is presented. Process models here
are considered as interactive and context-dependent maps based on common execution
patterns. On the first phase the event log is transformed to the desired level of detail by
selecting patterns. An example of such pattern is the maximal repeat, that captures
typical sequences of activities the log. Every pattern is estimated by frequency, or
significance, or some other metric needed for accurate abstraction. At the second phase
the fuzzy miner algorithm adapted to process maps discovery is applied to the transformed
log. This two-phase approach has been implemented as a set of interrelated plug-ins in
the ProM framework, the application order of which is described in [19]. In our paper
we use Petrify plug-in from this set to synthesize Petri net [20].

All these papers provide no or only limited support for correct refining these mappings
based on domain knowledge. They do not allow to detect subprocesses in the synthesized
model. Some approaches based on subprocess detection for mining a process model with
a better structure were presented in [21, 22], but these papers do not consider mining
high-level models.

Also there are different approaches that apply behavior abstraction in process discovery
and trace alignment [5, 23]. Besides there is an interesting method for discovering that is
discussed in [24]. The contribution of this research is a mapping approach which suggests
relations between events and activities in an automated manner using existing process
documentation as e.g. work instructions.

Thus discovering an abstract model from a low-level event log generated by an
information system is an important and challenging problem. In different applications
different views on the abstraction mechanism and different levels of abstraction are
needed. Here we consider one of many possible views on the problem.

130
Моделирование и анализ информационных систем. Т. 24, №2 (2017)

Modeling and Analysis of Information Systems. Vol. 24, No 2 (2017)

L = { < t0, t1, t3, t4, t5, t6, t13, t14, t7, t8, t15, t9, t16, t17, t18, t25, t26, t27 >,

< t0, t1, t3, t4, t13, t14, t5, t7, t15, t6, t8, t9, t16, t17, t18, t24, t23, t22 >,

< t0, t1, t3, t13, t10, t11, t14, t15, t12, t16, t17, t18, t24, t23, t22 >,

< t0, t2, t3, t13, t4, t14, t15, t5, t6, t7, t8, t9, t16, t17, t18, t25, t26, t27 >,

< t0, t2, t3, t4, t13, t14, t15, t5, t7, t6, t8, t9, t16, t17, t18, t24, t23, t22 >,

< t0, t1, t3, t10, t11, t13, t12, t14, t15, t16, t17, t18, t19, t20, t21, t10, t11,

t13, t14, t15, t12, t16, t17, t18, t25, t26, t27 >,

< t0, t2, t3, t13, t10, t14, t15, t11, t12, t16, t17, t18, t24, t23, t22 >,

< t0, t2, t3, t13, t10, t11, t12, t14, t15, t16, t17, t18, t19, t20, t21, t10, t13,

t14, t11, t15, t12, t16, t17, t18, t24, t23, t22 >,

< t0, t2, t3, t13, t14, t10, t11, t15, t12, t16, t17, t18, t25, t26, t27 >}.

Fig 2. An original event log L1

3. Motivation example

Let us consider some log, which describes in detail a half-hour period of handling a
request for a compensation from the airline service. The log is generated by a system, a
part of this los is shown in Fig. 2. Names of events are simplified to t with some index,
because with real names the log was too bulky. Even if names of events have not been
replaced, it is not easy to understand from the log how customers requests are handled.
But there are algorithms allowing to discover (synthesize) a process model from this log.

After applying one of the known discovery algorithms we get the relatively large model
N1 presented in Fig. 3. This model is inconvenient to work with. Experts would prefer to
work with more abstract model of the same process, like the model N2 shown in Fig. 4.
Each transition in N2 corresponds to a subprocess, which includes transitions from N1.
For example, the abstract action ’register request’ indicates reading a request (transition
t0) and then recording it in one of two possible ways (transition t1, or t2). Note that
sets of low-level transitons corresponding to different abstract events do not intersect.
Low-level transitions in Fig. 3 are grouped into blocks (subprocesses) corresponding to

t0

t1

t2

t3

t13 t14 t15 t16

t17 t18

t25 t26 t27

t24 t23 t22

t10 t11 t12

t4 t5
t6

t7

t8 t9

p0

p1

p2

p3

p4

p5
p6

register request
check ticket

decide
reject request

pay compensation

examine thoroughly

examine casually

Fig 3. A low-level model N1 synthesized from the log L1 in Fig. 2

Begicheva A.K., Lomazova I. A.
Discovering High-Level Process Models from Event Logs 131

p0

p1 p2

p3 p4

p5 p6

register
request

examine
thoroughly

examine
casually

check ticket

decide

pay
compensation

reject
request

Fig 4. An abstract model N2 for handling compensation requests

high-level activities of the process.
We study the problem when given a low-level event log generated by a process and a

partition of the set of low-level events into subsets corresponding to high-level events , we
would like to construct an abstract model of the process. We suppose that the low-level
log is generated by an information system, and the event partition is defined by experts
or software developers

An abstract model cannot be directly obtained from low-level log since the log consists
of low-level events and the model should contain transitions labeled by high-level events.
So, a one-to-many correspondence between high and low-level events is needed for the
model synthesis. In our example the abstract event e0 corresponds to the set {t0, t1, t2}
of low-level events, e1 — to the set {t13, t14, t15}, etc. The full correspondence is shown
in Table 1. This mapping will be used in the algorithm for transformation of the original
log into its high-level representation, which we use as an input data for one of the known
discovery algorithm.

High-Level Activity e0 e1 e2 e3 e4 e5 e6 e7
t0 t4 t10 t13 t16 t19 t22 t25

Low-Level Activities
...

...
...

...
...

...
...

...
t3 t9 t12 t15 t18 t21 t24 t27

Table 1. The correspondence between low-level and high-level activities in N1 and N2

4. Preliminaries
In this section we give some basic notions and definitions used in the paper.

Let S be a set. By S∗ we denote the set of all finite sequence (words) over S.
S = S1 ∪ S2 ∪ · · · ∪ Sn is a partition of S iff ∀i, j ∈ [1, n] : Si ⊆ S and Si ∩ Sj = ∅.
A multiset m over a set S is a mapping: m : S → Nat, where Nat – is the set of

natural numbers (including zero), i.e. a multiset may contain several copies of the same
element.

Definition 1 (Petri net). Let P and T be disjoint finite sets of places and transitions
and F : (P×T)∪(T×P)→ Nat. Then N = (P, T, F) is a Petri net. Let A be a finite set

132
Моделирование и анализ информационных систем. Т. 24, №2 (2017)

Modeling and Analysis of Information Systems. Vol. 24, No 2 (2017)

nn nn
i if f

Extended WF-net t+(N)WF-net N

- -

ti tf
s

Fig 5. Extending WF-net with initial and final transitions

of activities. A labeled Petri net is a Petri net with a labeling function λ : T → A∪{ε},
which maps every transition to an activity (a transition label) from A, or a special label
ε indicating an invisible action.

A marking in a Petri net is a function m : P → Nat mapping each place to some
natural number (possibly zero).

For a transition t ∈ T a preset •t and a postset t• are defined as the multisets over P
such that •t = {p|F (p, t) 6= 0} and t• = {p|F (t, p) 6= 0}.

A transition t ∈ T is enabled in a marking m iff ∀p ∈ P m(p) ≥ F (p, t). An enabled
transition tmay fire yielding a new markingm′, such thatm′(p) = m(p)−F (p, t)+F (t, p)

for each p ∈ P (denoted m t→ m′).
A Workflow net is a (labeled) Petri net with two special places: i and f . These places

are used to mark the beginning and the ending of a workflow process.

Definition 2 (Workflow net). A (labeled) Petri net N = (P,T,F,λ) is called a workflow
net (WF-net) iff:

1. There is one source place i ∈ P and one sink place f ∈ P , s. t. •i = f • = ∅.

2. Every node from P ∪ T is on a path from i to f .

3. The initial marking in N contains the only token in its source place.

By abuse of notation we denote by i both the source place and the initial marking in
a WF-net. Similarly, we use f to denote the final marking in a WF-net N , defined as a
marking containing the only token in the sink place f .

Let N = (P, T, F, λ) be a WF-net. Then we define the extended WF-net (EWF-net)
N ′ = (P ′, T ′, F ′, λ′) as follows: P ′ = P, T ′ = T ∪ {ti, tf} and F ′ = F ∪ {〈ti, i〉 , 〈f, tf〉} ,
where ti, tf are new (not occurring in P, T) nodes. The new transitions ti, tf are labeled
with invisible activity ε, all other transitions in N ′ have the same labels as in N . The
initial marking in an extended WF-net contains no tokens. Thus an extended WF-net
may start a new case at any moment (cf. Fig. 5).

The behavior of WF-nets can be represented with a state-based models, called Transition
System (TS), as they reflect the states of a process and transitions between them.

Definition 3 (Transition system). A (labeled) transition system is a triple (S,Λ,→),
where S is a set of states, Λ is a set of labels, and →⊆ S×Λ×S is a transition relation.
If p, q ∈ S and α ∈ Λ, (p, α, q) ∈→ is usually written as p α−→q meaning that a transition
labeled by αmoves the system from state p to state q. Furthermore, in this paper we
assume that a transition system is connected.

Begicheva A.K., Lomazova I. A.
Discovering High-Level Process Models from Event Logs 133

Information systems can record all kinds of events with a wide range of properties,
but it entirely depends on the configuration. Moreover, systems can use a specific format.
For our study we abstract from additional information presented in event logs and define
a process log as a multiset of traces, where a trace is a sequence of events (only their
names).

In this paper a path is a sequence of events apart from the log, in the context of a
one of possible runs from initial state of a model to final state.

Definition 4 (Event log). Let A be a finite set of activities. A trace σ is a finite
sequence of activities from A, i.e. σ ∈ A∗. An event log L is a finite multi-set of traces,
i.e. L ∈M (A∗).

A model represented as transition system TS corresponding to a model represented
as Petri net PN iff TS can be successfully run with all possible paths of TS and vice
versa.

To apply the Petri net synthesis method, we need to transform event logs into
transition systems [10]. Using the translation from a single trace to a transition system,
we can translate an entire log to a transition system.

Definition 5 (Event log to transition system). Let A be a set of log events and let W be
an event log over A, i.e., W ∈M(A∗). We define TS(W) = (S; Λ;→) to be a transition
system, such that:

• S =
⋃
σ∈W Sσ, i.e. the union over the states of the transition system translations

of each individual trace,

• Λ = A, i.e. the set of labels is the set of activities,

• →=
⋃
σ∈W →σ, i.e. the trace is represented as a sequence of state transitions,

starting from the common initial state. The transitions between each two states is
made by activity at the given position in the trace.

The algorithm [8] for constructing a transition system is straightforward: for every
trace σ, iterating over k(0 ≤ k ≤ |σ|), we create a new state state(σ, k) if it does not exist

yet. Then the traces are scanned for transitions state(σ, k−1)
σ(k)−−→ state(σ, k) and these

are added if it does not exist yet. If we use the complete prefix sequence representation
of a state, i.e. state(σ, k) = hd(σ, k), where hd(σ, k) is a prefix of trace σ after executing
k steps.

Once a process log is converted into transition system, we can use the some synthesis
method to generate a Petri net from it, at the time of writing this article for these
purposes, you can apply only Theory of Regions.

For synthesis we use Theory of Regions, and to able using it we need to make an
assumption about completeness of the log. We assume also that the log shows all possible
behavior, since the resulting Petri net have to be exactly mimic the behavior shown in the
log. Since we work only with workflow process, we do not need to make any assumptions
about the uniqueness of initial state for each trace. More details about the application
of the theory of regions can be found in [10, 25].

The advantages of using theory of regions are the possibility to handle complex models
with routing constructions (such as concurrency), the possibility of deduplication in the

134
Моделирование и анализ информационных систем. Т. 24, №2 (2017)

Modeling and Analysis of Information Systems. Vol. 24, No 2 (2017)

construction of the resulting net, the flexibility, due to which the model does not allow
too general behavior and are not too “tight” for some concrete routing. The disadvantage
of theory of regions is high computational complexity, which makes it difficult to use
for synthesis models from large size logs. The model abstraction allow us to use all of
advantages of theory of regions faced with no disadvantages.

Second of the most prominent process mining tasks is conformance checking [1, 26,
27]. Given a model and an event log we would like to compare the process model behavior
and the behavior recorded in the event log. Several metrics for conformance checking were
defined in the literature [1]. Among the most important metrics is fitness. Informally
speaking, fitness measures the proportion of behavior in the event log possible according
to the model.

Definition 6 (Perfect fit). Let N be a WF-net with transition labels from A, an initial
marking i, and a final marking f . Let σ be a trace over A. We say that a trace σ =

a1, . . . , ak perfectly fits N iff there exists a sequence of firings i = m0
t1→ . . .

tk→ mk+1 =
f in N , s.t. the sequence of activities λ(t1), λ(t2), . . . , λ(tk) after deleting all invisible
activities ε coincides with σ. A log L perfectly fits N iff every trace from L perfectly fits
N .

Workflows can be modeled with varying degrees of detailing. This idea is realized in
models of different abstraction levels. The correspondence between models of different
level, which describe the same process, is natural to match using refinements. When a
transition from the model is a reference to the sub process, this transition is an abstract
(high-level) one. In this case, we can obtain detailed (low-level) model by substituting of
corresponding sub-process model instead of high-level transition. This hierarchy principle
is used, for example, in colored Petri nets (CPN) [6]. Refinements allow us to develop a
more compact model with the composite structure of the network. Here we give precise
definitions introduced in [27].

Definition 7 (Substitution). Let N1 = (P1, T1, F1, λ1) be a WF-net, t ∈ T be a transition
in N1. Let also N2 = (P2, T2, F2, λ2) be an EWF-net with the initial and final transitions
ti, tf correspondingly. We say that a WF-net N3 = (P3, T3, F3, λ) is obtained by a substi-
tution [t→ N2] of N2 for t in N1 iff P3 = P1∪P2, T3 = T1∪T2\{t}, F3 = F1∪F2\{(p, t) |
p ∈ •t} \ {(t, p) | p ∈ t•} ∪ {(p, ti) | p ∈ •t} ∪ {(tf , p) | p ∈ t•},

Definition 8 (Refinement). Let N,Nr be two WF-nets with sets of activities A,Ar
correspondingly. Let A = a1, a2, . . . , an, and Ar = A1

r ∪ A2
r ∪ . . . ∪ Anr be a partition of

Ar into n subsets, and N1, N2, . . . Nn be EWF-nets with sets of activities A1
r, . . . , A

n
r

correspondingly. We say that Nr is a refinement of N via substitutions [a1 → N1
r , a2 →

N2
r , . . . an → Nn

r] iff Nr can be obtained from N by simultaneous substitutions of N i
r for

all t s.t. λ(t) = ai.

5. Synthesis of Abstract Process Model from a Low-
Level Event Log

In this section we describe, how to obtain an abstract model from a given low-level log
L. We suppose that the set Ar of low-level events in the log L is partitioned into subsets

Begicheva A.K., Lomazova I. A.
Discovering High-Level Process Models from Event Logs 135

a1 a2

t3 t4t1 t2

a0

Substitution for a1 Substitution for a2

Fig 6. Concurrent execution of two subprocesses (abstract transitions in a model)

Ar = A1 ∪ · · · ∪ An, and each subset Ai is assigned an abstract event name ai from a
given set A of abstract names.

We would like to construct a model with transitions labeled by names from A, for
which there exists a refinement via some substitution [a1 → N1

r , a2 → N2
r , . . . an → Nn

r]
respecting subset abstract names (i.e. if a transition t labeled by ai is substituted by a
net N i

r, then transitions in N i
r are labeled by names from Ai), such that the given log L

conforms the refined model.
We suppose also, that the model we discover is acyclic. This assumption is due to

the fact that several occurrences of low-level events belonging to the same subset Ai
may be caused both by cyclic repetition of the abstract event ai, and by executing ai
concurrently with some other abstract event via interleaving (cf. Fig. 6). So, in this paper
we consider only acyclic case.

Discovery of a high-level model from a given event log will be done in two stages.
First we construct a high-level transition system corresponding to the given low-level
log, and then we use the well-known method based on theory of regions to discover a
WF-net model from the transition system.

Now we explain our approach, the detailed algorithm is presented in the next section.
To construct a high-level transition system we first replace each activity in the

given low-level log by the corresponding abstract activity. After this replacement we
obtain the log, containing only high-level activities. However obtained traces may contain
“stuttering” subsequences, when the same action occurs several times sequentially. This
happens when several low-level activities corresponding to the same abstract activity go
one by one in a trace. Such a “stuttering” subsequence should by replaced by one abstract
activity.

However, removing stuttering is not enough to obtain a correct high-level log, where
each abstract activity occurrence in a trace corresponds to one abstract event firing.
If there are concurrent abstract actions in a system, representing subprocesses run in
parallel, then low-level activities of these subprocesses may be interleaved in a trace.
Then after replacing low-level activities by abstract ones and after removing stuttering
we may still have a trace with several occurrences of the same abstract activity, which

136
Моделирование и анализ информационных систем. Т. 24, №2 (2017)

Modeling and Analysis of Information Systems. Vol. 24, No 2 (2017)

actually correspond to one abstract event. An example of this is shown in Figure 6,
where parallel high-level transitions a1 and a2 contain low-level transitions t1, t2 and
t3, t4 respectively. Suppose the log contains the trace fragment: < ..., t1, t3, t2, t4, ... >.
After substituting the corresponding abstract activities we get < ..., a1, a2, a1, a2, ... >.
There is no stuttering, but two occurrences of a1 in the trace in fact correspond to one
firing. The same is true for a2.

Thus, interleaving generates several occurrences of an abstract activity in a trace, but
a repetition of activities may be caused also by cyclic behavior. To separate the concerns
we suppose in this paper, that our system does not contain cycles. This can be easily
checked: in acyclic system there are no repeated events in low-level logs.

So, we would like to construct an abstract log — a high-level version of a given
low-level log with the following properties:

1. each abstract activity occurs not more than one time in each trace;

2. replacing of low-level activities by abstract ones should preserve interleaving of
concurrent activities.

For that we propose the following solution. Each trace σ with k occurrences of the
same abstract activity e is split into k clones of σ, where each clone is obtained by
deleting all except one occurrences of e in σ. This is done for all repeated activities.

Let us illustrate this procedure by a small example. Suppose that after replacing
low-level activities by abstract activities we have got two traces:
σ1 =< e0, e1, e3, e1, e3, e1, e4, e1, e7 >,
σ2 =< e0, e1, e3, e1, e3, e1, e4, e6 >.

Then by cloning these traces we get:
σ1
1 =< e0, e1, e3, e4, e7 >,
σ2
1 =< e0, e3, e1, e4, e7 >,
σ3
1 =< e0, e3, e4, e1, e7 >,
σ1
2 =< e0, e1, e3, e4, e6 >,
σ2
2 =< e0, e3, e1, e4, e6 >.
Figure 7 shows the transition system obtained by convolution of the obtained traces.

To synthesize a model we can just apply one of the known discovery algorithms to this
transition system.

The precise description of the algorithm, based on this idea, is given in the next
section.

6. Algorithm for Synthesis of Abstract Process Model
from a Low-Level Event Log

Let A be a set of abstract activities and Lr be an event log (a finite multiset of traces)
over a set of low-level activities from Ar, where traces do not contain repetitive activities.
Let δ : Ar → A be a function, which maps every low-level activity to some high-level
activity from A. Start with the empty transition system TS.

Step 1. Convert Lr into an event log L over the set of activities A by replacing each activity
a ∈ Lr in each trace with the activity δ(a).

Begicheva A.K., Lomazova I. A.
Discovering High-Level Process Models from Event Logs 137

e1e3

e4

e6

e0

e3

e4

e7

e1

e6 e7

Fig 7. Transition system for traces σ1 and σ2

Step 2. Get rid of ’stuttering’ in every σ ∈ L by replacing in each trace each substring of
consecutive entries of the same activity with one occurrence of this activity.

Step 3. For each trace σ ∈ L do:

Step 3.1 Check whether there are more than one occurrences of the same activity in
σ. If there are such occurrences, go to the Step 3.2, otherwise go to the Step
3.3.

Step 3.2 For each occurrence of repetitive activity e create a new trace by deleting all
other occurrences of e in σ and go to Step 3.1.

Step 3.3 Add the new trace to transition system TS using the complete prefix sequence
representation of a state.

Step 4 Apply an existing synthesis algorithm to the obtained transition system TS.

The correctness of the algorithm is justified by the following statements.

Lemma 1. Let Lr be a low-level log without repetitive activities in its traces. If after
Step 2 in our algorithm a trace σ ∈ L contains two occurrences of activity a1 and an
occurrence of activity a2 somewhere between two occurrence of a1, then activities a1 and
a2 are concurrent.

Proof. Each occurrence of an abstract activity in a trace from L after Step 2 is obtained
by replacing some low-level activity, corresponding to this abstract activity. So, occurrence
of a2 between two occurrences of a1 means that at least a part of a2 was executed,
when execution of a1 has started, but has not finished. Thus a1 and a2 were executed
concurrently.

Theorem 1. Let Nabs be a WF-net with a set of activities Aabs, and let Nref be a
refinement of Nabs with a set of activities Aref via substitutions [a1 → N1

r , a2 → N2
r , . . . ,

ak → Mk
r]. Let also Lr be a log over the set of activities Aref , and let Lr perfectly fit

Nref . Then each trace, added to the constructed transition system at Step 3.3, perfectly
fits Nabs.

138
Моделирование и анализ информационных систем. Т. 24, №2 (2017)

Modeling and Analysis of Information Systems. Vol. 24, No 2 (2017)

Proof. Let σ ∈ L be a trace added to transition system TS at Step 3.3. Then σ is
obtained from some trace σr ∈ Lr by replacing low-level activities with corresponding
abstract activities and removing some repetitions of activities. Trace σr perfectly fits
Nref , and hence can be replayed with this model. Then σ be replayed with Nabs in
parallel with replaying σr with Nref . An activity ai with the only occurrence at Step 3.1
of the algorithm will be replayed in parallel with a sequence of activities of subnet N i

r in
σr, and since Aref is a refinement of Nabs via substitution ai → N i

r, this replaying will
be correct. If an activity aj had multiple occurrences at this step, and the trace σ has
retained one of this occurrences, it can be still replayed, since by lemma aj is concurrent
to its adjacent activities in σ, and concurrent activities can be replayed in any order.

It can be also shown that the size of the constructed high-level transition system
does not exceed the size of the low-level transition system, since the depth of the tree is
shorter after abstraction. Note that if we want to keep real relative significance [15] of
each arc in our model, we have to take into account that every trace which we generate
at the Step 2.3 has an integer significance factor. This coefficient depends on the number
of traces which are generated from one original trace from Lr (for k generated trace a
significance factor equals to 1/k for each new trace).

7. Conclusion
Information system usually generate detailed event logs, which are not easy to work
with. Detailed models discovered from these logs are often intricate and confusing.
Abstract models are much more clear and more convenient for experts. So, the problem
of discovering an abstract, high-level model from a low-level event log is important for
simplification of the experts work on analysis and enhancement of information systems.

In this paper we provide a discovery technique for solving this problem, which is
based on transforming a low-level event log into an abstract transition system and then
applying one of already known methods for Petri net synthesis. In the further research
we plan to evaluate this technique on artificial and real logs, using the fitness criteria
presented earlier in [27].

References
[1] W. M. P. van der Aalst, Process mining: discovery, conformance and enhancement of

business processes, Springer Verlag, 2011.

[2] B. F. van Dongen, A. K. A. de Medeiros, H. M. W. Verbeek, A. J. M. M. Weijters,
W. M. P. van der Aalst, “The prom framework: A new era in process mining tool support”,
International Conference on Application and Theory of Petri Nets, Springer, 2005, 444–
454.

[3] W. M. P. van der Aalst, “Verification of workflow nets”, 18th International Conference on
Application and Theory of Petri Nets, ICATPN’97, Springer Berlin Heidelberg, Berlin,
Heidelberg, 1997, 407–426.

[4] S. Smirnov, H. A. Reijers, M. Weske, Th. Nugteren, “Business process model abstraction:
a definition, catalog, and survey”, Distributed and Parallel Databases, 30:1 (2012), 63–99.

[5] A. Polyvyanyy, S. Smirnov, M. Weske, “Process model abstraction: A slider approach”,
Enterprise Distributed Object Computing Conference, 2008 (EDOC’08. 12th International
IEEE), IEEE, 2008, 325–331.

Begicheva A.K., Lomazova I. A.

Discovering High-Level Process Models from Event Logs 139

[6] K. Jensen, L. M. Kristensen, Coloured Petri nets: modelling and validation of concurrent
systems, Springer Science & Business Media, 2009.

[7] H. J. Genrich, K. Lautenbach, “System modelling with high-level petri nets”, Theoretical
computer science, 13:1 (1981), 109–135.

[8] W. M. P. van der Aalst, V. Rubin, B. F. van Dongen, E. Kindler, Ch. W. Günther, “Process
mining: A two-step approach using transition systems and regions”, BPM Center Report
BPM-06-30, BPMcenter. org, 6, 2006.

[9] A. J. M. M. Weijters, W. M. P. van der Aalst, A. K. A. De Medeiros, “Process mining with
the heuristics miner-algorithm”, Technische Universiteit Eindhoven, Tech. Rep. WP, 166,
2006, 1–34.

[10] B. F van Dongen, N. Busi, G. Pinna, W. M. P. van der Aalst, “An iterative algorithm for
applying the theory of regions in process mining” (Proceedings of the workshop on formal
approaches to business processes and web services (FABPWS’07)), 2007.

[11] J. Carmona, J. Cortadella, M. Kishinevsky, “A Region-Based Algorithm for Discovering
Petri Nets from Event Logs”, International Conference on Business Process Management,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, 358–373.

[12] W. M. P. van der Aalst, A. K. A. de Medeiros, A. J. M. M. Weijters, “Genetic process
mining”, International Conference on Application and Theory of Petri Nets, Springer,
2005, 48–69.

[13] A. J. M. M. Weijters, W. M. P. van der Aalst, “Rediscovering workflow models from event-
based data using little thumb”, Integrated Computer-Aided Engineering, 10:2 (2003), 151–
162.

[14] G. Greco, A. Guzzo, L. Pontieri, “Mining taxonomies of process models”, Data &
Knowledge Engineering, 67:1 (2008), 74–102.

[15] Ch. W. Günther, W. M. P. van der Aalst, “Fuzzy mining–adaptive process simplification
based on multi-perspective metrics”, International Conference on Business Process
Management, Springer, 2007, 328–343.

[16] F. Mannhardt, M. de Leoni, H. A. Reijers, W. M. P. van der Aalst, P. J. Toussaint,
“From Low-Level Events to Activities – A Pattern-Based Approach”, Business
Process Management: 14th International Conference, BPM 2016, Springer International
Publishing, Cham, 2016, 125–141.

[17] N. Tax, N. Sidorova, R. Haakma, W. M. P. van der Aalst, “Event abstraction for process
mining using supervised learning techniques”, Proceedings of the SAI Conference on
Intelligent Systems (IntelliSys), 2016, 161–170.

[18] J. Li, R. P. J. Ch. Bose, W. M. P. van der Aalst, “Mining context-dependent and interactive
business process maps using execution patterns”, International Conference on Business
Process Management, Springer, 2010, 109–121.

[19] R. P. J. Ch. Bose, E. H. M. W. Verbeek, W. M. P. van der Aalst, “Discovering hierarchical
process models using prom”, Forum at the Conference on Advanced Information Systems
Engineering (CAiSE), Springer, 2011, 33–48.

[20] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, A. Yakovlev, “Petrify: a tool for
manipulating concurrent specifications and synthesis of asynchronous controllers”, IEICE
Transactions on information and Systems, 80, 1997, 315–325.

[21] A. Kalenkova, I. Lomazova, “Discovery of cancellation regions within process mining
techniques”, Fundamenta Informaticae, 133:2–3 (2014), 197–209.

[22] A. Kalenkova, I. Lomazova, W. M. P. van der Aalst, “Process Model Discovery: A Method
Based on Transition System Decomposition”, International Conference on Application and
Theory of Petri Nets, Springer International Publishing, Cham, 2014, 71–90.

[23] R. P. J. Chandra Bose, W. M. P. van der Aalst, “Process diagnostics using trace alignment:
opportunities, issues, and challenges”, Information Systems, 37:2 (2012), 117–141.

[24] Th. Baier, J. Mendling, “Bridging abstraction layers in process mining by automated
matching of events and activities”, Business Process Management, Springer, 2013, 17–32.

[25] J. Desel, W. Reisig, “The synthesis problem of petri nets”, Acta informatica, 33:4 (1996),
297–315.

140
Моделирование и анализ информационных систем. Т. 24, №2 (2017)

Modeling and Analysis of Information Systems. Vol. 24, No 2 (2017)

[26] A. Rozinat, Process mining: conformance and extension, PhD thesis, Technische
Universiteit Eindhoven, 2010.

[27] A. Begicheva, I. Lomazova, Does your event log fit the high-level process model? Modeling
and Analysis of Information Systems, 22:3 (2015), 392–403.

Бегичева А.К., Ломазова И.А., "Построение высокоуровневой модели про-
цесса по журналу событий", Моделирование и анализ информационных систем,
24:2 (2017), 125–140.

DOI: 10.18255/1818-1015-2017-2-125-140

Аннотация. Извлечение и анализ процессов (process mining) — это достаточно новая область
компьютерных наук, изучающая синтез и анализ процессов на основе журналов событий. В ра-
боте рассматривается задача извлечения высокоуровневой модели по низкоуровневому журналу
событий, т.е. задача автоматического синтеза модели процесса на основе информации, хранящей-
ся в журналах событий информационной системы. События в высокоуровневой модели — это
абстрактные события, которые могут быть детализированы в виде низкоуровневых подпроцессов,
поведение которых представлено в журналах событий. Синтез моделей интенсивно изучается в
рамках исследований по майнингу процессов, но в основном в литературе рассматриваются толь-
ко логи и модели одного и того же уровня детализации. Здесь мы представляем алгоритм для
извлечения высокоуровневых ациклических моделей процессов на основании журналов событий и
заранее определенного разбиения низкоуровневых событий на подмножества, ассоциированные с
абстрактными событиями в высокоуровневой модели.

Ключевые слова: сети Петри, высокоуровневые модели процессов, журналы событий, Process
Mining, синтез моделей
Об авторах:
Бегичева Антонина Константиновна, стажер-исследователь,
Национальный исследовательский университет «Высшая школа экономики»,
Научно-учебная лаборатория ПОИС,
ул. Мясницкая, 20, г. Москва, 101000 Россия, e-mail: akbegicheva@edu.hse.ru

Ломазова Ирина Александровна, доктор физ.-мат. наук, профессор,
Национальный исследовательский университет «Высшая школа экономики»,
ул. Мясницкая, 20 г. Москва, 101000 Россия, e-mail: ilomazova@hse.ru

Благодарности:
Работа выполнена при поддержке Программы фундаментальных исследований Национального исследовательского
университета «Высшая школа экономики» и Российского фонда фундаментальных исследований, проект 16-01-
00546.

	Introduction
	Literature review
	Motivation example
	Preliminaries
	Synthesis of Abstract Process Model from a Low-Level Event Log
	Algorithm for Synthesis of Abstract Process Model from a Low-Level Event Log
	Conclusion
	References
	Усреднение по времени и по множеству
	Время не входит явно в условия задачи
	Усреднение функций, явно зависящих от времени

	Задача НП с усреднением по некоторым переменным
	Вариационные задачи
	Задача с интегральными ограничениями
	Задача оптимального управления

	Заключительные замечания
	Список литературы / References
	Introduction
	Literature review
	Motivation example
	Preliminaries
	Synthesis of Abstract Process Model from a Low-Level Event Log
	Algorithm for Synthesis of Abstract Process Model from a Low-Level Event Log
	Conclusion
	References
	Усреднение по времени и по множеству
	Время не входит явно в условия задачи
	Усреднение функций, явно зависящих от времени

	Задача НП с усреднением по некоторым переменным
	Вариационные задачи
	Задача с интегральными ограничениями
	Задача оптимального управления

	Заключительные замечания
	Список литературы / References
	Introduction
	Literature review
	Motivation example
	Preliminaries
	Synthesis of Abstract Process Model from a Low-Level Event Log
	Algorithm for Synthesis of Abstract Process Model from a Low-Level Event Log
	Conclusion
	References
	Усреднение по времени и по множеству
	Время не входит явно в условия задачи
	Усреднение функций, явно зависящих от времени

	Задача НП с усреднением по некоторым переменным
	Вариационные задачи
	Задача с интегральными ограничениями
	Задача оптимального управления

	Заключительные замечания
	Список литературы / References
	Introduction
	Literature review
	Motivation example
	Preliminaries
	Synthesis of Abstract Process Model from a Low-Level Event Log
	Algorithm for Synthesis of Abstract Process Model from a Low-Level Event Log
	Conclusion
	References
	Усреднение по времени и по множеству
	Время не входит явно в условия задачи
	Усреднение функций, явно зависящих от времени

	Задача НП с усреднением по некоторым переменным
	Вариационные задачи
	Задача с интегральными ограничениями
	Задача оптимального управления

	Заключительные замечания
	Список литературы / References
	Introduction
	Literature review
	Motivation example
	Preliminaries
	Synthesis of Abstract Process Model from a Low-Level Event Log
	Algorithm for Synthesis of Abstract Process Model from a Low-Level Event Log
	Conclusion
	References
	Усреднение по времени и по множеству
	Время не входит явно в условия задачи
	Усреднение функций, явно зависящих от времени

	Задача НП с усреднением по некоторым переменным
	Вариационные задачи
	Задача с интегральными ограничениями
	Задача оптимального управления

	Заключительные замечания
	Список литературы / References
	Introduction
	Literature review
	Motivation example
	Preliminaries
	Synthesis of Abstract Process Model from a Low-Level Event Log
	Algorithm for Synthesis of Abstract Process Model from a Low-Level Event Log
	Conclusion
	References
	Усреднение по времени и по множеству
	Время не входит явно в условия задачи
	Усреднение функций, явно зависящих от времени

	Задача НП с усреднением по некоторым переменным
	Вариационные задачи
	Задача с интегральными ограничениями
	Задача оптимального управления

	Заключительные замечания
	Список литературы / References
	Introduction
	Literature review
	Motivation example
	Preliminaries
	Synthesis of Abstract Process Model from a Low-Level Event Log
	Algorithm for Synthesis of Abstract Process Model from a Low-Level Event Log
	Conclusion
	References
	Усреднение по времени и по множеству
	Время не входит явно в условия задачи
	Усреднение функций, явно зависящих от времени

	Задача НП с усреднением по некоторым переменным
	Вариационные задачи
	Задача с интегральными ограничениями
	Задача оптимального управления

	Заключительные замечания
	Список литературы / References
	Introduction
	Literature review
	Motivation example
	Preliminaries
	Synthesis of Abstract Process Model from a Low-Level Event Log
	Algorithm for Synthesis of Abstract Process Model from a Low-Level Event Log
	Conclusion
	References
	Усреднение по времени и по множеству
	Время не входит явно в условия задачи
	Усреднение функций, явно зависящих от времени

	Задача НП с усреднением по некоторым переменным
	Вариационные задачи
	Задача с интегральными ограничениями
	Задача оптимального управления

	Заключительные замечания
	Список литературы / References
	Introduction
	Literature review
	Motivation example
	Preliminaries
	Synthesis of Abstract Process Model from a Low-Level Event Log
	Algorithm for Synthesis of Abstract Process Model from a Low-Level Event Log
	Conclusion
	References
	Усреднение по времени и по множеству
	Время не входит явно в условия задачи
	Усреднение функций, явно зависящих от времени

	Задача НП с усреднением по некоторым переменным
	Вариационные задачи
	Задача с интегральными ограничениями
	Задача оптимального управления

	Заключительные замечания
	Список литературы / References
	Introduction
	Literature review
	Motivation example
	Preliminaries
	Synthesis of Abstract Process Model from a Low-Level Event Log
	Algorithm for Synthesis of Abstract Process Model from a Low-Level Event Log
	Conclusion
	References
	Усреднение по времени и по множеству
	Время не входит явно в условия задачи
	Усреднение функций, явно зависящих от времени

	Задача НП с усреднением по некоторым переменным
	Вариационные задачи
	Задача с интегральными ограничениями
	Задача оптимального управления

	Заключительные замечания
	Список литературы / References
	Introduction
	Literature review
	Motivation example
	Preliminaries
	Synthesis of Abstract Process Model from a Low-Level Event Log
	Algorithm for Synthesis of Abstract Process Model from a Low-Level Event Log
	Conclusion
	References
	Усреднение по времени и по множеству
	Время не входит явно в условия задачи
	Усреднение функций, явно зависящих от времени

	Задача НП с усреднением по некоторым переменным
	Вариационные задачи
	Задача с интегральными ограничениями
	Задача оптимального управления

	Заключительные замечания
	Список литературы / References
	Introduction
	Literature review
	Motivation example
	Preliminaries
	Synthesis of Abstract Process Model from a Low-Level Event Log
	Algorithm for Synthesis of Abstract Process Model from a Low-Level Event Log
	Conclusion
	References
	Усреднение по времени и по множеству
	Время не входит явно в условия задачи
	Усреднение функций, явно зависящих от времени

	Задача НП с усреднением по некоторым переменным
	Вариационные задачи
	Задача с интегральными ограничениями
	Задача оптимального управления

	Заключительные замечания
	Список литературы / References
	Introduction
	Literature review
	Motivation example
	Preliminaries
	Synthesis of Abstract Process Model from a Low-Level Event Log
	Algorithm for Synthesis of Abstract Process Model from a Low-Level Event Log
	Conclusion
	References
	Усреднение по времени и по множеству
	Время не входит явно в условия задачи
	Усреднение функций, явно зависящих от времени

	Задача НП с усреднением по некоторым переменным
	Вариационные задачи
	Задача с интегральными ограничениями
	Задача оптимального управления

	Заключительные замечания
	Список литературы / References
	Introduction
	Literature review
	Motivation example
	Preliminaries
	Synthesis of Abstract Process Model from a Low-Level Event Log
	Algorithm for Synthesis of Abstract Process Model from a Low-Level Event Log
	Conclusion
	References
	Усреднение по времени и по множеству
	Время не входит явно в условия задачи
	Усреднение функций, явно зависящих от времени

	Задача НП с усреднением по некоторым переменным
	Вариационные задачи
	Задача с интегральными ограничениями
	Задача оптимального управления

	Заключительные замечания
	Список литературы / References
	Introduction
	Literature review
	Motivation example
	Preliminaries
	Synthesis of Abstract Process Model from a Low-Level Event Log
	Algorithm for Synthesis of Abstract Process Model from a Low-Level Event Log
	Conclusion
	References
	Усреднение по времени и по множеству
	Время не входит явно в условия задачи
	Усреднение функций, явно зависящих от времени

	Задача НП с усреднением по некоторым переменным
	Вариационные задачи
	Задача с интегральными ограничениями
	Задача оптимального управления

	Заключительные замечания
	Список литературы / References
	Introduction
	Literature review
	Motivation example
	Preliminaries
	Synthesis of Abstract Process Model from a Low-Level Event Log
	Algorithm for Synthesis of Abstract Process Model from a Low-Level Event Log
	Conclusion
	References
	Усреднение по времени и по множеству
	Время не входит явно в условия задачи
	Усреднение функций, явно зависящих от времени

	Задача НП с усреднением по некоторым переменным
	Вариационные задачи
	Задача с интегральными ограничениями
	Задача оптимального управления

	Заключительные замечания
	Список литературы / References

