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Introduction

One of the most important aspects of educating a Computer Science specialist is teaching
them how to analyze computational complexity of algorithms. This enables them to
choose the algorithm that is most appropriate for a certain set of conditions and predict
the time necessary for the program execution. Success in this aspect requires a lot
of individual learning. However, a large amount of individual assignments forces the
professor to spend a lot of personal time. A possible solution for this problem is a certain
set of computer programs that allows to manage individual learning for each student,
which is also known as automated teaching system. Remote education is an alternative
education method that does not require the student’s personal contact with his professor.
Ability to study in comfortable hours and places provides current popularity growth of
various remote education methods.

481



Modeauposanue u anaausd ungopmavyuornoz cucmem. T.24, Ned (2017)
482 Modeling and Analysis of Information Systems. Vol. 24, No4 (2017)

1. Approaches to designing an automated teaching
system

Existing automated teaching systems are fine for teaching areas of knowledge focused
on definitions and shallow connections between them. But algorithm analysis requires
development of logical-mathematical thinking; there is, therefore, a need for smart tea-
ching systems that are focused on development of this kind of thinking and acquiring
erudition and skills in a complex area of knowledge [1].

There is a large amount of program systems called teaching ones (e.g., Moodle,
Claroline, Dokeos, ATutor), but most of them do not support full cycles of teaching
(methods), because they are just applications that provide access to texts, allow to take
part in some tests and check up whether the user has passed those tests [2]. A more
advanced solution is to use various techniques that modify the system behavior towards
each user depending on their individual traits. Adaptive teaching systems (ATS), whose
primary paradigm is adapting to every user, is a suggested solution to this issue. Adaptive
technologies for teaching is a relatively recent development but they have already become
popular with teaching systems developers. The following techniques are the base adaptive
teaching paradigm:

e building the course teaching sequence;

e smart analysis of user’s solutions;

e interactive support during problem solving;
e problem solving support using examples;

e adaptive support for navigation;

e adaptive presentation;

e adaptive support for users collaboration.

Applying these techniques secures the system flexibility in interacting with its users
and in presenting the material for studying. An addition to the concept of adaptive
teaching systems is the following proposition:

Proposition 1. Learning can be reduced to an aggregate of following pieces:
e the information for studying;
e control events that allow to check knowledge of that information;
e a method for assessing the quality of knowledge;

e the following management, the most important and complex component that makes
the system actually teaching.
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Therefore, we have to provide answers for the following questions: how to perform par-
titioning, how to check up knowledge and how flexible should the system be in interaction
with its users.

Adaptive teaching method aligns well with these postulates about the learning process:

e any information that is too hard to understand can be divided to a sequence of such
smaller chunks so that each chunk can be understood when all previous chunks are
understood too;

e any chunk of information has a certain finite amount of such tests so that if the
student has successfully passed all of them then it is fairly certain that they have
absorbed the chunk.

Therefore, it is possible to partition both information that has to be taught and
control tests in such sections so that each section is a couple of a chunk of information
and a set of control tests related to this chunk.

The whole information in “Computational Complexity of Algorithms” course of study
can be divided into two large categories. The first category includes sections on basic
theoretical knowledge and definition of algorithm, computational complexity and asymp-
totic estimation of complexity. The main goal of these sections is development and
training student’s memory using memorization techniques. Tests are the most common
control method for these sections.

However, the course of study also covers teaching of informal usage of mathematical
apparatus and this presents additional difficulties. Those are technical difficulties related
to formula input and transformation and to insufficient level of logical thinking of the
student who has to reach some result by building a transformation sequence. So, the
second section is focused on mathematical methods for estimating algorithm
computational complexity and logical-mathematical thinking development.

The following traits distinguish the second category from the first one:

1. Tests cannot be the only control method because they cannot test students’ ability
to apply various mathematical transformations;

2. The system has to teach the student to combine single transformations into a
directed process by building a sequence of previously learned transformations;

3. The system has to be able to control students’ ability to connect multiple processes
when solving the final problem on estimating algorithm computational complexity.

One of the tools used in the control events of sections from the second category is the
algorithm for verifying symbol transformations.

The most important component of the system is the one that carries out the
information and control events interaction. It determines the volume of information for
a single session, set and amount of control events and other parameters of the system. It
is this component that adds flexibility to the system and distinguishes adaptive teaching
system from the basic ones. The next few paragraphs describe a suggested use case
scenario of the system and the user interaction.

The user logs in into the system and sees a list of the course sections that may be
available or unavailable depending on the user’s progress in the course. The user has
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to pass the sections sequentially (a principle of linear learning). After the user enters a
section they have chosen they see the information it contains. Then the control event
starts. To pass it the user has to complete a certain amount of multiple choice tests
defined for each section. The number of answers for each question is determined by the
developers of the specific tasks. That is why this number may be different for different
questions and their choice depends on the program itself. The presented answers may
contain either only correct answers or only incorrect ones or both.

The user has to tick all the correct answers missing incorrect ones. If the user has not
chosen all the correct answers or has chosen some of the incorrect ones, the system will
display a warning text (“Not all correct answers are selected”, “Some selected answers are
incorrect” or a combination of both) and a chunk of material related to the question. Now
the user has an opportunity to fix the answer. If the answer is incorrect again, the system
removes this question and adds two new questions. So, the amount of questions required
to complete the section may increase. If this amount grows too much, the current session
ends. If this happens too many times in a row, the system temporarily disables the user’s
account, which means a visit to the professor.

If the user has a lot of penalty questions but has a long streak of correct answers, the
system begins to remove them according to some progression. Such an approach makes
the user study the section information carefully. Thus, it impacts both the control events
and the learning process. The user can move on to the next section only after completing
all the questions in the current section.

However, there are some sections whose information relies on that from the previous
ones, hence it is impossible for the students to absorb it unless they have mastered the
previous material. Such sections require to additionally control the level of knowledge of
information from previous sections. In this case it could be enough to answer only one
control question.

2. Computational complexity of algorithms
and techniques for its estimation

This section deals with the subject area closely related to the material above. It starts
with the definition of algorithm computational complexity. Generally, it is the time
(amount of steps) necessary for the algorithm to finish; it usually depends on some
input parameters. Despite that in some cases also require memory usage analysis, this
section considers only time-wise complexity.

The O-notation is a common tool that allows to estimate the amount of steps
T'(n),where n is an input parameter, growth speed estimation: 7'(n) = O(f(n)). This
expression means that the upper bound of the T'(n) growth can be expressed through

f(n), ie.:

AC > 0,n9 Vn>ng: T(n) < C- f(n),

while Q-notation: T'(n) = 2(g(n)) expresses the lower bound of the T'(n) growth through
g(n), i.e:

3C > 0,no Vn>ng: T(n) > C - g(n).
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These bounds may be both too high and too low. E.g., for T(n) = n?> —n + 3
estimations T'(n) = Q(n), T(n) = O(n?) are correspondingly too low and too high. So,
the most accurate bounds estimations are done using the ©-notation [2]: T'(n) = ©(f(n))
that expresses both the upper and the lower bounds with the same f(n) function, i.e.:

AC; > 0,0y > 0,ngVn>ng: Cr- f(n) <T(n) <Cy- f(n).

Note: for the example above, T'(n) = ©(n?).

It is very important to choose a proper set of f(n) functions used in computational
complexity estimation. The following set of functions is commonly accepted in the theory
of algorithm complexity:

logn, n™*, 2",

where n is an algorithm parameter, which is usually an integer, and m, k are some
arbitrary integer constants. Any possible superposition of these functions is also a valid
estimation of algorithm complexity. E.g.,

loglogn, log'/?n, n®?, pler 22"

If the algorithm has several input parameters, then the ©-notation is defined via the
superposition of functions of each parameter, e.g. T'(n,m, k) = ©(2"mlogk).

The next several paragraphs describe the method for estimating the bounds of algorithm
computational complexity. Its goal is to get ©-notation expressed bounds if possible,
or O-notation and (2-notation ones. Since this estimation is strongly related to loop
complexity estimation, it makes sense to describe the estimation process for a single
loop.

The basis for algorithm complexity estimation is a symbol scroll table that helps
defining the complexity by the amount of loop executions. Each variable of the algorithm
has a corresponding column in the table. The table also contains several special columns:

e for each loop there is a column with the index of this loop and a symbol for the
last time when the loop is executed;

e column loop condition that shows symbol condition of the loop. It has comment last
for the loop last execution condition and comment exit for the loop exit condition.

These conditions use the symbol value of the loop index for its last execution. These
conditions provide two estimations for the loop execution amount defined by a symbol:
the upper and the lower bounds. The analysis of these estimations allows to determine
algorithm computational complexity if condition expressions are not too complex. Most
of the time [2] the upper and the lower bounds differ only by a constant factor; therefore,
the estimation for the algorithm runtime growth is a theta-estimation 7'(n) = ©(f(n)).
Analyze the following example 1 of an algorithm with a single loop:

void fl1 (unsigned long n) {
float x = n;
while (x > 2)
x = sqrt(x);
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It is possible to build an algorithm symbol scroll table by including a single column
for the loop index, a single column for the single variable and the column for the loop
condition. Note that p in the i column means the index of the loop last execution.

Table 1. Symbol scroll table for the Example 1

i H x ‘ loop condition
n
1 nt/? n > 2

2 n1/2)? nt/?2 > 2
g | n2° | 27 <o

i n/2" | /27 S 9
D n/27 | /2P 5 9 ast
p+1 n1/2P %92 exit

Analysis of the loop last execution provides inequality n(*/2"" > 2. which is
transformed into log, n > 2P~! and then into p < log, log, n + 1. The loop exit condition
n(1/2” < 2 is transformed into p > log, log, n and, since p defines the algorithm computa-
tional complexity, the result is

Tr1(n) = O(loglogn).

If there are several loops which are not nested and not dependent (variables affected
in one loop do not affect the other loops), then it is sufficient to estimate the algorithm
complexity as the maximum of its loops complexities.

If there are loops that are nested but not dependent (amount of executions for the
inner loop is not dependent on the amount of executions for the outer loop), then the
product of both loops complexities equals to the algorithm complexity. E.g., if the outer
loop A complexity is Ta(na) = O(f(na)) and the inner loop B complexity is Tp(np) =
©(g(ng)), then their combined complexity is

Tap(na,np) = O(f(na) - g(ng)).

If there are loops that are nested and dependent (inner loop parameter is determined
in the outer loop) but the complexity of the inner loop is estimated with the same
function ©(g(n)) for any iteration of the outer loop. The complexity of the outer loop
is O(f(n)). We will call such case weak dependency. Combined complexity of weakly
dependent loops is the same as for the case of independent loops.

If the loops are not nested, then overall complexity equals to the maximum of the
loop complexities:

TA+B = TA + TB = max{TA,TB}.

If there are non-nested dependent loops, then it is imperative to determine the value
of the variable used in the second loop. Example 2:
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void f2 (unsigned long n) {
float x = n, z = n;
while (x > 2) {
x = sqrt(x);
Z = 7 % Z;
}
while (z /= 2 > 1);

The algorithm symbol scroll table includes a N; column with loop numbers 1 and 2,
columns 71, 75 with corresponding loop indexes, columns x, z with values of these variables
and the loop condition column. Here, p; is the index for the last execution of the loop 1
(outer) and py; means the index for the last execution of the loop 2 (inner).

Table 2. Symbol scroll table for Example 2

N, H 11 ‘ 19 ‘ T ‘ z ‘ loop condition
n n
1 1 nt/? n? n>2
n(1/2)2 n22 ni/2 > 9
7; n(l/Q)i nzi n(l/Q)i71 > 2
p1 (/20 2 n/2" 7 5 9 ast
pr+1 nI/27 %2 exit
2 1 n?" /2 n?t > 1
2 n?t /22 | /2> 1
P2 n?" j2r2 | 2t J2P27l > 1 Jast
P2+ 1 n?tj28 £ 1 exit

The analysis for the loop 1 is the same as in Example 1 and gives the following bounds
estimation: log, logon < p; < log,logy n + 1 which is transformed to p; = log, log, n.
Therefore, loop 1 complexity is 77(n) = O(loglogn).

The analysis for the loop 2 last execution condition: n?"* /2P2 > 1, using p; value
gives inequality 272 < 22" = p2losan Applying logarithm to the both sides gives
pa < 2login.

The analysis for the loop 2 exit condition: n?" /2P2T!1 < 1 using value of p; is
transformed to 2P2+! > p2 212" — plogan, Applying logarithm to the both sides gives
pa2 > logn — 1. Consider that 1 < ilogg n when n > 4. Perform the substitution in the
previous inequality: py > %logg n. Coupled with the loop last execution inequality, it
results in 3 login < p, < 2logj n. Therefore, loop 2 complexity is Tx(n) = O(log3n).

The algorithm complexity is the maximum of loops complexities:

2pP1

Tra(n) = O(log*n).



Modeauposanue u anaausd ungopmavyuornoz cucmem. T.24, Ned (2017)
488 Modeling and Analysis of Information Systems. Vol. 24, No4 (2017)

If there are nested dependent loops, then algorithm complexity is determined as
the total amount of inner loop executions throughout the total amount of outer loop
executions. Example 3:

void f3 (unsigned long n) {
float x = n, y, z = n;
while (x > 2) {

)

X = sqrt(x);
7 — 7 % 7;
y = 75

while (y /= 2 > 1);

The algorithm symbol scroll table includes the column N; with loop numbers 1 and
2, columns i1,io with corresponding loop indexes, columns z,y,z with values of the
corresponding variables and the column with the loop condition. Here, p; means the
index for the last execution of the loop 1 (outer) and p; means the index for the last
execution of the loop 2 (inner).

The analysis for the loop 1 is the same as for examples 1 and 2 and gives following
estimations: log, log,n < p; < log,log,n + 1, which is transformed to p; = log, log, n.

The total amount of the loop 2 executions is defined as To(n) = > 4" po(i). In order
to solve it, we will define common term ps (i) as the amount of executions of the loop 2 at
i-th execution of the loop 1. At the last execution of the loop 2 the following inequality
is truthy: n? /2P2() > 1, which is transformed into 272() < n?. Applying logarithm to
the both sides gives py(i) < 2"log, n. At the loop exit the following statement is truthy:
n?"' /2r2(PU+1 < 1 which is transformed into 2720+ > n2'. Applying logarithm to the
both sides and moving the 1 on the other side gives po(i) > 2'log, n — 1. Placing these
inequalities into the sum gives the upper and the lower bounds for the total amount of
the loop 2 executions: > 7' (2" logyn — 1) < > po(i) < Y ' 2'log, n. Transforming the
sum in the upper bound: >_1" 2¢log, n = log, n Y 4" 21 = 2(2P1 — 1) log, n = 2(2'08210827 —
1)log, n = 2(logyn — 1) logyn < 2log3 n.

Transforming the sum in the lower bound: Y 7' (2log,n — 1) = > " 2" logyn — p; =
2(logy n — 1) logy n — p; = 2logs n — log, n —log, logy n > 2login —logan — 1/2-login =
1/2 - logs n. Placing both bounds gives 1/2 - logsn < 7 py(i) < 2logs n, which gives
algorithm complexity:

T3(n) = O(log*n).

Note that for all the previous examples loop exit condition is a simple inequality
for the single algorithm input parameter. Generally, the loop exit condition may be a
complex boolean function. However, any boolean function can be represented using the
disjunctive normal form (DNF). It is possible to analyze all the equalities and inequalities
for each elementary conjunction in order to estimate the lower bound of loop index that
makes all the conditions in the conjunction truthy. The minimum of these estimations
across all elementary conjunctions in the DNF is the lower bound estimation for the
loop. It is possible to estimate the upper bound in the same way. Example 4:
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Table 3. Symbol scroll table for Example 3

N, H i1 19 T z Y ‘ loop condition
n n
1 1 nt/2 | n? n? n > 2
2 1 n?/2 n?/2 > 1
2 n?/2? n?/2? > 1
pa(1) n?/2v2() n2/2r2M > 1 last
pa(1) +1 n2/2p2(1)+1 TLQ/Q‘T’Q(DJrl 41  exit
1 2 n/2* | p2* n? n'/? > 2
2 1 n? /2 n% /2 >0
2 n? /22 n% /22 >0
p2(2) n? /or2(2) n? /22 > 1 last
p2(2) + 1 n? jor @+ | 2 jop @)+ %] exit
1 i n/2" | p? n* (/2" > 9
2 1 n*/2 n*/2>1
2 n? /2 n? /2% > 1
p2(i) n?i/2p2(i) n?i/2p2(i) >1  last
po(i) +1 n? [op2(FL |2 opa(DFL £ ] exit
1 ) (/2P| p2 n?" n/2M7 5 1 ast
2 1 n?" /2 n?t /2 > 1
2 n?" /22 n? /22 > 1
pa(p1) n?t jop2(p) |27 jop2(P) > 1 ast
pa(p1) +1 n2’t j2p2PU)+L 20 [op2(PUFL £ 1 exit
L |p+1 n(/2P o 9 exit

The symbol scroll table for this case includes one loop condition for each elementary
conjunction in the DNF.

Condition 1 analysis gives bounds log,n — 1 < p < log, n which may give O(logn)
estimation. The analysis for condition 2 gives different bounds: n/128 — 17 < p <
n/128 — 16 which may give ©(n) estimation. Therefore, an algorithm may have different
estimations in different intervals of the n parameter. In order to get the precise bounds
of these intervals, it makes sense to write down equalities for both the upper and the
lower bounds: n/128 — 16 = log, n,n/128 — 17 = log, n — 1; Equalities are the same, so
we can focus only on one of them. Its roots are numbers n; = 3558, ny ~ 0.00001.

It is clear that the loop will not be executed if n € [0,2048] hence ns is irrelevant. If
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void f4 (unsigned long n) {

float x, y;

X =y = n;

while (x > 1 || y < 2048) {
X = x / 2;
y =y — 128;

Table 4. Symbol scroll table for Example 4

7 H x ‘ Y ‘ condition 1 ‘ condition 2
n n
1 n/2 n — 128 n/2>1 n — 128 > 2048
n/2? n—128-2 n/2% > 1 n — 128 -2 > 2028
1 n/2t n—128 -4 n/2t > 1 n — 128 -4 > 2048
P n/2p n—128-p n/2P > 1 n — 128 - p > 2048 last
p+1|n/2Pn—128-(p+1)|n/2P™ >1|n—128-(p+1) > 2048 exit

n € [2049, 3558], then the estimation is linear, and if n € [3559, +00), then the estimation
is logarithmic. Therefore, the algorithm complexity is ©(logn).

3. Loop conditions analysis and its simplification for
certain cases

The following relation is truthy for all the previously mentioned loop conditions:

f(p,n)<relation sign><expression that does not contain n or p>,

where n is a natural input parameter, p is the loop execution number parameter. In
simple cases of f(p,n) it is relatively easy to obtain the ©(n) estimation. However, in
more advanced cases it is sufficient to obtain the estimation for a simpler function g(p, n),
which allows to conduct the further analysis of the following equality:

f(p,n) =0O(g(p,n))
that means
AC, > 0,0y > 0,n9,Yp > 0,n > ng : Cy - g(p,n) < f(p,n) < Csy-g(p,n).

If the algorithm is an integer one (parameters can be only integers because of some
transformation), then it may be too hard to analyze the necessary expressions. Finding
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sums for the sequences that are not arithmetic or geometric may also be too hard. The
following theorems allow to get the ©-notation estimation for multiple operations on
integer parts of linear expressions for the n parameter, or for integrals of integer sums.

Let p1(a-n+b) = a-n+bis a linear form, n is a natural number and a > 0. Let
ppla-n+b) =a-(a-...(a-n+b)+---+b)+bis a p form applied p times, and
let py(fa-n+0) =la-[a-...[a-n+bl+---+ b + b], where square brackets are the
integer part of the expression. It is the p; form applied p times to the integer part of
the expression. If the amount of loop executions is expressed via such a function, then
we need to be able to estimate it. Theorem 1 allows to remove the integer operation for
the sake of getting ©-notation estimation.

Theorem 1. Let a,b € R are the coefficients of the linear form a -n + b, where a > 0,
a # 1,n € N. Then the following equality is truthy:

olla-n+ b)) = O(uy(a - n + b)) = O(a™n).

An example for using theorem 1 is the analysis of the following algorithm A:

void A (unsigned long N) {
for (unsigned long k = N; k > 1; k = k/2);
}

The loop is executed p times and at the last execution the variable k£ is 1. So, the
condition [1/2-[1/2-...[1/2-n]...]] = 1 is transformed to 1 < (1/2)?- N < 2. Applying
logarithm to the both sides gives log, N — 1 < p < log, IV, hence, algorithm complexity
is estimated as ©(log, N).

Theorem 2 allows to estimate a finite sum by estimating an integral using ©-notation.

Theorem 2. Let f(x),x > 0 is a non-negative monotonic growing function. Let f(x) <
C- f(x—1),C > 1. Then the following equality is truthy:

gf@) —o ([ sz ) o)

An example for using theorem 2 is the analysis of the following algorithm B:

void B (unsigned long n) {
unsigned long m = 0;
for (unsigned long i = 1, j = 2; 1 < n; i++, j <<= 1)
m-4= i x j;
while (m—-);

The first loop complexity is ©(n), and the second loop complexity is O (Z Q- 2i> =
i=1

o [ = 2xdx) = O(n-2"). So, B complexity is O(n - 2").
=0
Theorem condition is substantial because without it the integral may be a non-

elementary function. However, it is still possible to estimate algorithm complexity as
O-notation for a function with an argument value that is equal to the sum upper bound.
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Theorem 3. Let f(x),z > 0 is a positive monotonic growing function. Let g(x) =

f(fz(f)l),:c > 1 is a non-negative monotonic growing function with no upper bound. Then

the following equality is truthy:

Y @) =0(f(n), (vn>m > 0).

An example for using theorem 3 is the analysis of the following algorithm C"

void C (unsigned long n) {
unsigned long k = 0, m
for (unsigned long i
m x= 1;
k += m;
while (k—-);

1 .

)

1; i <=mn; i++) {

The first loop complexity is ©(n), and the second loop complexity is k = > il. Since
i=1

g(i) = (Z_Z—'l), =i and ¢(i) > 2 when i > ny = 2, using theorem 3 © (Z i!) = O(n!).
i=1

Using Stirling’s approximation we can find C' complexity as ©(n").

4. Normal system of symbol transformations

The previously mentioned theorems allow to speed up the algorithm complexity analysis
for the algorithms of certain classes. But since it is not possible in every case, it is
necessary to transform the symbol expressions and the equalities and inequalities
containing the symbol expressions. Hence the issue to control correctness of such
transformations done by the students. Using complex mathematical packages like
Mathcad is not correct since they do not help in teaching students to perform such
transformations. We propose the following solution: 1) select the parts of the analysis
process that require such transformations, 2) select a limited set of allowed transformations
which can be used to express any transformation. Let this set be called normal
transformations.
The following use cases require symbol transformations:

e algorithm symbol scroll with transforming expressions in the table;
e writing inequalities for loop parameter;

e symbol transformation of the equalities and inequalities for both the variables and
loops executions amount;

e algorithm complexity estimation through loop complexity.

The first allowed transformation is the order change of two immediate additive terms
or factors. The rest of allowed transformations do not change the order of the affected
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terms or factors. It is easier to control correctness of such transformations, but they still
allow to express any necessary transformation.
The list of the allowed symbol transformations:

changing order of terms or factors;

moving a term from one side of equality to the other with changing its sign;
reducing a fraction by a single factor;

factoring a single factor out;

factorial expansion by a single factor;

using fundamental equalities (a set of pre-defined functions);

symbol parentheses removing;

symbol grouping by factoring a single factor out;

symbol factorization;

symbol factorization for powers;

There is a similar system of the normal symbol transformations for inequalities, which
requires a few additional transformations:

moving lead additive term (maximum growth speed) to the first place on one of
sides;

strengthening the upper bound estimation by discarding negative additive terms;
strengthening the lower bound estimation by discarding positive additive terms;
estimating a non-lead positive additive term in the upper bound via lead term;

estimating a non-lead negative additive term in the lower bound via lead term:;

This system of normal symbol transformations requires additional sections in the adaptive
teaching system to teach it to the students. So, we propose the following order of the
sections in the teaching system:

1.

2.

Algorithm complexity characteristics

Determining algorithm computational complexity
System of normal symbol transformations for equalities
Algorithm symbol scroll table

System of normal symbol transformations for inequalities

Estimating complexity of an algorithm with a single loop
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7. Estimating complexity of an algorithm with a nested independent loops
8. Estimating complexity of an algorithm with a non-nested dependent loops
9. Estimating complexity of an algorithm with a nested dependent loops
10. Estimating complexity of an algorithm with an integer transformations
11. Estimating complexity of an algorithm with a sequence sum
12. Final exam

It is possible to further divide the sections that may prove to be too hard, e.g., the
sections about the system of the normal symbol transformations.

5. Conclusion

This method of teaching Computational Complexity of Algorithms course of study allows
to

e develop the methodical programs that extract information and control events for
each section;

e develop the software that allows to automate all the stages of the learning process.

We hope that we will manage to implement the described method and that it will
show its effectiveness in teaching this course to the students and developing their logical-
mathematical thinking.
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Annortarusi. B mannoil pabore mcciieyroTcst BOIPOCHI IIOCTPOEHHST aBTOMATU3UPOBAHHON 00y va-
foreil cucreMbl “AHaN3 CJIOXKHOCTU AJITOPUTMOB”, KOTOPasl MO3BOJIUT yYAIEMYCsi OCBOUTD CJIOYKHBII
MaTeMaTUIeCKN almnapaT U pa3BUTh JIOTUKO-MaTeMATHIECKOe MBINIJIEHNE B 3TOM HampaBjieHun. BBo-
JIUTCS TEXHOJIOTHS CUMBOJIBHOI IIPDOKPYTKHU aJTOPUTMa, HO3BOJAIONIAA IOJIydYaTh BEPXHUE W HUXKHUE
OIIEHKY BBIYUCIUTEIBHON CI0KHOCTH. [IpuBoasdTCS yTBEpKAEHNS, 0bJIerdaonue aHajln3 B CIydae Iie-
JIOYUCJIEHHOI'O OKPYIVIEHHS ITapaMeTPOB aJlOPUTMa, & TaK»Ke IIPU OIleHKE CJIOKHOCTHA CyMM. BBomurcs
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HOPMAaJIbHAsI CHCTEMa CUMBOJIBHBIX IIPE0OpPA30BaHUil, TO3BOJISONIAS, C OJHOW CTOPOHBI, JeJIaTh yJIalle-
MycCs JI00bIe CHMBOJIBHBIE TPE00PA30BaHusd, a C JIPYrOil CTOPOHBI — YIPOCTUTDL ABTOMATHYECKHIT KOH-
TPOJIb KOPPEKTHOCTU TaKuX peobpaszoBanmii. CTaThs MyOJINKYeTCs B ABTOPCKOM PeIaKITHN.
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