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Abstract. This work develops a theory of the asymptotic-numerical investigation of the moving
fronts in reaction-diffusion-advection models. By considering the numerical solution of the singularly
perturbed Burgers’s equation we discuss a method of dynamically adapted mesh construction that is
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use a priori information that is based on the asymptotic analysis of the problem. In particular, we
take into account the information about the speed of the transition layer, its width and structure. Our
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in comparison with classical approaches for solving this class of problems. The numerical experiment is
presented to demonstrate the effectiveness of the proposed method.
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Introduction

This work is concerned with analytic-numerical methods for singularly perturbed parabolic
equations which may be interpreted as models of reaction-diffusion-advection processes
in various applications. Such problems often feature narrow boundary and interior layers
(stationary or moving fronts), and are extremely difficult for a numerical treatment.
Recently, asymptotic analysis is successfully used to investigate such problems (see [8,
15, 14, 13, 18, 16, 17, 10, 11, 12|, where special mesh methods used). Note that the
special numerical methods for singularly perturbed parabolic equations were practically
studied mostly for problems with stationary boundary and interior layers. There are some
specific features in constructing special difference schemes in the case of moving interior
layers. For singularly perturbed parabolic problems with such type of solutions, special
schemes were constructed in [10, 6, 7, 5|. Such schemes are fairly complicated, that calls
the necessity to develop simpler schemes and alternative numerical methods (based on
a posteriori adapted grids). In the presented paper we propose an effective combined
analytic-numerical approach, which use some a priori information from asymptotic
analysis of the moving front type solution, in order to simplify numerical calculations.
Numerical methods for nonlinear singularly perturbed interior layer problems using an
approximate layer location are developed, particularly, in the works [10, 9] (see, also, the
references therein), where different type of refined meshes were proposed.

The motivation to combine asymptotic and numerical methods is that if we use
numerical method for a singularly perturbed problem, two opposite phenomena connected
with small parameter arise: on the one hand, the smaller this parameter, the more rough
and unstable numerical solution we obtain; on the other hand, the smaller this parameter,
the more precise a priori information about exact solution we are able to get by using
asymptotic methods. This fact gives the possibility for a productive combination of
asymptotic and numerical approaches. Another reason is that using asymptotic analysis
of singularly perturbed problem we can prove the existence of the exact solution with
boundary or internal layers (moving fronts) and can decrease the spatial dimension for
numerical calculations: the dimension of spatial variables in the equation for the moving
front location is lower per unit then the original problem or this equation is not partial,
but ODE (or it is not differential equation at all).

The main purpose of this paper is to suggest an algorithm of numerical solution of the
singularly perturbed problems with the moving internal layers (fronts) which based on the
asymptotic analysis of the problem. Using the rigorous asymptotic analysis, which also
state the existence of the moving front type solution and gives the asymptotic expansion
of the front location, we construct so called dynamically adapted mesh (DAM).

Our DAM is constructed by the following way. We use the basic (coarse) mesh with the
mesh interval choosing in accordance with the width of the interior layer. The information
about the location and width of the interior layer (front) we get by the asymptotic
analysis. Inside the moving front region two course mesh intervals are divided into some
additional subintervals (so inside the moving front region the mesh is a version of a
Shishkin mesh). In order to justify the number of these additional intervals some method
of the a posteriori estimates (e.g. Richardson extrapolation) can be applied. The coarse
mesh (and, therefore, the front region intervals) is chosen to guarantee that the front is
located inside these intervals.
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Note, that our variant of the coarse mesh is e-dependent. For the problems with
moving internal layers this choice of the coarse mesh simplifies the interpolation procedure
for the moving refined mesh and allows to save computing resources. Of course, all
presented ideas can be realized on the mesh when the total number of nodes (coarse and
refined meshes together) not depends of £ (Shishkin mesh), but in this case nodes of
the coarse mesh are not fixed because of refined mesh is moving with the front. In this
paper we did not investigate a priori the convergence of the numerical method, but our
variant of the mesh choice allows to simplify the procedure of a posteriori error estimates
because not requires to do interpolation to the new coarse mesh nodes on each time step.

We also have to note that the problem to define the layer location in our example
is explicitly solvable. In more general case we have to create numerical method to solve
this problem which is done at the end of Section 1..

The paper is structured as follows. In Section 1. we describe methods which allow to
get a priori information that will be used for the DAM constructing. In Section 2. we
briefly describe the main ideas that are used for constructing the DAM. In Section 3. we
perform a numerical experiment for the example and explain some nuances of the mesh
constructing. Finally, in Section 4. we discuss some perspectives of our approach.

1. A priori information from the asymptotic analysis

We illustrate our approach by considering the following class of problems:

Pu Ou ou
5@_5_‘4(”73:)8_%+B(u7x)7 .TE(O,l), t€<07T]7
U(O,t) = Uleft, u(lvt) = Uright,

u(x,0) = winu (),

(1)

where functions A(u, z) and B(u, z) are sufficiently smooth for (z, u) € [0; 1] x (—o0; +00).

The rigorous treatment of problem (1) was obtained in [3|, where the existence and
asymptotics of the front type solution were established. The main information, which we
use for our approach, is:

1. speed or position of the transition layer;
2. width of the transition layer;

3. structure of the transition layer (we use the fact that transition layer has the
exponential behavior).

We will obtain this information using the asymptotic of the solution of problem (1).
The main ideas of the asymptotic procedure are briefly represented below.
Let consider two initial value problems:

d
A(u,a:)é + B(u,z) =0, u(0)=1wepn, z€]l0,1];
(2)
d
A(u,x)é + B(u,z) =0, u(l) = tpigne, x € 10,1].



Lukyanenko D. V., Volkov V.T., Nefedov N.N.
DAM construction for solution of singularly perturbed problem 325

We suppose, that the solutions of problems (2) exist on z € [0, 1], and denote them as
¢!(x) and ¢"(z) respectively. Assume, that the following inequalities are fulfilled for all
x € [0,1]:

a) ¢'(x) < ¢'(v),

b) A(¢'(z),2)) >0, A(p (2),z) <O0.

The problem of formation of the moving fronts is discussed in [2]| and [1]. Particularly,
for the reaction-diffusion problem the fast formation stage is described in [2]. We assume
that the front is already formed at the moment ¢ = 0 and the initial function w;,;(z) has
a thin transition layer between levels '(z) and ¢"(z) located at the point zgy € [0, 1].
For our problem this assumption can model a discontinuous-initial-condition situation.

We define the moving front position by the function z, (¢, <), that is the point of the

(3)

1
intersection of the solution of (1) u(z,t,¢) and the level 5(@1(1‘) +¢"(x)).

We put 2, (0,¢) = x¢ and will seek the position and speed of the transition point
in the form of power series of ¢
T (t8) = xo(t) + 21 () + ...
vt.p.<t7 5) = 'Uo(t) + 8?)1<t) + ...,

(4)

da:i

where v;(t) =
Assume, that the Cauchy problem

dr  l(2) 2(0) = 2
AT e N o

has solution z(¢) such that

z(t) € (0,1) forall te[0;T].

and the following inequalities are fulfilled

@ ()
a) / A(u,z)du >0 forall z € [0,1]
¢l(x) (6)
b) / (A(u,z) — V(z))du >0 forall s e (p'(x),o"(z),
¢! ()
where
¥ (2)
[ A(u,z)du
V(z) = ol (x)

' (x) — ¢l(x)
Condition (6),a) guarantee that (1) has no stationary solutions, and (6),b) provides
solvability of some equations in the further asymptotic procedure.
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We define by DL and D7 the left and right sides with respect to the point x;,, (¢, ¢)
respectively and will find the solution of (1) separately in these parts

l N
u = ) (:L‘,t) € D_T (7)
u',  (x,t) € Df. .

I

The functions u! and 4" can be written in the form

u =l (z,e) + QY& te), ut =u"(x,e) +QT(E L E) . (8)

Here @' (x,¢) — regular functions, which represent the solution far from transition point
T (t,€); function Q'"(&,t,€), where & = (v — x, (t,€))/e, describe transition layer
(moving front) near this point (§ < 0 for the function with the index [ and £ > 0
for the function with the index 7).

The functions @""(x,e) and Q' (£,t,€) we seek as power series of &:

a) al,r(m, ) = ﬂé’r(:v) + €ﬁl1’r(:v) + ...+ Enafir(x) +.
D) QV(&te) = Q4 (6, 1) +eQi (6 1) + .+ QT (E 1) +

Terms of series (9) can be built by the standard procedure (see [3]) separately at two
sides of the point z;, (t,c). We assume that the functions u! and u” are joint with the
continuous first derivatives (C'Y)~matching conditions):

@ (zep.(t,€),€) + Q'(0,t,e) = U (wep.(t€),e) + Q7 (0,t,e) = o(z4.(t, €)),
dii! Q! _dw’ oQr (10)

(9)

sg(xt,p.(t,e), e)+ o —(0,t,¢) = e —(zep.(t,e),6) + o€ —(0,¢,¢).
Substituting (9),a) into (1), at zero order of ¢ we obtain equations (2). So we have
up(x) = ¢'(z), j(x) = ¢"(z) and
_ o 17’6 = Sol(x)a T e [vatp-(t?g))
ket = {ﬂs @)y o€ (i lt2), 1) "

Functions aﬁf(x), k > 1 are the solutions of the following problems

fl”(w)

dﬂ;’r aAl,r ngl’r aBl,r i
dx __( ou (@) dx * ou (@ )) ), (12)
4, (0) = 0, @ (1) =0,

where A (z) = A(¢"" (x),z), B (z) = B(¢"(x),z) and f"(z) — is known function.
Solutions of (12) can be written explicitly.
In order to obtain the transition layer functions (9),b) we must do the change of

2
variables (z,t) by (&,t) in (1), where { = (x — x4,.(t,¢€))/e. Operator 5% - % takes
T
1 9 1
the form 538—52 + —v, (L, €) ;5 5 where vy, (£, €) is defined in (4); operator % changes

10
to ——.

g 0€
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Substituting these expressions and (9),b) into (1) and equating terms with different
powers of e, we obtain equations for functions Qé’r(f ), i=1,2,...
For Q4" (£,t) we have the following problem:

62 lr a l,r

e = (A @ (02) + Qe 1:9)) = v (1)) T =0
Q6(07 t) + ¢l($t.p. (t7 5)? 5) = Qo(xt.p. (t, g)), (13>
QE(Oa t) + Qpr (xtp- (t> 5)? 5) = @(‘Ttp. (t’ 5))7
QL&) — 0 for &€ — —oo,
Qp(&,t) = 0 for & — +oo.

Using the continuous function
~ o (zpl(a;t-p-(t’ 5)) + Q6(§7 t)a 5 < 0
QS (1. v (1) = {wxw (t,€) + Q& ), €20 (14
we can rewrite (13) as
a;%j — (@ 2up (t,2)) = vip(t,9)) % —0, &€ (—o00,+00),
Q(()? Tt.p. (t’ 5)7 Vt.p. (t> 5)) = @(xt-p- (t, 5) ) (15)

The exponential estimates for the solutions Q%" (&,t) of (15) were established in [3]:
Qo€ < Ce™ (£<0), QDI < Ce™™ (£20), te[0,T], (16)
where C' and s are positive constants.
0
Using C'Y-matching conditions and explicit formulas for 8—? we obtain the problem (5)
for zero order term of the moving front position
¢"(zo)

[ A(u,z)du
dxg _ pl(o)

dt (@) — ¢ (wo)
Note that for general cases the initial value problem (17) has to be solved numerically.

In the example, which we use at Section 3., we can solve it explicitly.
Continuing this procedure we can write the equations for functions Qll’r (&, 1)

20(0) = @oo- (17)

82 lr a lr B a lr 8A

(%21 + gy (L, ©) ag — A(&1) gg = 5 (6D 2, 0,)Q = 76 1)
Q1(0,1) = @ (2. (t,€))
QL(&,t) =0 for & — —o0 (18)

Q1(&,t) =0 for & — +oo,
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where A(¢,1) = A (Q€ 21, (4,), vy, (1,2)), 205, (1,2) ), @&, ,0) = B2 (€, 2, v) and £} (€,1)
is known functions; index [ corresponds to £ < 0, index r — to & > 0.
The solutions of (18) can be found explicitly and for all ¢ € [0,7] the functions
Lr(e 1) satisfy
@& < Ce™t (£<0),
Q1§ D < Ce™ (£20),

where C' and s are some positive constants. Using CV-matching conditions (10) at first
Lr
1

23

S 19
) (19

order of € and explicit formulas for Q’l”“(g ,t) and , we obtain the problem for first

order term of the moving front position
d  K(wolt)
dt " (o) — (o)
where K (zo(t)) and Gy(zo(t),t) are known functions (see [3]).
First two orders in € of moving front speed vy (t) + vy (t) are defined in (17) and (20).
So the location of the moving front at two higher orders of asymptotics is defined as the
solutions of Cauchy problems (17) and (20).

The width of the transition layer is defined by the estimates (16). It means that
interior layer exponentially tends to functions ¢™!(x) and its thickness is

h = Clelne|. (21)

~x1 + Gh(zo(t), 1), x1(0) = 0, (20)

The structure of the interior layer is defined by the problem (15) and by estimates (16).
In Section 3. we demonstrate our approach by the following particular case of problem
(1), where A(u,x) = —u, B(u,z) = u:
Ou  Ou ou
e € (0,1), te(0,T],
o2 ot gt O 0.7)
u(0,t) = =5, wu(l,t) =2,
w(z,0) = Ui ().

For this example we have:
Pla)y=a-5 @) =c+1, (22)
and the conditions (3) and (6) are satisfied for all z € [0, 1]:

Pla)=o-5<¢(z)=a+1,
A(g!(z),2)) = —(x=5) >0,  A(¢'(z),2) =—(z+1) <0,

¢ (2) a1
A(u, z)du = / —udu =12 — 6z > 0.
¢! () z=5

From (17) for the zero order term of the moving front speed we have

©" (o)
[ Alu,x)du
dzo _ ¢lizo) o l2—6r 23)
dt  ¢"(x0) — ¢l mo) (20 +1) — (x9 —5) "
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From (20) for the first order term we get

dl’1

— =0, 1(0) =0, (24)

and therefore z(t) = 0.

If we are not able to calculate position of the transition point analytically (that
is possible in some cases of particular A(u,z) and B(u,z)),we are able to do this
numerically. Here we want to describe corresponding numerical algorithm of
determination.

At the beginning we introduce uniform mesh Xy, only on z—dimension that has
number of nodes Ny + 1 (that equals to Ny intervals): Xy, = {z,, 0 <n < Ny: z, =
0+ ((1—0)/No) n}. This mesh will be used for calculation of the solution g(z). Then it
is possible to solve equations (2) and find numerically '(x) and ¢"(x) on the mesh Xy, .
For numerical solving of (2) any suitable scheme can be applied. Then right-hand side
of the equation (5) can be calculated on the same mesh Xy, .

After that we have to solve the problem (5). At first, we introduce uniform mesh T}y,
only on t—dimension that has number of nodes My + 1 (that equals to M intervals):
Trtg = {tm, 0 <m < My : t,, =04 ((T —0)/My) m}. We suggest to use Rosenbrock
scheme with complex coefficient (CROS1), which is monotone, stable and has the order
of accuracy O(72) (see [4]):

V(a:(tm))
(tms1) = x(tm) + (Emsr — tm) Re( ' )
- %(tmq% - tm>vx (x(tm))

Note: It is very important to mention that we have to perform interpolation of the
tabulated function V(z) from basic mesh Xy, on each point z(t¢,,). It is need not to
perform interpolation with order of accuracy greater than 3.

So, we have dependence of transition point position z on time ¢ as the solution of (5)
(see Figure 1(a)). After that we are able to interpolate corresponding function ¢(x) on
the uniform mesh X, which has intervals equal to |eloge|/C, C' > 1 (where |cloge|
is thickness of the interior layer). This interpolation is possible to perform because of
strongly monotonic of the function z(t) (see Figure 1(b)). So, we have grid T, which is
quasi-uniform grid [20].

2. Dynamically adapted mesh construction

The idea of dynamically adapted mesh construction is the following. If we know the width
of the transition layer, we can introduce basic uniform mesh with the steps, which are
equal to this width, and then refine two intervals that are the nearest to the transition
point (see Figure 2-1¢),1)). Then if we know the location of the transition layer on
each time step, we can check whether the transition layer is located on these intervals
or not. If the transition layer will leave the second interval soon, we refine the next
basic interval and perform interpolation of the numerical solution on these additional
nodes (see Figure 2-2)). Then we remove from following calculations the nodes of the
first refined interval. For appropriate interpolation we should use information about
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a) b)
. A J
I I
T F' d
/ Qmmmmm oo v ]
T — ? t ?
/ /
DI y Qo g
/ /
1 R o P o
P 7 (,,,,,,,,,,,,,,,,,,,;,(
i = al - S T R S
0 X 1 0 X oy 1

Fig 1. a) Function z(t) as a solution of (5). b) Quasiunidform mesh T}, on ¢ constructing

structure of the transition layer. After this we have only two refined basic intervals again
(see Figure 2-3),4)).

The main problem of this process is the possibility to obtain corresponding a priori
information. This problem for one type of reaction-diffusion-advection equation was
discussed above in Section 1.. Now, in Section 3., we will describe some numerical
experiment and explain some nuances of the mesh constructing for the particular example.

3. Numerical example

As an example of the application of proposed methods we consider the following Burgers’s
equation:

*u  Ou ou
5@—52—710—'%4—1% J]G(O,l), tE(O,]_],

25

U’(Ou t) = Uleft, U(]_, t) = Upright, ( )
U(ill', 0) = uinit(x)a

where weft = —5, Upigne = 2, and the initial condition u;,;(x) has following form (for

example, see Figure 4):

(x+1)+ (z —5)e* S_30—0.5
1+e 3 e

Uinit =

Method of lines and Rosenbrock scheme with complex coefficient For numerical
solution of the equation (25) we apply the stiff method of lines (SMOL) in order to reduce
the PDE to the system of ODEs that can be solved by Rosenbrock scheme with complex
coefficient, which is significantly efficient for stiff systems of ODEs [4].

At the beginning we introduce piecewise uniform mesh Xy only on z—dimension that
has number of nodes N + 1 (that equals to N intervals): Xy = {z,, 0 < n < N :
0=12p < a1 <23 <...<zy_1 <xy = 1}. So after finite-difference approximations
of derivatives with second order of accuracy in (25) we obtain the following system of
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Fig 2. Dynamically adapted mesh construction 1
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0.5

(]
[cH
(]

(]
[cH
(]

(]
[cH
(]

111
0 X 1

Fig 3. Dynamically adapted mesh construction 2: [J - nodes that are used for calculations;
o — nodes in which numerical solution was interpolated; x — nodes that must be removed
from the calculations on the next steps

ODEs from which we should determine N — 1 unknowns functions w,, = u,(t) = u(x,,t)

(n=1,N — 1, up and uy given as the boundary conditions):

dun 2 Un41 — Un Up — Unp—1 Up41 — Un—1
= - + Uy — Uy,
dt Tn+1 — Tp-1 Tn41 — Tn Tp — Tp—1 Tn41 — Tp-1
Uy = —9H, Uy =2,

This system can be rewritten as

du
= flut
" fwn), o6,
U(O) = UWUinit,
where u = (u1 Uz U3 ... uN,l)T, f = (f1 fo fs ... fN,l)T and
Winit = (umit(xl) Winit(T2) Winit(T3) ... umit(:vN_l))T. The vector-function f has the

following structure. For n = 1:

2e Ug — Ug u1 + 5 Us + 5
fi= — + U ————— — uq,
To —Tp \T2 — 1 Ty — Zo

forn=2,N—2:

2e Upgl — Up  Up — Up 1 Up g1 — Up—1
fn - + Uy ———— —

Tn41 — Tn-1 Tn4+1 — Tn Tp — Tn—1
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2 ' ' ' N

—-5p—— - ! ! ! ! .

0 0.2 0.4 X 0.6 0.8 1

Fig 4. The example of u,;(x) for € = 1072 (refining of the mesh in a neighborhood of
the transition point has been performed)

and for n = N — 1:

2e 2—un_1  UN-—1—UN_2 2—un_2
IN — TN-2

Ino1= —UN_1-

IN —TN-—2 \TN —TN-1 IN-1 — TN-2

For numerical solution of this system of ODEs (26) we use Rosenbrock scheme with
complex coefficient (CROS1), which is monotone and stable and has the order of accuracy
O(7?%) (see [4]). In order to apply this scheme we introduce quasi-uniform mesh Ty, on
t—dimension that has number of nodes M +1 (that equal to M intervals): Tyy = {t,,, 0 <
mIM: 0=ty <t; <ty<...<ty_1 <ty =1}. After that we are able to apply the
CROS1 scheme for solving of the system (26):

u(tm+1) = u(tm> + (thrl - tm) Rew,
where w is a solution of the SLAE
141
2

(27)
E —

(s = t) £t )| 0= £ (ute). 2255

Here F is the identity matrix, f, is the Jacobian matrix, where for n = 1:

of 2e (_ 1 1 )+ Uy + 5

_1’

8’&1 To — I To — X1 1 — I To — Xy

Bfl 2¢e ( 1 ) U1
8u2 Tog — g \T2 —T1 To — X
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forn=2,N—2:

Ofn 2e ( 1 ) Uy,
- - )
8un71 Tn+1l — Tp—1 Tpn — Tp—1 Tn+1 — Tp—1

Ofn 2e (_ 1 B 1 > N Unpt = Un-1

OUp  Tpg1 — Lot Tpil — Tp Ty — Tpoq Tpgl — Tn1 ’
Ofn 2e ( 1 ) N Up, .

Mips1  Tpgtl — Tpo1 \Tpi1 — Tn Tpil — Tpo1

and for n = N — 1:
Ofn-1 2e < 1 ) . UN-1

)
Oun_s IN —ITN-2 \TN-1 — TN-2 IN —TN-2

afN—l . 2¢e <_ 1 1 >+ Q—UN_Q

— 1.

Oun_1 IN —TN-2 IN —TN-1 IN-1— TN-2 IN —ITN-2

The other components of f,, for the considered equation equal to zero.

Dynamically adapted mesh construction Now we explain in details how to construct
the dynamically adapted mesh Xy (t) = {Xn(tm)}, 0 < m < M, and how to use it for
the calculations by the scheme (27).

1) At first we introduce a basic uniform mesh X](\(,)O) on z with step hy = (1 — 0)/Ny
that has number of nodes Ny + 1 (that corresponds to Ny intervals): X](\?O) = {x%o), 0 <

n < Ng: x%o) = 0+ nhp}. The number of interval Ny should be chosen in accordance to
the a priori information about thickness of the transition layer that can be calculated

by formula (21):
Ny= |20
lelne|

2) Then we introduce the family of piece-wise uniform meshes {Xy "\ 3,0 < n <
Ny — 2, which have the uniform refining on the (n+ 1)-th and (n+ 2)-th intervals of the
basic mesh using N;,; additional intervals and have totally N = Ny — 2+ 2N;,,; intervals.

1
Xy, = {@m, 0<m < Nog— 242Ny, 0<n < Ny :

(0) (0)
s - xn
0=x9 = ng) <x = x§°) <. .<xy = xflo) < Tpyp = x%o) + 1—"+]1V <
int
(0) (0) (0) (0)
_ (0 ntl — Tn _ (0 Tpt1 — Tn
< Tpga =20 +2—"—— < < Tpan o1 =2+ (Nipg — 1)
+2 n Nint +N7,nt 1 n ( t ) Nint
) 0y Tak2 ~ Tuhy
int
©) :10(0)2 _ x(o)l ©)
< Tnd-Nipg+Ning—1 = Tpiq + (Nint - 1)H+N—tn+ < Bt Nowi-tNows. = T <

_ .0 _ .0 _ 0 _
< Tt 2N 41 = Tyg < oo < ENG=342Ni = Tp—1 < TNg—242Nie = Ly = 1
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At our approach the basic mesh XJ(\(,)O) has to be uniform if we want to perform
Richardson extrapolation. In this case it is sufficient to use for extrapolation only nodes
of the basic mesh which coincide on every meshes from {Xﬁg}tm} family.

3) Using the formula (23)- (24) we are able to obtain a priori information about
transition point location

3
Tep. (t) = xo(t) +ex1(t) =2 — 3¢ te0,7T] (28)
where 7' < In % It is important that in order to have correct information about location
and structure of the interior layer we must use also the first term z;(¢) of the asymptotic
expansion for x, ().

Thus we can allocate the interval of the basic mesh which contains z, (to). Without

loss of generality assume that it is n-th interval (ZE(O) x%o)) of X](\(,)O). If 2, (to) > (ZL‘(O) +

n—1 n—1
2) /2 we use Xy(to) = X]T\L,;IJ’\ZM mesh and let n = n + 1, otherwise Xy (to) = X;L,;Q]’\Z;l
mesh and let n = n. Let m = 0.
4) Using formula (28) we can obtain also a priori information about maximal time
step 7 that do not allow the point of the transition layer location to leave one basic
interval in one time steep:

= t — [
JJtApA(thrl)_xi-ZL (tm):%

From this formula we can obtain corresponding a priori information:

5) Let m = m + 1. If @y, () < (xiloll + 9[:7(10))/2 we use CROSI1 scheme (27) for
the calculations on mesh Xy (t,,) = Xy (tm_1). Otherwise, we use for calculations mesh

Xn(tm) = X;\lf;lj\zm (for this we discard values of the function u(t,, 1) on the (n — 1)-th

interval of the basic mesh X](\(,)) and interpolate its on the refined (n+ 1)-th basic interval

and put n =n + 1. ’

For interpolation we use a priori information (19) that gives that interpolating
function tend to ¢"(x) from (22) exponentially. So we are able to perform it by the
formula |¢"(x) — y| = ae’® (that is equivalent to loga + bz = log |¢"(z) — y|) for the
pair of interpolated points (z,y) in order to determine the coefficients a and b of the
interpolating function f(x) = ¢"(x) + ae®®.

6) If m = M we stop the calculations. Otherwise, go to 5).

Some example of the calculations is represented on the Figure 5.

4. Conclusion
Numerical methods for singularly perturbed problems have serious restrictions because of

such problems often feature narrow boundary and interior layers. Contrariwise, the small
parameter allows to get a priori information about the exact solution, which gives the
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2 T T T T

—5r a—s :7 ! ! ! ]

0 0.2 0.4 " 0.6 0.8 1

Fig 5. The example of calculation for ¢ = 1072, Ny = 22 (has been calculated
automatically), N;,: = 40 (control parameter that has been set manually)

possibility for productive combinations of asymptotic and numerical approaches. Using
the information, based on the rigorous asymptotic analysis of the problem, we propose
an analytic-numerical algorithm for a singularly perturbed reaction-diffusion-advection
equations that reduces complexity of the numerical calculations.

The class of the problems that was considered in this work is given to illustrate our
approach. Our method is not restricted by only this class of the problems. We plan
to extend this approach for periodic-parabolic problems with interior layers solutions
and some classes of systems. We also plan to improve our procedure in order to use
e-independent meshes and investigate the convergence of the numerical method.
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Annoramusa. B nmamnoit pabore Ha mpmMepe YUCICHHOTO PEINCHUS CHHTYISPHO BO3MYIIEHHOTO
ypaBHeHUs Broprepca Mbl pacCMaTPpUBAEM METOJ HOCTPOEHHUS AMHAMUYECKN AJANTAPOBAHHON CETKH,
KOTOPBIH ITO3BOJIET CYIIECTBEHHO YJIYUIIUTh YUCIEHHBIN CYeT /Ui ypaBHeHuil Takoro tumna. s mo-
CTPOEHUs JAHHOM CETKU MBI HCIIOJIH3yeM allPUOPHYIO0 NHMOPMAIINIO, OCHOBAHHYIO HA ACUMITOTUIECKOM
aHaJIm3e UCXOJHOM 3a/1a9n. B 94aCcTHOCTH, MBI UCIOJIB3YeM MH(MOPMAIUIO O CKOPOCTU BHYTPEHHErO CJIOs,
€ero TOJIIHEe U cTpyKType. IIpeoxennsiii B paboTe ajropuTM CIiocoOeH CyIeCTBEHHBIM 00Pa30M yIIpo-
CTUTDH YUCJIEHHYIO CJIO?KHOCTD PeIiaeMoil 3a/laui U yJIy4IINTh €€ YCTOWYNBOCTb 110 CPABHEHUIO C KJIACCU-
YECKUMU ITOJIXOJAMHU, MCIIOJIb3yeMbIMH JJIs PEIleHns 3a7a4 TAKOro KJjacca. lIpuBeneHHbIN duC/IeHHbII
SKCIIEPUMEHT JIEMOHCTPUPYET 3P DHEKTUBHOCTD MPEJJIOKEHHOIO METO/Ia.
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