Modeauposarue u anaaus ungpopmavyuorrvir cucmem. T.24, Ne6 (2017), c. 704-717
Modeling and Analysis of Information Systems. Vol.24, No 6 (2017), pp. 704-717

©de Carvalho D., Mazzara M., Mingela B., Safina L., Tchitchigin A., Troshkov N., 2017
DOI: 10.18255/1818-1015-2017-6-704-717

UDC 519.686.4

Jolie Static Type Checker: a Prototype

de Carvalho D., Mazzara M., Mingela B., Safina L., Tchitchigin A., Troshkov N.
Received September 8, 2017

Abstract. Static verification of a program source code correctness is an important element of
software reliability. Formal verification of software programs involves proving that a program satisfies a
formal specification of its behavior. Many languages use both static and dynamic type checking. With
such approach, the static type checker verifies everything possible at compile time, and the dynamic one
checks the remaining. The current state of the Jolie programming language includes a dynamic type
system. Consequently, it allows avoidable run-time errors. A static type system for the language has
been formally defined on paper but lacks an implementation yet. In this paper, we describe a prototype
of Jolie Static Type Checker (JSTC), which employs a technique based on a SMT solver. We describe
the theory behind and the implementation, and the process of static analysis. The article is published
in the authors’ wording.

Keywords: microservice, static analysis, Jolie programming language

For citation: de Carvalho D., Mazzara M., Mingela B., Safina L., Tchitchigin A., Troshkov N., “Jolie Static Type Checker:
a Prototype”, Modeling and Analysis of Information Systems, 24:6 (2017), 704-717.

About the authors:
Daniel de Carvalho, orcid.org/0000-0003-1473-8551, PhD, Innopolis University,
1 Universitetskaya ul., Innopolis, Respublika Tatarstan, 420 000 Russia, e-mail: d.carvalho@innopolis.ru

Manuel Mazzara, orcid.org/0000-0002-3860-4948, PhD,
Innopolis University, Russia, e-mail: m.mazzara@innopolis.ru

Bogdan Mingela, orcid.org/0000-0003-1384-7078, student
Innopolis University, Russia, e-mail: b.mingela@innopolis.ru

Larisa Safina, orcid.org/0000-0002-4490-7451, researcher,
Innopolis University, Russia, e-mail: l.safina@innopolis.ru

Alexander Tchitchigin, orcid.org/0000-0001-9286-6116,
Typeable.io LLC, Russia, email: sad.ronin@gmail.com

Nikolay Troshkov, orcid.org/0000-0002-5151-9940, student,
Innopolis University, Russia, e-mail: n.trshkv@gmail.com

1. Introduction

The microservice architecture is a style inspired by service-oriented computing that
promises to change the way in which software is perceived, conceived and designed [17].
The trend of migrating monolithic architectures into microservices to reap benefits of
scalability is growing fast today [7, 5]. Jolie [20] is the only language natively supporting
microservice architectures [9] and, currently, has dynamic type checking only.

Static type checking is generally desirable for programming languages improving
software quality, lowering the number of bugs and preventing avoidable errors. The

704

de Carvalho D., Mazzara M., Mingela B., Safina L., Tchitchigin A., Troshkov N.
Jolie Static Type Checker: a Prototype 705

idea is to allow compilers to identify as many issues as possible before actually run the
program, and therefore avoid a vast number of trivial bugs, catching them at a very early
stage. Despite the fact that, in the general case interesting properties of programs are
undecidable [26], static type checking, within its limits, is an effective and well established
technique of program verification. If a compiler can prove that a program is well-typed,
then it does not need to perform dynamic safety checks, allowing the resulting compiled
binary to run faster.

A static type system for Jolie has been exhaustively and formally defined only on
paper [25], but still lacks an implementation. The obstacles of programming in a language
without a static type analyzer have been witnessed by Jolie developers, especially by
newcomers. However, implementing such system is a non trivial task due to technical
challenges both of general nature and specific to the language. In this paper, we introduce
and describe the Jolie Static Type Checker (JSTC), building on top of the previous work
on the Jolie programming language [20]. Our approach follows the formal derivation rules
as defined in [25]. The project is built as a Java implementation of source code processing
and verification via Z3 SMT solver [21] and it has to be intended as our community
contribution to the Jolie programming language [2].

Section 2. recalls the basic of Jolie and section 3. discusses related work. The descrip-
tion of the static type-checking and the system architecture can be found in Section 4.,
while Section 6. draws conclusive remarks and discusses open issues.

2. Background

Microservices |6] is an architectural style evolved from Service-Oriented Architectures [12].
According to this approach, applications are composed by small independent building
blocks that communicate via message passing. These composing parts are indeed called
microservices. This paradigm has seen a dramatic growth in popularity in recent years [24].
Microservices are not limited to a specific technology. Systems can be built using a wide
range of technologies and still fit the approach. In this paper, however, we support the
idea that a paradigm-based language would bring benefit to development in terms of
simplicity and development cost.

Jolie is the first programming language constructed above the paradigm of micro-
services: each component is autonomous service that can be deployed separately and
operated by running in parallel processes. Jolie comprises formally-specified semantics,
inspired by process calculi such as CCS [18| and the 7-calculus [19]. As for practical side,
Jolie was inspired by standards for Service-Oriented Computing such as WS-BPEL [34]
and the attempts of formalizing it [13]. The composition of both theoretical and practical
aspects allows Jolie to be the preferred candidate for the application of modern research
methodologies, e.g. runtime adaptation, process-aware web applications, or correctness-
by-construction of concurrent software.

The basic abstraction unit of Jolie is the microservice [6]. It is based on a recursive
model where every microservice can be easily reused and composed to obtain, in turn,
other microservices. Such approach allows distributed architecture and guarantees simple
management of all components, which reduces maintenance and development effort.
Microservices communicate and work together by sending messages to each other. In

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.24, Ne6 (2017)
706 Modeling and Analysis of Information Systems. Vol. 24, No6 (2017)

Jolie, messages are represented in tree structure. A variable in Jolie is a path in a data
tree and the type of a data tree is a tree itself with the same shape but containing
types of corresponding data. Equality of types must therefore be handled with that in
mind. Variables do not require declaration before use, therefore the manipulation of the
program state must be inferred. Communications are type checked at runtime, when
messages are sent or received. Type checking of incoming messages (at runtime?) is
especially relevant, since it could moderate the consequences of errors.

The Jolie language is constructed in three layers: the behavioural layer operates
with the internal actions of a process and the communication it performs as seen from
the process’ point of view, the service layer deals with the underlying architectural
instructions and the network layer deals with connecting communicating services.

Other workflow languages are capable of expressing orchestration of (micro)services
the same way Jolie can do, for example WS-BPEL [34]. WS-BPEL allows developers
to describe workflows of services and other communication aspects (such as ports and
interfaces), and it has been also shown how dynamic workflow reconfiguration can be
expressed [15]. However, WS-BPEL has been designed for high-level orchestration, while
programming the internal logic of a single micro-service requires fine-grained procedural
constructs. Here Jolie works better.

3. Related work

The implementation of a static type checker for Jolie is part of a broader attempt to
enhance the language for practical use. Previous work on the type system has been
done, however focusing mostly on dynamic type checking. Safina extended the dynamic
type system as described in [28], where type choices have been added in order to move
computation from a process-driven to a data-driven approach.

The idea to integrate dynamic and static type checking with the introduction of
refinement types, verified via SMT solver, has been explored in [31]|. The integration of
the two approaches allows a scenario where the static verification of internal services and
the dynamic verification of (potentially malicious) external services cooperates in order
to reduce testing effort and enhancing security.

The idea of using SMT Solvers for static analysis, in particular in combination
with other techniques, has been successfully adopted before for other programming
languages, for example LiquidHaskell and F*. LiquidHaskell [11]! is a notable example
of implementation of Liquid Types (Logically Qualified Data Types) |27]. It is a static
verification technique combining automated deduction (SMT solvers), model checking
(Predicate Abstraction), and type systems (Hindley-Milner inference). Liquid Types have
been implemented for several other programming languages. The original paper presented
an OCaml implementation. F* [36] instead an ML-like functional programming language
specifically designed for program verification. The F* type-checker uses a combination
of SMT solving and manual proofs to guarantee correctness.

Another direction in developing static type checking for Jolie is creating a verified
type checker? by means of proof assistant instead of SMT solver [1]. Proof assistant

!Online demo at http://goto.ucsd.edu/"rjhala/liquid/haskell/demo/
’https://github.com/ak3n/jolie

http://goto. ucsd.edu/~rjhala/liquid/haskell/demo/
https://github.com/ak3n/jolie

de Carvalho D., Mazzara M., Mingela B., Safina L., Tchitchigin A., Troshkov N.
Jolie Static Type Checker: a Prototype 707

is a software tool needed to assist with the development of formal proofs by human-
machine collaboration and helps to ascertain the correctness of them. The type checker
is expressed as well-typed program with dependent types in Agda [35]. If the types are
well formed, all required invariants and properties are described and expressed in the
types of the program meaning that the program is correct. This work is currently in
progress and evolves in parallel with ours.

4. Static type-checking implementation

This paper builds on top of Julie Meinicke Nielsen’s work [25] at the Technical University
of Denmark implementing the type system of the Jolie language. The thesis represents
the theoretical foundation for the type checking of the core fragment of the language,
which excludes recursive types, arrays, subtyping of basic types, faults and deployment
instructions such as architectural primitives. The work of Nielsen presents the first
attempt at formalizing a static type checker for the core fragment of Jolie, and the
typing rules expressed there are the core theory behind our static checker.

In Nielsen’s work typing rules are represented in the style of type theory where the
rules take form of inference rules describing how a type system assigns a type to a
syntactic construct of the language [4]. Important addition to classical inference rules is
that we use typing context I' both left and right of a turnstile. This accounts for Jolie-
specific possibility to extend a variable’s inferred typing tree while analyzing program
text which is rooted in dynamic nature of the language. The rules are then applied by
the type system to determine if a program is well typed or not. The main typing rules
will be presented in the following of this paper.

The implementation of JSTC consists of two system components. Firstly, a Java
program accepts the source code of a Jolie program, builds an abstract syntax tree
(AST), visits it and produces a set of logical assertions written in SMT Lib [3] language.
At the second phase, the generated assertions are feed into Z3 solver. The basic idea is to
implement, for each Jolie node?, methods containing statements expressed in the SMT
Lib syntax. These statements can then be processed via a solver. In Figure 1 the overall
process is pictorially represented and details are described in section 4.4.

The concept of SMT solvers is closely related to logical theorems. Logic, especially
in the field of proof theory, considers theorems as statements of a formal language.
Existence of such logical expressions allows to formulate a set of axioms and inference
rules to formalize the typing rules for each of Jolie syntax nodes and then perform the
validation of the nodes using constructed theorems. Consequently, the Jolie typing rules
are the specific cases of logical theorems, that are used in the project. The concept is
implied from software verification fundamentals [10].

Since Jolie program may contain complex expressions with function calls, it is also
necessary to consider data structures representing a match between names and expressions,
in order to be able to avoid inconsistency and redundancy, that are likely to cause conflicts
during type-checking. The project implementation considers using a stack during the
recursive checking of the nodes as illustrated in section 4.4.

3 Any syntax unit is considered a node. It can be a logical or arithmetic expression, an assignment; a
condition; a loop etc. Those nodes comprise the abstract syntax tree.

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.24, Ne6 (2017)
708 Modeling and Analysis of Information Systems. Vol. 24, No6 (2017)

/ Jolie Verifier \

Jolie

source code

Abstract
Syntax Tree

SMT Theorems Set }—(

° Sat/ Unsat

Fig 1. Process of Type Checking in the Jolie Verifier

The decision of using an SMT-solver, instead of more lightweight techniques, was
made in order to allow a future straightforward integration of Refinement Types into
the type checker, objective on which our team is already working [28, 31|. Furthermore,
relying on a solid existing technology allowed us to prototype and release a proof of
concept of the type checker in a shorter period of time.

4.1. Jolie verifier

The Java program reuses an existing structure of a Visitor pattern developed for Jolie
interpreter and also used in a previous project for formatting Jolie source code?. It accepts
processed Jolie program source code in the form of AST and performs traversing. For
each kind of node the system creates one or more logical formulas written in SMT Lib
syntax, which are then stored into a file>. The verifier targets assignments, conditions,
and other cases of variables usage where type consistency can be violated.

4.2. SMT Solver

73 carries out the main burden of program verification. Z3 is an SMT solver from
Microsoft Research [21]. It is targeted at solving problems that arise in software verification
and software analysis. Given a set of formulas that was previously created by the verifier
in Java, Z3 processes it and returns whether this set is satisfiable or not. In case of any
contradiction in the set, the solver will signal that the overall theorem is not satisfiable,
therefore alerting that the input program is not consistent in terms of types usage.

“https://github.com/nickaleks/jolie
5At the current implementation state the theorems are collected in a single data element.

https://github.com/nickaleks/jolie

de Carvalho D., Mazzara M., Mingela B., Safina L., Tchitchigin A., Troshkov N.
Jolie Static Type Checker: a Prototype 709

4.3. Typing rules

Our objective is to accurately translate Jolie typing rules into SMT statements, therefore
allowing static type checking®. The foreground activity so far is producing the set of
statements for the constructs of the behavioural layer of Jolie. The layer describes the
internal actions of a process and the communications it performs as seen from the process’
point of view. The layer is chosen for the first phase of the development because it forms
foundation of the syntactical structures of Jolie. Also there is a similarity of the layer
with common programming languages in a sense of the abstraction level.

All statements at the behavioural layer of Jolie are called behaviours. We write I' 5
Br1" to indicate a behaviour B, typed with respect to an environment I', which updates
[to I during type checking [25]. The context I' consists of variables known to the type
checker so far and their respective types.

There are some core rules presented and described below.

T-Nil. The typing rule for a nil behaviour is an axiom. In the conclusion the
typing environment is not changed, since the nil statement doesn’t affect the typing
environment.

I' Fp 0T

T-If-Then-Else. The rule for typing an if statement is standard: an if statement is
typeable if its condition has type bool, and the type checking of its branches perform the
same updates to the environment. We require the branches to perform the same updates
because we do not know which branch will be taken. The else part may also be omitted
and B; may be replaced by an empty behaviour. The conditional typing statement is
the following;:

I'F e:bool T FpBioIY T b BypIV
[' Fpif(e) By else Bo>T"

T-While. The rule for typing a while statement is also standard: a while statement
is typeable if its condition has type bool, and type checking its body has no influence on
the typing environment.

I' = e:bool T Fg BT
' kg while(e)B>T

Above, it is required that the body of a while loop does not change the typing of
variables because we do not know whether the body will be executed at all, and for how
many times. We also require that expression e is type checked against type bool.

T-Seq. A sequence statement typed with respect to an environment is typeable if its
first component is typeable with respect to the environment and its second component is
typeable with respect to the update of the environment performed by the first component.
The update of the environment performed by the sequence statement is the update
performed by the second component with respect to the update performed by the first
component.

6Please note that, at the moment, not all the rules in [25] have been implemented.

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.24, Ne6 (2017)
710 Modeling and Analysis of Information Systems. Vol. 24, No6 (2017)

' bp BivIV TV B By 17
T '_B Bl;BQDF”

Thus, fundamental typing rules of the behavioural layer of Jolie programming language
are presented and explained for further topic revelation.

4.4. Typing rules to SMT translation

Here we will examine an example of the conditional rule translation in order to understand
the procedure in detail.

The typing rule of the ¢f statement does not contradict intuition. The statement is
typeable when its condition expression is boolean, and the execution of both its branches
brings the same updates to the environment. This means that the set of matches between
expressions and variables with their types remains the same with no difference from a
branch choice. This is necessary since it is not possible to predict what branch will be
executed at runtime’.

The full implementation is available on Github®. In Figure 2 we show the Java
fragment that builds the corresponding SMT statement.

1 | (declare—const key Term)

2

3 | (declare—const 8% term id 4 Term)

4 |(assert (hasType 88 term id 4 string))

5 | (assert (sameType key 38 term id 4))

6 | (assert (hasType key string))

7 | (declare—const $§% term id 5 Term)

8 | (declare—const animals Term)

9 | (declare—const animals.cat Term)
10
11 | (declare—const $$__term_id_10 Term)
12 | (assert (hasType $%__term_id_10 string))
13 | (assert (sameType animals.cat 3%__term_id_10))
14 | (assert (hasType animals.cat string))
15 | (declare—const $$__term_id_11 Term)

(

declare—const animals .DYNAMIC PATH %8 term id 14 Term)

(declare—const $% term id_ 19 Term)

(assert (hasType $8__term_ id_19 int))

20 | (assert (sameType animals DYNAMIC PATH 8§ term id 14 88 term id 19))
(assert (hasType animals .DYNAMIC PATH %8 term id 14 int))

Fig 2. Code in Java for checking conditionals

The code structure represents basic steps to achieve a record with corresponding
SMT statements of the block as a result. Firstly, a condition of the if statement is
separated from the body. Then the condition is sent to be checked using the same visitor
class. Eventually after the last 'recursion’ step the condition is put in the stack of terms,
which contains any terms (expressions, variables etc.) processed during the checking. So

"The else part may also be omitted and By may be replaced by an empty behavior.
8https://github.com/innopolis-jolie-smt-typechecker/jolie

https://github.com/innopolis-jolie-smt-typechecker/jolie

de Carvalho D., Mazzara M., Mingela B., Safina L., Tchitchigin A., Troshkov N.
Jolie Static Type Checker: a Prototype 711

the term corresponding to the condition is expected to be on top of the stack. Then
an assertion that says the condition term is boolean is written. Afterwards the body is
processed using one of the other overloads of the visitor. These steps can be repeated
in case of existence of nested conditional statements. In the end of the method the else
branch body of the very first if is processed if it is present. There is also an important note
that the conditional statement does not impose any other direct type restrictions besides
the condition term that is confirmed by the mentioned typing rule. Other implemented
nodes can be seen in the source mentioned above.

The Jolie verifier takes some input for processing. Let us consider a simple piece of
Jolie code of Figure 3 with a conditional statement.

1 |a = 2; a = 2;
2 |b = 3; b= 3;
3[if (a>b) { if (5) 1
4 println@Console(a + b)() println@Console(a -+ b)()
5|} else{ } elsef
6 println@Console("Hello!" () println@Console("Hello!")()
71} }
Fig 3. Code in Jolie Fig 4. Variation of the code of Figure 3

In the case everything works, none of the typing rules are violated. Z3 agrees with
the opinion and results in 'sat’, that means the program state is satisfiable. Figure 5 lists
the SMT statements representing the condition processing.

(declare—const $$ term id 10 Term)
(assert (hasType $$__term_id_10 bool))

(assert (hasType $$__term_id_10 bool))

Fig 5. Z3 code for the conditional of Figure 3

The first assertion is made based on an expression type determination: the expression
a > b is boolean. The second one is imposed by the typing rule: the condition expression
must be boolean. In this case there is no contradiction between the two assertions.

If the condition is replaced with some other expression the typing rule may be
violated. The corresponding example of incorrect conditional expression is shown in
Figure 4 and the constructed SMT statements for the example are given in Figure 6.

(declare—const 55 term_id_ 10 Term)
(assert (hasType 85 term id 10 imnt))

(assert (hasType 88 term id 10 bool))

Fig 6. Z3 code for the conditional of Figure 4

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.24, Ne6 (2017)
712 Modeling and Analysis of Information Systems. Vol. 24, No6 (2017)

Now the contradiction between the assertions is notable. The checker decided the
expression to be an integer, which is correct. But the restriction on a condition type
from the typing rule simply contradicts the actual type. Consequently Z3 results in
'unsat’. This means the assertions representing program’s typing are unsatisfiable and
incorrect in terms of the considered static type checking analysis.

5. Evaluation

The question of how to prove correctness of verification tools has always been widely
discussed. How can we be sure that the output of such tool is correct? It can be poorly
written, or the hardware could malfunction. However, in most cases we tend to trust
verification tools, and in our project we have to make sure that this tool is as trustworthy
as any other. The general solution is testing. Verification of the correctness the code
being written was continuously performed during the development process. The Jolie
Team created a collection of examples of Jolie programs®. The verification results of
some of them are presented in this section.

5.1. An unsatisfiable model

The overall purpose of the type checker is to find inconsistency in (assumed) type usage.
The program listed in Figure 7 is the most basic example of a program with inconsistent
types. The variable mylInt is assigned an integer first, and then a string. The current
design of the type checker disallows this behavior.

(declare—const myInt Term)

(declare—const $$ term id 4 Term)
main (assert (hasType $$3__term id_4 int))
{ (assert (sameType myInt $$3 term id 4))
mylnt = 15; (assert (hasType mylnt int))
mylnt = "fifteen"
}

(declare—const $$__term id 10 Term)
(assert (hasType $$__term id_ 10 string))
(

(

assert (sameType myInt $3 term id 10))

Fig 7. Jolie code
assert (hasType mylnt string))

— O © 00 O Ui Wi+

—

Fig 8. Z3 code corresponding to Figure 7

The resulting set of SMT theorems is listed in Figure 8.

The model is unsatisfiable. Assertions on the lines 4-6 restrict type of mylnt to
integer, whereas assertions on the lines 9-11 ensure that the same variable should be of
type string. These assertions cannot be evaluated to be true in the same model. Therefore
the program is considered ill-typed.

‘nttps://github.com/jolie/examples

https://github.com/jolie/examples

de Carvalho D., Mazzara M., Mingela B., Safina L., Tchitchigin A., Troshkov N.
Jolie Static Type Checker: a Prototype 713

5.2. A satisfiable model

In case everything in the program code is correct in terms of type consistency, the type
checker should evaluate the resulting SM'T model as satisfiable. It also should ignore
cases that have not being processed properly yet, without giving any false positives. The
program listed in Figure 9, in fact, an inconsistency in types usage. The line 8 reassigns
a variable to be of type integer, whereas at the line 5 the same variable was introduced
as a variable of type string. However, as long as this assignment include a statement with
a dynamic key, the type checker ignores it. The reason for this is inability to determine
which variable this path will point to at the moment of execution.

1 |main

2 {

3 key = "cat";

4 animals.cat = "I am a cat";
5 animals.(key) = 13

6|}

Fig 9. Jolie code with dynamic key

The resulting set of SMT assertions is listed in Figure 10. The workaround for the
dynamic keys issue can be seen at Lines 20 and 21. Any time a variable is used in order
to construct another variable path, the whole Term is getting a unique identifier marked
with the DYNAMIC PATH substring. This way it will not interfere with any other
assertion, thus not affecting the overall model satisfiability.

1 | (declare—const key Term)

2

3 | (declare—const $$%__term_ id_4 Term)

4 |(assert (hasType 38 term id 4 string))

5 | (assert (sameType key $3 term id 4))

6 | (assert (hasType key string))

7T | (declare—const $3_term id 5 Term)

8 | (declare—const animals Term)

9 | (declare—const animals.cat Term)

10

11 | (declare—const $5_ _term_id_10 Term)

12 | (assert (hasType $$__term_ id_10 string))

13 | (assert (sameType animals.cat 8% term id 10))

14 | (assert (hasType animals.cat string))

15 | (declare—const $§ term id 11 Term)

16 | (declare—const animals .DYNAMIC PATH $8 term id 14 Term)
17

18 | (declare—const $$__term_id_19 Term)

19 |(assert (hasType $$__term_id_19 int))

20 | (assert (sameType animals .DYNAMIC PATH 85 term id 14 838§ term id 19))
21 | (assert (hasType animals DYNAMIC PATH $8 term id 14 int))

Fig 10. Z3 code corresponding to the Jolie code of Figure 9

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.24, Ne6 (2017)
714 Modeling and Analysis of Information Systems. Vol. 24, No6 (2017)

6. Conclusions and future works

Jolie is the first programming language specifically oriented to the microservice architec-
ture. It has been shown how software attributes such as extensibility, modifiability and
consistency can significantly benefit from a migration into the microservice paradigm [7,
5]. Projects run by our team demonstrated the efficacy of the paradigm and of the Jolie
programming language in the field of ambient intelligence and smart buildings [29, 30].
Social networks implementation would also benefit from a reorganization of the software
architecture [16]. Local projects, and beyond that a number of projects worldwide invol-
ving the use of Jolie, would immensely benefit from a fully stable implementation of the
Jolie Static Type Checker.

Static type checking allows compilers to identify certain programming mistakes (that
violate types) at compile time, i.e. before actually running the program. Therefore
a vast number of trivial bugs can be caught and fixed at a very early stage of the
software life-cycle. In this paper we described JSTC, a static type checker for the Jolie
programming language which natively supports microservices. A static type system for
the language has been exhaustively and formally defined on paper, but so far still
lacked an implementation. We introduced our ongoing work on a static type checker
and presented some details of the implementation. The type checker prototype, at the
moment, consists of a set of rules for the type system expressed in SMT Lib language.
The actual implementation covers operations such as assignments, logical statements,
conditions, literals and comparisons.

JSTC is already able to validate programs, as it has been shown in this paper.
However, it works with certain assumptions. The main assumption is that programs do
not contain implicit type casts. The Jolie language allows implicit type casts, however,
their behavior is very complex. Handling such situations is an open issue left for future
development and future versions. Two other major issues have not been addressed.

Variable types can be changed at runtime. This strictly depends on the approach
that has been chosen. Generally, static typing guarantees that a variable has a type that
cannot be changed after declaration or assignment. However, Jolie allows this operation.
We need to determine which behavior we expect from the type checker, thus deciding
how to process type changes.

Implicit type casts in Jolie are ambiguous. This is a major problem, and further
research is required in order to find a solution. While Jolie allows implicit type casts,
sometimes the result of a cast is not obvious. For example, casting a negative Integer to
Boolean will result in a False. This is an unexpected behavior when compared to other
programming languages. There may be a solid rationale for this, however, we need to
investigate all cases and make sure that the type checker works accordingly to the Jolie
actual behavior, and not to the expected one.

JSTC future releases will need to be validated in real-life applications. The plan is to
use the Jolie programming language and the type checker as a basis for the development
of future research projects, the same way was done in [29] and [30]. Potential application
scenarios are cognitive architecture [32], automotive systems [8] and smart houses [23].

de Carvalho D., Mazzara M., Mingela B., Safina L., Tchitchigin A., Troshkov N.
Jolie Static Type Checker: a Prototype 715

References

[
2]

3]

4]
[5]

[6]

7]

18]

19]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]

[21]

Akentev E., Tchitchigin A., Safina L., Mazzara M., “Verified type checker for Jolie pro-
gramming language”, https://arxiv.org/pdf/1703.05186.pdf.

Bandura A., Kurilenko N., Mazzara M., Rivera V., Safina L., Tchitchigin A., “Jolie Com-
munity on the Rise”, 9th IEEE International Conference on Service-Oriented Computing
and Applications, SOCA, 2016.

Barrett C., Stump A., Tinelli C., “The SMT-LIB Standard. Version 2.0”, Proceedings of
the 8th international workshop on satisfiability modulo theories, Edinburgh, England, 2010.

Cardelli L., “Type Systems”, ACM Computing Surveys, 28 (1996), 263-264.

Dragoni N., Dustdar S., Larsen S.T., Mazzara M., “Microservices: Migration of a Mission
Critical System”, https://arxiv.org/abs/1704.04173.

Dragoni N., Giallorenzo S., Lluch-Lafuente A., Mazzara M., Montesi F., Mustafin R.,
Safina L., “Microservices: yesterday, today, and tomorrow”, Present and Ulterior Software
Engineering, ed. Bertrand Meyer, Manuel Mazzara, Springer, 2017, 195-216.

Dragoni N., Lanese I., Larsen S.T., Mazzara M., Mustafin R., Safina L., “Microservices:
How To Make Your Application Scale”, A.P. Ershov Informatics Conference (the PSI
Conference Series, 11th edition), Lecture Notes in Computer Science, Springer, 2017.

Gmehlich R., Grau K., Loesch F., Iliasov A., Jackson M., Mazzara M., “Towards a
formalism-based toolkit for automotive applications”, 1st FME Workshop on Formal Meth-
ods in Software Engineering (FormaliSE 2013), IEEE Computer Society, 2013, 36—42.

Guidi C., Lanese 1., Mazzara M., Montesi F., “Microservices: a Language-based Approach”,
Present and Ulterior Software Engineering, ed. Bertrand Meyer, Manuel Mazzara, Springer,
2017, 217-225.

Hoare C. A.R., “An Axiomatic Basis for Computer Programming”, Communications of the
ACM, 12 (1969), 576-583.

Jhala R., “Liquid Haskell”, https://ucsd-progsys.github.io/liquidhaskell-blog/.

MacKenzie M. C., Laskey K., McCabe F., Brown P.F., Metz R., “Reference model for
service oriented architecture 1.0”, OASIS Standard, 12 (2006).

Mazzara M., Towards Abstractions for Web Services Composition, Ph.D. Thesis, University
of Bologna, 2006, http://www.informatica.unibo.it/it/ricerca/technical-report/
2006/UBLCS-2006-08.

Mazzara M., Abouzaid F., Dragoni N., Bhattacharyya A., “Toward Design, Modelling and
Analysis of Dynamic Workflow Reconfigurations — A Process Algebra Perspective”, Web
Services and Formal Methods, 8th International Workshop, WS-FM 2011, Lecture Notes
in Computer Science, 7176, 2011, 64-78.

Mazzara M., Abouzaid F., Dragoni N., Bhattacharyya A., “Design, Modelling and Analysis
of a Workflow Reconfiguration”, Proceedings of the International Workshop on Petri Nets
and Software Engineering, Newcastle upon Tyne, UK, June 20-21, 2011, 10-24.

Mazzara M., Biselli L., Greco P. P., Dragoni N., Marraffa A., Qamar N., Simona de Nicola,
“Social networks and collective intelligence: a return to the agora”, Social Network Engi-
neering for Secure Web Data and Services, IGI Global, 2013.

Mazzara M., Mustafin R., Safina L., Lanese I., “Towards Microservices and Beyond:
An incoming Paradigm Shift in Distributed Computing”, https://arxiv.org/pdf/1610.
01778.pdf.

Milner R., Communication and concurrency, Prentice Hall International (UK) Ltd., 1995.

Milner R., Communicating and Mobile Systems: The m-calculus, Cambridge University
Press, 1999.

Montesi F., Guidi C., Zavattaro G., “Service-Oriented Programming with Jolie”, Web Ser-
vices Foundations, Springer, 2014, 81-107.

Moura de L., Bjgrner N., “Z3: An Efficient SMT Solver”, Tools and Algorithms for the
Construction and Analysis of Systems, 14th International Conference, TACAS 2008, Held
as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2008 (Budapest, Hungary, March 29-April 6, 2008), Lecture Notes in Computer Science,
4963, Springer, 2008, 337-340.

https://arxiv.org/pdf/1703.05186.pdf
https://arxiv.org/abs/1704.04173
https://ucsd-progsys.github.io/liquidhaskell-blog/
http://www.informatica.unibo.it/it/ricerca/technical-report/2006/UBLCS-2006-08
http://www.informatica.unibo.it/it/ricerca/technical-report/2006/UBLCS-2006-08
https://arxiv.org/pdf/1610.01778.pdf
https://arxiv.org/pdf/1610.01778.pdf

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.24, Ne6 (2017)
716 Modeling and Analysis of Information Systems. Vol. 24, No6 (2017)

[22] Moura de L., Bjgrner N., “Satisfiability modulo theories: An appetizer”, Formal Methods:
Foundations and Applications, 12th Brazilian Symposium on Formal Methods, SBMF 2009,
Lecture Notes in Computer Science, 5902, Springer, 2009, 23-36.

[23] Nalin M., Baroni I., Mazzara M., “A Holistic Infrastructure to Support Elderlies’ Indepen-
dent Living”, Encyclopedia of E-Health and Telemedicine, IGI-Global, 2016, 591-605.
[24] Newman S., Building microservices, O'Reilly Media, Inc., 2015.

[25] Nielsen J.M., A Type System for the Jolie Language, Master thesis, Technical University
of Denmark, 2013.

[26] Rice H.G., “Classes of Recursively Enumerable Sets and Their Decision Problems”, Trans.
Amer. Math. Soc., T4 (1953), 358-366.

[27] Rondon P. M., Kawaguci M., Jhala R., “Liquid Types”, SIGPLAN Not., 43:6 (2008), 159—
169.

[28] Safina L., Mazzara M., Montesi F., Rivera V., “Data-driven Workflows for Microservices
(genericity in Jolie)”, Proc. of the 30th IEEE International Conference on Advanced Infor-
mation Networking and Applications (AINA 2016), 2016.

[29] Salikhov D., Khanda K., Gusmanov K., Mazzara M., Mavridis N., “Microservice-based

IoT for Smart Buildings”, Proceedings of the 31st International Conference on Advanced
Information Networking and Applications Workshops (WAINA), 2017.

[30] Salikhov D., Khanda K., Gusmanov K., Mazzara M., Mavridis N., “Jolie Good Buildings:
Internet of things for smart building infrastructure supporting concurrent apps utilizing
distributed microservices”, Proceedings of the 1st International conference on Convergent
Cognitive Information Technologies, 2016.

[31] Tchitchigin A., Safina L., Mazzara M., Elwakil M., Montesi F., Rivera V., “Refinement
types in Jolie”, Spring/Summer Young Researchers Colloquium on Software Engineering,
SYRCoSE, 2016.

[32] Vallverdua J., Talanov M., Distefano S., Mazzara M., Tchitchigin A., Nurgaliev I., “A cog-
nitive architecture for the implementation of emotions in computing systems”, Biologically
Inspired Cognitive Architectures, 15 (2016), 34 — 40.

[33] “Z3”, https://github.com/Z3Prover/z3.

[34] “OASIS. Web Services Business Process Execution Language”, http://docs.oasis-open.
org/wsbpel/2.0/wsbpel-specification-draft.html.

[35] “Agda”, http://wiki.portal.chalmers.se/agda/pmwiki.php.
[36] “F*”, https://www.fstar-lang.org/.

ne Kapsasibo ., Mammapa M., Munreaa B., Cacduna JI., UYnuurun A., Tpoir-
koB H., "l[Ipororun craruvieckoro raiin-dexkepa Jjisd s3blka mporpammupoBanus Jolie",
Modeauposanue u ananrusd ungopmayuonmor cucmem, 24:6 (2017), 704-717.

DOI: 10.18255/1818-1015-2017-6-704-717

Annorarusi. Crarndeckas BepudUKAIs UCXOIHOTO KOJ@ MPOIPAMMBI SIBJISIETCS BarXKHBIM 3JIe-
MEHTOM HaJIeXKHOCTHU IIPOrpaMMHOr0 obecrieyenusi. 11oj Bepudukanumeil mpemnoaaraercs 10Ka3aTe b
CTBO COOTBETCTBUsI TIOBEJIEHUsI IIPOIPAMMBI ee ClenuduKanuu. Bo MHOIMUX S3bIKaX IPOrPaMMUPOBAHUS
HCIIOTB3YeTCsl KAK CTATUYECKas, TaK U JUHAMUYECKAs [IPOBEPKA THUIIOB. TakmM 00pa3oM, CTATHIECKUN
Talll-4eKep CTapaeTcs IIPOBEPUTH BCE BO3MOXKHOE BO BPEMsl KOMITWJISIINU, a8 AUHAMUYIECKHUI TPOBEPSsi-
er ocraBiieecsd. Ha JaHHbIE MOMEHT #3bIK IIPOrPAMMUPOBaHUSA Jolie mMeeT JUHAMHYECKYIO CHCTEMY
THUIIOB, YTO I03BOJIseT OOHAPYKUBATh OIMIMOKU TOJIBKO BO BpEMsl BBIIOJIHEHUs MporpaMmbl. Crarmde-
CKasl CHCTEeMa THUIIOB [IJIsI sI3blKa ObLIa (OPMAJIbLHO OIpejeeHa Ha Gymare, HO IOKAa HE PEAJU30BaHA.
B sr0it craTbe MBI IpEICTABUM MPOTOTHUII CTATUIECKOTO TAWI-UeKepa JJIsi S3bIKa MPOrPAMMIPOBAHUS
Jolie (JolieStaticTypeChecker wiu JSTC), ocnoBanubiii na SMT-pemarese. Mpl onuriem 6a30ByI0 Teo-
pHUIo, HEOOXOIUMYIO JIJTsl Pean3alii Talli-ueKepa, caMy Pean3alliio, a TakyKe MPOIECC CTATHIECKOTO
anajm3a nporpaMMbl. CTaTbs MyOJIMKyeTCsl B ABTOPCKOIM PeJIAKITHIHL.

https://github.com/Z3Prover/z3
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.html
http://wiki.portal.chalmers.se/agda/pmwiki.php
https://www.fstar-lang.org/

de Carvalho D., Mazzara M., Mingela B., Safina L., Tchitchigin A., Troshkov N.
Jolie Static Type Checker: a Prototype 717

KurouyeBbie cjioBa: MHUKPOCEPBUCHI, CTATUYIECKUI aHAIN3 KO, A3bIK MporpaMMupoBanus Jolie

O6 aBTOpax:

ne Kapsasnbo Januais, orcid.org/0000-0003-1473-8551, norenr,

Yuusepcurer unonosuc, Yausepcurerckasi yi., 1, Uanononuc, Pecn. Tarapcran, 420500, Poccus
e-mail: d.carvalho@innopolis.ru

Mannapa Manysuis, orcid.org/0000-0002-3860-4948, pykosoauTess 1abopaTopun apxuTeKTypbl u mozeseii 110,
Yuusepcurer unonosuc, Yausepcurerckasi yi., 1, Munonomnuc, Pecn. Tarapcran, 420500, Poccus
e-mail: m.mazzara@innopolis.ru

Musnresa Borpan, orcid.org/0000-0003-1384-7078, crynenT
Yuusepcurer Vunonosuc, Yausepcurerckas yi., 1, Manonosnuc, Pecn. Tarapcran, 420500, Poccus
e-mail: b.mingela@innopolis.ru

Caduna Jlapuca, orcid.org/0000-0002-4490-7451, muammuii HayIHBIA COTPY/IHUK J1abOPATOPUU apXUTEKTYPBI U MOZeJIeit
T10, Yuusepcurer Unnononuc, Yuusepcurerckas yi., 1, Uanonomuc, Pecni. Tarapcran, 420500, Poccus
e-mail: l.safina@innopolis.ru

Yuuurun Anekcanap, orcid.org/0000-0001-9286-6116,

OO0O Taiims61, Poccusi, email: sad.ronin@gmail.com

Tpowmkos Hukosmaii, orcid.org/0000-0002-5151-9940, cryaent,
VYuusepcurer Vanonosuc, Yuusepcurerckas yi., 1, Manomonuc, Pecu. Tarapcran, 420500, Poccus
e-mail: n.trshkv@gmail.com

