Modeauposanue u anaausd ungopmayuorror cucmem. T.24, Ne6 (2017), c. 691-703
Modeling and Analysis of Information Systems. Vol. 24, No 6 (2017), pp. 691-703

©Thomas Baar, 2017
DOI: 10.18255,/1818-1015-2017-6-691-703

UDC 519.686.2

Towards Measuring the Abstractness of State
Machines based on Mutation Testing

Thomas Baar
Recewved October 30, 2017

Abstract. The notation of state machines is widely adopted as a formalism to describe the behaviour
of systems. Usually, multiple state machine models can be developed for the very same software system.
Some of these models might turn out to be equivalent, but, in many cases, different state machines
describing the same system also differ in their level of abstraction.

In this paper, we present an approach to actually measure the abstractness level of state machines
w.r.t. a given implemented software system. A state machine is considered to be less abstract when it is
conceptionally closer to the implemented system. In our approach, this distance between state machine
and implementation is measured by applying coverage criteria known from software mutation testing.

Abstractness of state machines can be considered as a new metric. As for other metrics as well, a
known value for the abstractness of a given state machine allows to assess its quality in terms of a simple
number. In model-based software development projects, the abstract metric can help to prevent model
degradation since it can actually measure the semantic distance from the behavioural specification of a
system in form of a state machine to the current implementation of the system.

In contrast to other metrics for state machines, the abstractness cannot be statically computed
based on the state machine’s structure, but requires to execute both state machine and corresponding
system implementation.

The article is published in the author’s wording.

Keywords: model-based software development, metric, state machine, mutation testing

For citation: Thomas Baar, “Towards Measuring the Abstractness of State Machines based on Mutation Testing”,
Modeling and Analysis of Information Systems, 24:6 (2017), 691-703.

On the author:

Thomas Baar, orcid.org/0000-0002-8443-1558, PhD,

University of Applied Sciences (Hochschule fiir Technik und Wirtschaft (HTW) Berlin)
Wilhelminenhofstrasse 75 A, D-12459, Berlin, Germany, e-mail: thomas.baar@htw-berlin.de

1. Introduction

The notation of state machines |7, 8] is widely used in industry to specify the behaviour of
software systems and is supported by numerous tools [15, 8, 9, 2]. Though the notation
comes in different flavours, the core concepts states, events, transitions, actions, state
variables, and guards are ubiquitous. Though there are some tools like Yakindu [9]
available, which offer the generation of code into a target programming language such as
C, C++, Java, etc., we will assume in this paper the (still common) situation that the

691

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.24, Ne6 (2017)
692 Modeling and Analysis of Information Systems. Vol. 24, No6 (2017)

implementation of the system has been implemented independently from the behaviour
specification in form of a state machine.

Once both the specification and the implementation of the system has been finalized,
the natural question arises whether the actual behaviour of the system is actually
reflected by the specification given as a state machine.

It is tempting to tackle this correctness question by using formal methods to actually
prove that the implementation behaves according to the specification. Abadi and Lamport
show in [1], that for each correct implementation there exists a formally definable refine-
ment mapping. However, Abadi and Lamport assume the implementation also be given in
form of a state machine. Their refinement mapping connects the two artefacts specification
and tmplementation, which both have been written in the same formalism of state
machine.

Our situation is quite different. While the specification is again given in form of a
state machine, the implementation can be written in any programming language. Even
worse, we do not rely on having any formal semantics of the programming language
available, but just the compiler/interpreter allowing us to execute the implementation.
Thus, we actually consider the implementation as a gray box, i.e. a combination of white
box and black box in the following sense: The white box characteristic is due to the fact
that we can execute the implementation and, moreover, we are able to stop the execution
at any time in order to inspect the internal state. For example, the internal state might
be given by the values of global variables together with the set of all existing objects
including the values of their attribute in case of object-orientation has been used as a
programming paradigm. The black box characteristic is due to the fact that we do not
have a formal semantics of the used implementation language at hand. As a consequence,
there is no chance to extract and to analyze any further artefacts such as control-flow
graph from the implementation.

Due to this gray box characteristic, we cannot formally prove that the actual behaviour
of the implemented system is correctly described by the state machine specification.
What we can do is to test the correct realization in concrete scenarios. We can stimulate
the implemented system with events and then check, whether the implemented system
changes its internal state the same way the state machine specification has prescribed.
However, this requires to define a formal correspondence between the states of the state
machine (together with the current values of the state variables) to the internal states
of the implementation. This correspondence between the state spaces of state machine
and implementation is done in terms of formal predicates and is called bridge in our
approach (cmp. Section 4.).

The second question we are interested in is how precisely the state machine reflects
the behaviour of the implementation. In this paper we propose a novel metric to measure
the abstractness of a state machine w.r.t. a given implementation. While the motivation
for this metric originated from assessing the efforts students have made to re-model an
existing application (see Section 2.), this measurement is also helpful to detect model
degradation. A well-known problem of model-based software development is that models
tend to degrade over time: if modeling artefacts are not maintained properly while the
system implementation evolves, they become less and less valuable since they do not
reflect any longer structure and/or behaviour of the implementation [16].

Technically, the abstractness is measured using the technique of mutation testing.

Thomas Baar
Abstractness of State Machines based on Mutation Testing 693

For a predefined list of input events, both the state machine and the implementation
are executed in parallel. After each event has been processed, it is checked whether both
systems are in comparable states (this is checked using the bridge-predicates, which
relate both state spaces). For measuring the abstractness, the parallel executions of
implementation and state machine are repeated for the chosen list of input events, but
now the implementation has been mutated, i.e. at some point in the implementation a
statement has been changed (for example, an operator '+’ has been changed to ’-’). If the
trace of the manipulated implementation can still be mapped correctly to the trace of the
state machine, then this is a sign that the state machine does not specify the behaviour
of the original implementation precisely (since a change in the implementation is not
detected) and thus, this model is considered to be rather abstract. In the opposite case
of diverged traces, we have a witness that the state machine prescribes the behaviour of
the original implementation precisely, thus the state machine is considered to be rather
detailed.

The remaining of the paper is organized as follows. Section 2 presents a motivating
example, which already shows some pitfalls when applying the state machine notation
for the specification of real-world software. Section 3 introduces the notation of state
machine formally, while Section 4 formally defines the bridge for connecting the state
space of state machine and implementation. The core of our approach, i.e. the technique
to measure the abstractness of state machines w.r.t. a given implementation, is detailed
in Section 5 In Section 6 we review relevant literature while Section 7 concludes the

paper.

2. Motivating Example

Fig 1. Screenshot Pac-Man

Suppose, you had to describe the behaviour of the classic computer game Pac-Man®.

'For a detailed description see https://en.wikipedia.org/wiki/Pac-Man

https://en.wikipedia.org/wiki/Pac-Man

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.24, Ne6 (2017)
694 Modeling and Analysis of Information Systems. Vol. 24, No6 (2017)

Using informal language, you might solve this task be referring to Figure 1, which shows
a screenshot from a open-source implementation in Java?. You might continue by saying
that the user can move the Pac-Man via keyboard or joystick through the labyrinth
and its task is to eat as many dots as possible while avoiding any collision with the
enemies (the four ghosts). The Pac-Man has three lifes and a life ends by colliding with
a ghost. The game is over when either the Pac-Man lost his last life or when it has eaten
sufficiently many dots.

Suppose someone urges you now to use instead of informal language a modeling
notation such as the ones bundled by the Unified Modeling Language (UML) [12]. Still,
your model should be easily understood by a software engineer, so that she does not
need to look into the implementation code to understand the rules of the game.

«system»
Pac-Man
eatDot
«subsystem» hitGhost
PM troll :
: Controller
]
up []
down L}
left «system» 1 up o
right Pac-Man 1 down down gameobjects
- left left
. right right
— :
1 e —
1 L= Dot
Player 1 -
[] : Player «singleton»
. []
tick
1 tick Wall
«actor» ; 1 - .
Timer)

Fig 2. Naive(left) and elaborated(right) environment model — Determining the events for
the state machine

Surely, the classic state machine notation seems the right formalism to be used, but
before you can start you have to determine the external events to be taken into account.

Environment models as shown in Figure 2 can help a lot in this regard. You might
start with a basic version shown at the left side and observe, that the system receives as
input events from Player the four possible directions for moving Pac-Man. Furthermore,
since the ghosts change their position independently of the player’s input, it is quite
obvious to model also an external Timer sending events tick to the system.

Unfortunately, it turns out to be impossible to develop a state machine which is
purely based on these five events. A compelling argument is that the state machine has
to reflect that Pac-Man has three lifes at the beginning and loses a life whenever it
collides with a ghost. But how can the state machine detect such a collision? For this,
the state machine had to keep track of the position of both Pac-Man and all ghosts.

To solve this problem you might restructure the Environment model as done at the
right side of Figure 2. We split the system into a subsystem PMController and other

2The Java source code is available from https://github.com/dtschust/javapacman.

https://github.com/dtschust/javapacman

Thomas Baar
Abstractness of State Machines based on Mutation Testing 695

components for the individual game objects and the timer (whether Timer is an internal
or external component remains a matter of taste). The original events from the player
are now forwarded to the game objects. Also the event tick is forwared to them. Once
the game objects detect a collision or that a dot was eaten by the Pac-Man, they issue
new events eatDot and hitGhost, which are sent to PMController.

Having found now the right level of abstraction for the input events, a compact state
machine reflecting the rules of the Pac-Man game can be developed quite easily, as shown
in Figure 3, right side?.

Nlives=2,points=0,maxPoints=8650

pacmanDead

do
IplayDeathMusic

pacmanAlive

hitGhost[lives==0]

eatDot[points < maxPoints]/points+=50

eatDot

hitGhost

pacmanRunning

hitGhost[lives>0]/lives-=1, resetPositi

eatDots[points==maxPoints]

e)

gameOver

- entry

do
/saveHighscore
exit
openMenue

Fig 3. Useless(left) and elaborated(right) state machine

This one picture (state machine) has the same value as a lot of words. It reveals
immediately how the Pac-Man game is organized and how the user can win the game.
However, to decide whether this state machine actually describes the given implementa-
tion correctly, is rather challenging. Note that the implementation can only be stimulated
with the four external events from the user, but that the state machine refers to the events
eatDot and hitGhost, which are generated internally. When testing on the correctness of
the implementation, it is crucial to find such event sequences that let the implementation
generate these internal events.

A striking example, why one could be interested in measuring the abstractness of
state machines w.r.t. an implementation is given in Figure 3, left side. One could argue
that this state machine also describes the given implementation and it is pretty obvious,

3This state model is based on a student solution submitted by Fiona Brémer, Thorsten Vaterrodt,
and Josefine Keller.

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.24, Ne6 (2017)
696 Modeling and Analysis of Information Systems. Vol. 24, No6 (2017)

that the description is correct (if we do not require that after the game has been finished,
the state machine must result in a final state). However, this state machine is useless
since it correctly describes any other implementation dealing with the events eatDot and
hitGhost as well.

In order to have a formal criterion on how we can distinguish useful from useless state
machines, the metric for abstractness of a state machine is developed in this paper.

3. Background: State Machines

The state machine notation comes in many different variants and some of the advanced
concepts such as hierarchical state, parallel state, history state, state variable, time-
triggered event, spontaneous transition, action, entry-/exit-action are not supported by
every tool.

In the remainder of this section, we define the version of state machines used in this
paper®. The definition is done both in terms of syntax and semantics.

3.1. Syntax

We use a rather basic version of state machines. Only the concepts state, start state
(always unique), event, transition, guard, state variable, and action (in form of parallel
assignments of arithmetic expressions to state variables) are supported.

Definition 1 (State Machine). A state machine SM is a tuple
(S, Ev, V., init, trans) where

e S, Ev, V are pairwise disjoint, non-empty sets of states, events, and (integer)
variables, respectively

e init € (Sx Bind) denotes the initial state and the initial binding of variables. Here,
Bind = {b|b: V — ZU{L}} denotes the set of all possible bindings of variables
to an integer value or to undefined (1)

o trans C S xS X Ev X Exppor X (V = Expin) denotes the set of transitions. For
(Spres Sposts €; g, asgmnt) € trans we call sy the pre-state, sp.st the post-state, e
the event, g the guard, and asgmnt the assignment of the transition

Exp = Expyoo U Expiy denotes the set of all arithmetic/boolean expressions over
the set of variables V. The expressions of Exp are built using the usual arithmetic and
boolean operators and must obey the usual type rules. By definition, all variables from V
are of type int.

As an example, we explore the state machine SMg, describing the behaviour of
a stack as defined in Fig. 4. Here the variable num encodes the number of elements
currently residing on the stack. Fig. 4 shows two equivalent definitions of SMg,er. In

4Tool support for the described version of state machine is available in form of the toolset SSMA
(Simple State Machine Analyzer) [2]. Deduction-based analysis techniques implemented by SSMA are
discussed in detail in [3].

Thomas Baar
Abstractness of State Machines based on Mutation Testing 697

SMstack = (S, Ev, V,init, trans) with
- S ={e,ne}

- Ev = {push, pop}

-V ={num}

- init = (e, {num — 0})

- trans = {

gop[num==1]
/num=num-1

ﬂ
m=num+1

(e, ne, push, true, {num — num + 1},
(ne, ne, push, true, {num — num + 1},

pop[num>1]

(ne,ne, pop, num > 1, {num > num — 1}, /num=num-1

(ne, e, pop,num == 1, {num — num — 1}

}

Fig 4. Example for State Machine: Stack

the left part the definition is done in a mathematical style following the definition Def. 1
whereas in the right part, a graphical version using the well-established graphical concrete
syntax for state machines known from the Unified Modeling Language (UML) is used®.

3.2. Semantics

The semantics of a state machine is given by describing how a state machine changes
its state and the value of variables upon receiving a sequence of events. The resulting
behaviour is called a trace.

Definition 2 (Trace). Let SM = (S, Ev, V, init, trans) be a state machine and inp =
(e1,€9,€3,...,€,) with e; € Ev fori € {1,...,n} a finite sequence of (input) events. Let
eval : Exp x Bind — {true, false, L} be the usual evaluation function of expressions
under a giwen variable binding. The evaluation w.r.t. undefinedness is strict. Then, a
trace is a sequence of execution states (esg,€es1, ..., €es,) where each execution state is of
form es; = (s;,b;) € S x Bind and each of the following constraints is satisfied:

1. esg = (8o, bg) = init

2. es;y1 = es; if the event is rejected since there is no outgoing transition from
the pre-state s; for the event e;r1. Formally: {t | t = (Spre, Spost, €, g, asgmnt) €
trans and Spre = siande = e;1} =)

3. es;y1 = es; if the transition cannot fire due to guard evaluation: For all transitions
which are outgoing from s; and which are annotated with event e;. 1, the evaluation
of the guard does not yield true. Formally: {t | t = (Spre; Spost, €, g, asgmnt) €
trans and sy = s; and e = e;+1 and eval(g, b;) = true} = 0

4. Transition is fired and bindings for variables are updated: There exists a transition
t = (S, Sit1,€it1, g, asgmnt) € trans with eval(g,b;) = true. The new binding
bii1 is obtained by b,y = b; < asgmnt as the update of the previous binding b;
according to the transition’s assignment asgmnt

SMathematical and graphical definition differ solely in the chosen names for states. Thanks to the
space efficiency of the graphical notation, we can afford here longer and more expressive state names,
e.g. nonempty vs. ne.

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.24, Ne6 (2017)
698 Modeling and Analysis of Information Systems. Vol. 24, No6 (2017)

Example: For the above stack example S Mg, and for the input event sequence inp
= (pop, push, push), the sequence of execution states ((e, num — 0), (e, num — 0),(ne,
num — 1),(ne, num +— 2)) would be a trace. Every other sequence of execution states
would be not a trace for the chosen input sequence inp.

4. Bridging State Machines and Implementations

Due to the semantics as defined in the previous section, state machines can be actually
used as a graphical notation to program. Tools such as Yakindu [9] offer the generation
of implementation code for a given state machine. However, a feature missed in many
state machine tools (including Yakindu) is the possibility to set the edited state machine
in relation to a given implementation.

Recall that an (object-oriented) implementation is executed by invoking methods on
objects (or, rarely, classes) and that the system state is determined by the set of currently
existing objects and the values for their attributes. In contrast, the execution of state
machines is determined by the list of incoming events. Moreover, the execution state of
a state machine consists of the currently active state and the current binding of state
variables to values.

We relate the state space of both implementation and state machine by defining a
mapping as follows, the mapping is called a bridge.

Definition 3 (Bridge). Let SM = (S, Ev,V,init, trans) be a state machine, Impl an
implementation, M., the set of its methods, and Sp,p the set of all possible states the
implementation can reach.

Then, a bridge B(SM, Impl) for SM and Impl is a tuple (Q, mape,, Pred) consisting

of
e a set () of queries q; : Spmp — Z U {1}
e a partial mapping mape, : Mimp - Ev from methods to events

e a set Pred C Expyoo of predicates. The Boolean expressions are build with the usual
boolean and arithmetic operators over variables from V', but quantifiers (¥,3) are
not allowed to occur. Boolean expressions can, in addition, contain subexpressions
q; for accessing the current state of the implementation and the atomic predicate
inState(s) where s € S

Definition 4 (Valid Bridge). Let SM be a state machine, Impl an implementation, and
B(SM, Impl) = (Q, mape,, Pred) a bridge. Let es be an execution state of SM and ies
an implementation state of Impl.

We call B(SM, Impl) a valid bridge w.r.t. the pair (es,ies), iff all predicates p €
Pred are evaluated to true in (es,ies). The evaluation of p in (es,ies) is defined via
structural induction on the terms occurring in p as usual. The subterm q; is evaluated to
gi(ies). The subterm inState(s) is evaluated to true, if and only if es is of form (s,b)
for an arbitrary binding b.

Thomas Baar
Abstractness of State Machines based on Mutation Testing 699

public class Stackl {
private List<Item> items = new ArraylList<Item>():
public wvoid push(Item i){

items.add (i) ;

public Item pop(){

if (items.isEmpty())

return null;
int lastIndex = items.size()-1;
return items.remove (lastIndex);

public int getLength() {
return items.size();

Fig 5. Java-Implementation of Stack

Example: We consider a possible implementation in Java of the stack as shown in
Fig. 5. A possible bridge between the state machine defined in Fig. 4 and the implementa-
tion from Fig. 5 could look as follows:

e () = {c_s} where ¢_s evaluates in a concrete implementation state to the return
value of the invocation of the method getLength()

e map., = {push() — push, pop() — pop}

e Pred = {inState(empty) impliesc_s =0,
inState(nonempty) impliesc_s > 0}

Informally speaking, the bridge maps the method calls push()/pop() to the correspon-
ding events. The two predicates actually relate the execution states of the state machine
with those of the implementation and stipulate, whenever the state machine is in state
empty, the implementation is in a state where get Length() returns zero. Furthermore, if
the state machine is in state nonempty, the invocation of getLength() yields a number
greater than zero.

Definition 5 (Valid Abstraction Trace). Let SM be a state machine, Impl an implementa-
tion and B(SM, Impl) a bridge for them.

We call the trace of the state machine (esy,...,es,) induced by an event sequence
(é1,...,€e,) a valid abstraction trace iff for the corresponding implementation trace
(ieso, . .., iesy,) the following holds: For each state pair (es;,ies;) fori € {0,...,n} the
bridge B(SM, Impl) is actually a valid bridge.

The notion valid abstraction trace witnesses that the state machine has specified the
behaviour of an implementation correctly for a given list of input events.

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.24, Ne6 (2017)
700 Modeling and Analysis of Information Systems. Vol. 24, No6 (2017)

In the remainder of the paper, we call a state machine a presumably valid abstraction
w.r.t. a given implementation, if we cannot find any sequence of events, for which the
induced trace of the state machine is not a valid abstraction trace.

5. Measuring the Abstractness of State Machines

After we have clarified (i) syntax and semantics of the basic version of state machines used
in this paper and (ii) how a state machine trace can relate to a trace of an implementation,
we now present the core of our approach to measure the abstractness of a state machine.

The basic idea can be stated as follows: Let a state machine, an implementation and a
bridge be given. Due to successful tests on many input event sequences we are convinced
that the state machine is a presumably valid abstraction of the implementation w.r.t.
the bridge.

In order to measure the abstractness of the state machine, we repeat the same tests
but we use now a slightly changed implementation, a so-called mutation of the original
implementation. If the test fails now, this means that the state machine is detailed in
the sense that it is not an abstraction of the changed implementation. If the test is still
successful, the opposite is true: the state machine is abstract enough to ignore the change
in the implementation (at least for the current input sequence).

<<State Machine>> <<Implementation>> «MutlateriITpler-uer}Eanons»
SM impl «Events» mpli_L1..Impl_n
ESeq T
<<State Machine>>
SM «Events»
ESeq

TestExecution TestExecution
(for Impl'_i)

-

Test Results D Test Results D

(for Impl) (for Impl'_i)

Fig 6. Repeating test on mutated implementations

Figure 6 illustrates this approach. The left part shows the parallel execution of state
machine SM and implementation I'mpl for the given input event sequence ESeq. Since
we assume that the state machine is a presumably valid abstraction, the test must have
been successful, because otherwise we had a counterexample for a valid abstraction trace.

In the right part, Figure 6 shows the test executions on the mutated implementations
Imply ... Impl . For each mutation Impl, the test is rerun for the same sequence of input
events FSeq. If the test fails, this is a sign that the state machine SM was not more
abstract than the original implementation I'mpl. If the test succeeds, the state machine
was more abstract, since the current test is also a valid abstraction trace w.r.t. the
mutated implementation Impl;. This brings us to the central definition of this paper:

Thomas Baar
Abstractness of State Machines based on Mutation Testing 701

Definition 6 (Abstractness). Let a state machine SM, an implementation Impl and
a bridge B = (SM, Impl) be given. Let SM be a presumably valid abstraction of Impl
w.r.t. B. Let Mut(Impl) be a fized set of mutations of Impl, let n = #Mut(Impl) be
the number of the considered mutations.

The abstractness of SM for a given input event sequence FESeq (denoted by
abstrgse(SM)) is a number between 0 and 1 and computed as

abstrpse(SM) = %

where k is the number of succeeding tests when running the test for input sequence ESeq
on all mutated implementations from Mut(Impl).

A mutation of implementation I'mpl is obtained by applying a mutation operator
on Impl. Mutation operators have been thorougly studied in mutation testing [10].
For Java implementations, mutation operators have been made generally available by
the Java compiler in terms of command line options, but one can also use dedicated
frameworks such as PIT [14] to mutate an existing implementation. Note that mutating a
given implementation is a repeatable transformation. When applied on the same location
within the implementation, a mutation operator will always produce the same mutated
implementation. The number of mutants (n = #Mut(Impl)) for a given implementation
I'mpl depends on i) the length and complexity of I'mpl and ii) the set of selected mutation
operators.

Modern mutation frameworks such as PIT [14] allow to control on which locations
within the implementation code the mutation operators should be applied. For the Pac-
Man example given in Section 2. it would desirable to allow mutations only in the
implementation classes controlling the behaviour of the game objects and to avoid such
mutations, for example, in GUI classes.

6. Related Work

Measuring the quality of modeling artefacts is traditionally done by metrics. Zhang
and Holzl propose in [18] a set of metrics for measuring the complexity of UML state
machines. They apply criteria known from traditional object-oriented programming met-
rics [6] such as Fanln/FanOut to assess the complexity of state machines. Furthermore,
they propose the refactoring of complex constructs such as Junction by a set of states and
transitions before measuring the complexity to make the measured values comparable.
In contrast to our approach, the metric is computed statically and does not take system
executions into account.

Model-based testing (MBT) [17, 5, 4] is a widely recognized approach to take models
as input for testing an executable system implementation. Compared to traditional pre-
/post-state specifications as used by unit tests, the test specification is much more
compact. Tools supporting MBT such as ParTeG [13] or SpecExplorer [11]| support
state machines (or similar notations) as a description of the expected system behaviour.
From this input model, most MBT-tools generate traditional unit tests, which are then
executed. If all tests succeed, then the implemented system hehaves (presumably) as
specified by the state machine. MBT tools provide the ability to define a bridge between

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.24, Ne6 (2017)
702 Modeling and Analysis of Information Systems. Vol. 24, No6 (2017)

state machine and implementation. They use elaborated techniques to generate the 'right’
test cases by analysing the implementation code, what makes it a white-box approach.

7. Conclusion

This paper presented a novel approach to measure the abstractness of state machines. For
this measurement, beside the state machine, a correct implementation and a bridge from
the state machine to the implementation is needed. The abstractness is a value between
0 and 1 and encodes the 'semantic distance’ between state machine and implementation.

Our approach is highly flexible since it allows to combine any state machine with
any possible implementation thanks to the flexible bridging mechanism. To realize a
bridge, the user has to implement an adapter allowing the state machine to access the
internal state of the implementation at runtime. A second adapter realizes the mapping
of input events for the state machines to method calls (or any other signals) of the
implementation.

References

[1] Martin Abadi and Leslie Lamport, “The existence of refinement mappings”’, Theoretical
Computer Science, 82 (1991), 253-284.

[2] Thomas Baar, “SSMA - Simple State Machine Analyzer”, https://github.com/
thomasbaar/simplesma.

[3] Thomas Baar, “Verification Support for a State-Transition-DSL Defined with Xtext”, Pro-
ceedings of the 10th International Andrei Ershov Informatics Conference, PSI, Lecture
Notes in Computer Science, 9609, Springer, 2015, 50—60.

[4] Robert V. Binder, Bruno Legeard, Anne Kramer, “Model-based testing: where does it
stand?”, Communications of the ACM, 58 (2015), 52-56.

[5] Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, Alexander Pretschner,
Model-Based Testing of Reactive Systems, Advanced Lectures, Lecture Notes in Computer
Science, 3472, Springer, 2005.

[6] Shyam R. Chidamber, Chris F. Kemerer, “A metrics suite for object oriented design”, IEEE
Transactions on Software Engineering, 20:6 (1994), 476-493.

[7] David Harel, “Statecharts: A visual formalism for complex systems”, Science of Computer
Programming, 8:3 (1987), 231-274.

[8] David Harel, Hagi Lachover, Amnon Naamad, Amir Pnueli, Michal Politi, Rivi Sherman,
Aharon Shtull-Trauring, Mark B. Trakhtenbrot, “STATEMATE: A working environment
for the development of complex reactive systems”, IEFEE Transactions on Software Engi-
neering, 16:4 (1990), 403-414.

[9] Itemis, “Yakindu”, http://statecharts.org/.

[10] Yue Jia, Mark Harman, “An analysis and survey of the development of mutation testing”,
IEEE Transactions on Software Engineering, 37:5 (2011), 649-678.

[11] Microsoft, “SpecExplorer”, https://msdn.microsoft.com/en-us/library/ee620411.
aspx.

[12] Object Management Group, “Unified Modeling Language (UML), version 2.5”, http://
www . omg.org/spec/UML/2.5/.

[13] Stephan Weifleder, “Partition Test Generator (ParTeG)”, http://parteg.sourceforge.
net/.

[14] Pitest, “PIT Mutation Testing”, http://pitest.org/.

https://github.com/thomasbaar/simplesma
https://github.com/thomasbaar/simplesma
http://statecharts.org/
https://msdn.microsoft.com/en-us/library/ee620411.aspx
https://msdn.microsoft.com/en-us/library/ee620411.aspx
http://www.omg.org/spec/UML/2.5/
http://www.omg.org/spec/UML/2.5/
http://parteg.sourceforge.net/
http://parteg.sourceforge.net/
http://pitest.org/

Thomas Baar
Abstractness of State Machines based on Mutation Testing 703

[15] QuantumLeaps, “QM ™" http://www.state-machine.com/qm/.

[16] Bernhard Schétz, Model-Based Development of Software Systems: From Models to Tools,
Technical University Munich, 2009.

[17] Mark Utting and Bruno Legeard, Practical Model-Based Testing: A Tools Approach, Mor-
gan Kaufmann, 2007.

[18] Gefei Zhang and Matthias Holzl, “A set of metrics for states and transitions in UML state
machines”, Proceedings of the 2014 Workshop on Behaviour Modelling — Foundations and
Applications, ACM, 2014.

Baap T., "K Bonpocy 06 usamepenun ypoBHst abCTpaKIUU JUArPDAMM COCTOSIHUN Ha OC-

HOBe TecTtupoBanms mytamnuit", Modeauposarue u aHaiu3 UHGOPMAUUOHHBLT CUCTNEM,
24:6 (2017), 691-703.

DOI: 10.18255/1818-1015-2017-6-691-703

Awnnorarusi. Cucrema obo3HadeHuii quarpamMM cocrosduuil (state machines) mmpoko npumensiercs
B KadecTBe (HOPMATIBLHOIO CPEJICTBA ONucaHus moBejeHust cucreM. OOBIMHO JIJIs OJTHOM U TOI 2Ke Mpo-
IPaMMHON CUCTEMbI MO2KHO CO3/IaTh MHOT'O Pa3HBIX Juarpamm cocrosauit. Hekoropwie n3 aTux Mozeneit
MOT'YT OKa3aTbhCs SKBUBAJEHTHBIMU, HO BO MHOTHX CJIydasX Pa3Hble guarpaMMBbl COCTOSHUN ONUCHIBa-
0T OJIHY W Ty K€ CHCTEMY Ha PA3HBIX YPOBHAX aOCTPAKINU. B 3TOil CcTaThe MBI IPEIaraeM TOIXO,
[TO3BOJIAIONTUI TPOBECTH (PAKTUIECKOE M3MEPEHNE yPOBHS aOCTPAKIINU JIAATPAMM COCTOSHUII IO OTHO-
IIEHUIO K 33/[aHHOM peaiM3aliii IPOrpaMMHOil cucTeMbl. JlnarpamMma COCTOSHUI CUATAETCA TEM MeHee
abcTpakTHOM, YeM OJiM»Ke OHa KOHIEIITYaJIbHO K peajin30BaHHO# cucreme. COIVIACHO HAIEMY I1OJXO-
Ay 3Ta OTJAJIEHHOCTh JHarpaMMbl COCTOAHUN OT pean3allid CUCTeMbl U3MepseTcs IIyTeM IPUMeHEeHUs
KPUTEpHsl MOKPBITHS, UCIOJIb3YEeMOr0 JJjIsi TECTUPOBAHUS MYTAIMU IPOTPAMMHOTO ODecredeHus. ¥ po-
BeHb a0CTPAKINY JUATPAMM COCTOSHUI MOYKHO PACCMATPUBATDH KAK HOBBINA BUJ METPUKH. 1TO KacaeTcs
JPYyrux METPUK, TO 3HAHUE 3HAYEHUS YPOBHS aOCTPAKINU 33JaHHOU JUarpaMMbl COCTOSIHUI ITaeT BO3-
MOYKHOCTD OIIEHUTH €€ KadeCTBO B UMCJIOBBIX TepMUHAX. B Tex mpoekTax 1mo pa3paboTKe MporpaMMHOTO
obecriedeHnsi, KOTOPble HAYMHAIOTCSI C IOCTPOEHUsI MOJIEJIN, METPUKA aDCTPAKIINA MOXKET [TOMOYb n30e-
KATh JIETPAJIAIIMN MOJIEJIel, TOCKOJIBKY OHA TO3BOJISET M3MEPUTHh (DAKTUIECKOE OTIAJIEHUE CIerndu-
Kallu! IIOBEJICHNA CHCTEMBI, IPEACTABJICHHON B BUJE AUArpaMMbl COCTOSHUI, OT TeKyIlell pean3annu
cucTeMbl. B oTyimane oT MpoYnX METPUK JIJIs TUArPaMM COCTOSHUI YPOBEHD aOCTPAKIINY HEJIb3s BBIUHIC-
JINTH CTATUYIE€CKU, OCHOBBIBAsCh JIMIIb Ha CTPYKTYpPE caMoit JAuarpaMmbI; JIJIgd 3TOTO HY2KHO CpaBHUBaTb
BBINIOJIHEHUST JIAATPAMM COCTOSIHUI M COOTBETCTBYIOILYIO peaym3anuio cucreMbl. CraTbs myOIuKyeTcs: B
aBTOPCKON pelaKIu.

KurouyeBbie ciioBa: pa3paboTka MporpaMMHOIO 00ecriedeHnsi Ha OCHOBE MOJIeJIeil, MeTPUKA, JTrarpaM-
Ma COCTOSIHUI, TECTUPOBAHUE MYTaIlni

OG6 aBTOpe:

Baap Tomac, orcid.org/0000-0002-8443-1558, npodeccop,
Bepaunckas Beicmiast mikosia TEXHUKA 1 9KOHOMUKH,
Wilhelminenhofstrasse 75 A, D-12459, Berlin, Germany,
e-mail: thomas.baar@htw-berlin.de

http://www.state-machine.com/qm/

