
Моделирование и анализ информационных систем. Т. 24, №6 (2017), с. 718–729
Modeling and Analysis of Information Systems. Vol. 24, No 6 (2017), pp. 718–729

c○Kogtenkov A.V., 2017

DOI: 10.18255/1818-1015-2017-6-718-729

UDC 004.052.42, 004.4’6, 004.423.42, 004.432.2, 004.438 Eiffel, 519.681.2, 519.682.1

Towards Null Safety Benchmarks for Object
Initialization

Kogtenkov A.V.

Received September 11, 2017

Abstract. Null pointer dereferencing remains one of the major issues in modern object-oriented
languages. An obvious addition of keywords to distinguish between never null and possibly null references
appears to be insufficient during object initialization when some fields declared as never null may be
temporary null before the initialization completes. This work identifies the key reasons of the object
initialization problem. It suggests scenarios and metrics to be used as the benchmarks to compare
solutions of this problem. Finally, it demonstrates application of the benchmarks on the proposed
solution for object initialization in Eiffel.

The article is published in the author’s wording.

Keywords: null pointer dereferencing, null safety, void safety, object initialization, static analysis,
null safety benchmarks
For citation: Kogtenkov A.V., “Towards Null Safety Benchmarks for Object Initialization”, Modeling and Analysis of
Information Systems, 24:6 (2017), 718–729.

On the author:
Alexander V. Kogtenkov, orcid.org/0000-0003-4873-8306, Doctor of Sciences ETH Zurich
Independent scientist, Podolsk, Russia, e-mail: kwaxer@mail.ru
address for correspondence: MAIS, 14 Sovetskaya str., Yaroslavl, 150003 Russia

1. Introduction

Null pointer dereferencing remains one of the major day-to-day issues in software industry.
To construct a sound null-safe type system, most solutions of the problem for object-
oriented languages add a notion of non-null and maybe-null types, usually expressed with
additional type annotations. Such annotations would be sufficient to solve the null safety
problem if objects could be created in an atomic operation, so that all fields marked as
non-null were initialized with object references. Unfortunately, sequential initialization
of the fields breaks the solution. Several proposals solving the object initialization issue
[1, 2, 7, 9] suggest extending the type systems further to identify objects that are not
completely initialized.

Instead of tweaking the type system, I proposed a static-analysis-based solution [10].
This solution relies on the validity rules checked during compilation to cover the cases left
by the type system checks. Combined with removal of annotations for local variables [5],
the solution is very effective in practice for avoiding null dereferencing problems, whilst

718

Kogtenkov A.V.
Towards null safety benchmarks for object initialization 719

having low cost in compilation time: (a) it reduces the annotation overhead compared
to previous solutions for the null-safe programming; (b) it correctly accepts or rejects
code of the published examples relevant to this problem [1, 2, 7, 9]; (c) it permits new
scenarios, impossible with type-system-based solutions.

But is the solution good enough? How does it compare to other approaches that
solve the object initialization problem? In this work I review examples from the previous
publications and identify the key reasons that cause the problem. Then I focus on the
detailed criteria that can be used to compare different solutions.

The main contributions of this work are:

∙ identification of the roots of the object initialization problem;

∙ development of execution scenarios and metrics for benchmarks of different null
safety solutions.

2. Motivating examples

Every publication on the problem of object initialization has few examples that authors
use either to demonstrate issues with their approach, or to explain how the issues are
resolved. I collected all the examples from the publications as well as found in class
libraries and divided them into the following cases. I use the differences between some
examples to describe common scenarios in section 5.

i. Polymorphic call from a constructor. Manuel Fähndrich and Rustan Leino [1]
describe a call to a virtual method on this in a superclass constructor. Because subclass
fields of the object are not initialized yet, accessing them in the polymorphic call causes
NullReferenceException. Xin Qi and Andrew C. Myers [7] consider a similar example
with a class Point and its subclass CPoint that adds a color attribute.

ii. Polymorphic callback from a constructor. Accesses to an uninitialized object
can be done indirectly. If a superclass constructor passes a reference to the current object
as an argument to create another object, this “remote” constructor can call-back on the
object where not all fields are initialized yet.

iii. Modification of existing structures. Convenience of the ability to invoke
regular procedures inside a constructor can be demonstrated with a mediator pattern [3].
It decouples objects so that they do not know about each other, but still can communicate
using an intermediate object, mediator. If the communicating objects register themselves
with the mediator in the code of their constructors, clients do not need to clutter their
code with the calls to register every new communicating object after creating it.

iv. Safety violations. In addition to valid cases, authors usually mention examples
that should trigger a compiler error. This aims at the original goal: a sound solution
should catch potential null dereferencing at compile time.

v. Circular references. Manuel Fähndrich and Songtao Xia [2] review a linked list
example with a sentinel. When a new list is constructed, a special sentinel node is created
and it should reference the original list object.

720
Моделирование и анализ информационных систем. Т. 24, №6 (2017)

Modeling and Analysis of Information Systems. Vol. 24, No 6 (2017)

vi. Self-referencing. This is a variant of circular references when an object references
itself rather than another object.

3. Practical void safety

3.1. Why is object initialization problematic?

Null safety is complicated for object initialization. To understand why, I suggest to look
at how program execution can lead to the null reference exception. Firstly, the object
that causes the problem should not complete its initialization, i.e., some of its fields of
non-null types should be null. Secondly, this object should be accessible — either directly
or through some variables. Thirdly, the information that its initialization is incomplete
should be lost. Otherwise, it would be easy to report the error at compile time. Finally,
the reference retrieved from the uninitialized field of the object should be dereferenced
to trigger the exception. To summarize, there are the following roots of the problem:

∙ Non-atomic initialization of an object leads to the possibility to have fields with
null values even when their type is non-null.

∙ Aliasing allows for accessing the same object from an arbitrary point of the program,
in particular, from the code that does not expect an incompletely initialized object.

∙ Uncontrollable control flow, interrupting the regular one, makes sequential reasoning
about program execution useless.

∙ Dereferencing of an uninitialized field of the incompletely initialized object triggers
the exception.

My review focuses solely on the null safe frameworks that use an existing object-
oriented language as the basis. This aims at reusing legacy code if possible and preserving
known coding techniques and patterns. In particular, I assume that constructors are
allowed to execute arbitrary code, not just a sequence of assignments of supplied argu-
ments to the fields. This implies that the current object can be used in the constructor
and to escape from it as soon as such uses and escapes are guaranteed to avoid null
dereferencing.

To achieve the safety, the solutions extending the type system with new types limit
the operations on incompletely initialized objects. For Eiffel, I developed the practical
void safety solution, briefly described in the next subsection. It specifies the conditions,
when dereferencing may be unsafe, and forbids such dereferencing altogether.

3.2. Solution outline

From the point of view of the solution that avoids additional types annotations, all
examples from section 2 can be divided into 2 major groups:

∙ Examples i to iv: – Can the code be reordered to initialize all fields before use?

∙ Examples v and vi: – Can compile-time rules ensure an object with recursive
references to itself is not used as a completely initialized one?

Kogtenkov A.V.
Towards null safety benchmarks for object initialization 721

The issue in the first group arises because the current object is passed before all fields
of this object are set. The issue in the second group arises because not all fields can be
set before passing a reference to the current object. Then, on the one hand, a call on
an incompletely initialized object cannot assume all attributes are properly set. On the
other hand, a qualified call does not allow seeing what operations on an incompletely
initialized object are performed. The practical void safety solution disallows qualified
calls when some objects are incompletely initialized:

Validity rule. A constructor is null-safe if it satisfies all the following conditions:

1. All fields of the class are set at the end of the constructor.

2. Every field is set before it is used.

3. Any of the following is true at every execution point:

3.1 All fields are properly set.
3.2 The reference to the current object is unused before or at the current execution

point.
3.3 The expression at the execution point is neither of

∙ a qualified call;
∙ a creation expression that makes a qualified call.

Here, the term “current object” means a special entity this (in C# and Java) or
Current (in Eiffel). The term “qualified call” stands for the call with an explicit target
(i.e., has the form target.message) whereas the term “unqualified call” is used for the
call on the current object (i.e., has the form message). The rule applies not only to
the constructors declared in the class, but also to the inherited ones. The latter should
be rechecked in descendants even if the constructors are already checked in the classes
where they are defined.

In these conditions and because types of objects that are initialized by the constructors
are known, all unqualified calls from the constructors can be resolved at compile time.
Therefore, the methods, involved in these calls, can be checked using the same validity
rule. This allows for reusing initialization methods without any special annotations.
Although the compile-time checks take advantage of the static method resolution, the
generated code for constructors can still be shared among different classes and can rely
on dynamic dispatch for unqualified calls.

4. Related work
Raw types (solve examples i and iv with 2+ annotations). Manuel Fähndrich
and K. Rustan M. Leino [1] denote attached types with 𝑇− and detachable types with
𝑇+ and propose to add raw types 𝑇 𝑟𝑎𝑤− to be used for partially initialized objects. If
class 𝐶 has an attribute of type 𝑇 and some entity has type 𝐶𝑟𝑎𝑤− then a qualified call
to this attribute has type 𝑇+ regardless of original attachment status of that attribute.
An assignment to an entity of a raw type accepts only a source expression of a non-
raw non-null type to ensure that if an object becomes fully initialized, it cannot be

722
Моделирование и анализ информационных систем. Т. 24, №6 (2017)

Modeling and Analysis of Information Systems. Vol. 24, No 6 (2017)

uninitialized. Also, by the end of every constructor, every non-null field should be
assigned. Unfortunately, the rules for super-class constructors are not directly applicable
to languages with multiple class inheritance, like Eiffel. Also, this approach does not
support creation of circular references.

Masked types (solve examples i to vi with many annotations). Xin Qi and
Andrew C. Myers [7] address the complete object life cycle. They instrument the type
system with so called “masks” representing sets of fields that are not currently initialized.
For example, the notation Node\parent!\Node.sub[l.parent] -> *[this.parent]
for an argument l tells that it has a type Node and on entry requires that its field
parent is not set and at the same time fields declared in subclasses of Node are not
set unless l.parent is initialized. On exit the actual argument conforms to the type
Node*[this.parent] that indicates that the node object will be completely initialized
as soon as its field parent is set. The notation is very powerful and goes far beyond null
safety, but even with its complexity authors complain that it is not sufficient for real
programs.

With masked types the results of a flow-sensitive type analysis are checked against
provided specifications, while in practical void safety approach they are used to check
the Validity rule conditions.

Free and committed types (solve examples i and iv to vi with 1+ annota-
tions). Alexander J. Summers and Peter Müller [9] set the following design goals:

1. Modularity: the type system can check each class type separately.

2. Soundness: the type system is safe, i.e., null pointer exceptions are impossible at
run-time.

3. Expressiveness: the type system handles common initialization patterns. In par-
ticular, it allows objects to escape from constructors and supports the initialization
of cyclic structures.

4. Simplicity: the type system is simple and requires little annotation overhead.

The authors distinguish just two object states: under initialization and completely
initialized. A newly allocated object has a so called “free” type. When an object is
deeply initialized, i.e., all its fields are set to deeply initialized objects, it is said to have
a “committed” type. The commitment point logically changes the type of an object from
free to committed and is defined as the end of a constructor that takes only committed
arguments. Possible aliasing between free and committed types is prevented by not
having a subtyping relation between them. This differs from the convention for raw
types [1].

The Validity rule is very close in spirit to the idea of free and committed types. But
it relies on a flow-sensitive analysis and ceases free type status when all attributes are
set. This allows the practical void safety to handle cyclic data structures without explicit
annotations.

Other approaches (solve examples i to vi with 0 annotations, non-modu-
lar). Additional annotations are avoided by Bertrand Meyer in [6] using so called
“targeted expressions” and creation-involved features. The analysis is somewhat similar
to the abstract interpretation approach used by Fausto Spoto [8] and should be applied

Kogtenkov A.V.
Towards null safety benchmarks for object initialization 723

to the system as a whole, thus sacrificing modularity. The advantage of the non-modular
checks is in accepting larger code base as correct, i.e., in better expressiveness.

5. Benchmark criteria
The most important goal of the null safety design is soundness. This limits the possibilities
to write arbitrary code that is still null safe. Indeed, the general problem of safe object
initialization is undecidable. Therefore, some restrictions should be imposed on the code
to make sure it can be checked in finite time.

As usual, soundness and expressiveness work against each other: the simpler the
language rules, the less code can be written without violating them. If the rules are too
strict, some scenarios found in real software can become extinct. E.g., the raw types [1]
do not allow for creation of circular structures, and the free and committed types [9] rule
out registration of objects in existing object structures inside constructors.

I use the design goals suggested by Alexander J. Summers and Peter Müller [9] as
the base criteria to evaluate usability of null safety solutions. I give a detailed analysis
of every aspect of the goals and review how it applies to distinguish characteristics of
different approaches.

5.1. Soundness

Authors of all the solutions [1, 2, 7, 9] from section 4 claim them to be sound, so do I [10]
for the practical void safety, based on the Validity rule. Unfortunately, not all aspects of
a real programming environment are usually reflected in the formal model. In particular,
none of the null safety formalizations reflects garbage collection that is an important
channel to compromise safety guarantees.

The roots of the object initialization problem, mentioned in section 3, are mapped
to the programming language constructs as follows:

∙ Non-atomic initialization corresponds to the order of initialization of the object
fields intermingled with other computations. This work does not consider languages
that support atomic (transactional) object initialization.

∙ Explicit aliasing becomes possible when an object is assigned to a field of an
existing object, either passed to the constructor as an argument or directly reachable
from the current context, or when the new object is thrown as an exception. Implicit
aliasing happens when the class declares a finalizer that gets access to the object.

∙ Uncontrollable control flow can be caused by concurrent execution, preemptive
execution (with exception and signal handlers), cooperative execution (coroutines).

∙ Dereferencing is done by a qualified call of the form target.access where access
stands for a field or method name and target is a name of a reference corresponding
to one of uninitialized field of the object.

Contrary to the formal models, programming languages, supporting some null safety
mechanisms, do not always handle object initialization properly. A notable example is
Kotlin [4] where, at the time of writing, null safety is unsound.

724
Моделирование и анализ информационных систем. Т. 24, №6 (2017)

Modeling and Analysis of Information Systems. Vol. 24, No 6 (2017)

class X create make feature
item: detachable A
put (value: A) do item := value end
make

do
(create {A}.initialize (Current)).

data.do_nothing
rescue

if attached item as value then
value.data.do_nothing

end
end

end

class A inherit
EXCEPTIONS

create initialize feature
data: A
initialize (x: X)

do
x.put (Current)
raise (Void)
data := Current

end
end

Fig 1. An example (in Eiffel) of a buggy scenario A-I(1a)

A. Escaping of uninitialized objects

If a program context does not expect an uninitialized object, there should be no
channels that allow for the object to escape to this context. The channels depend on the
programming language. The most common ones are discussed next.

A-I. Registration in an existing object. A program can register a new object in an
existing one. When this is done before the new object is completely initialized, there
is a problem: the incompletely initialized object can be accessed via the exiting object
because of aliasing. Thus, such registration should be disallowed. The scenario can be
further classified by

1) the source of the reference to the existing object that can be either (a) passed as
an argument to the constructor or (b) retrieved from the current context (static
data, once functions, singleton objects);

2) the type of the object in which the new one is registered: it can be (a) a user-defined
one or (b) a built-in one (e.g., an array).

A registration of the new object in the existing one requires a qualified call. The
condition 3.3 of the Validity rule disallows any qualified calls until all objects become
completely initialized. Therefore, the practical void safety solution guarantees that the
unsafe scenario with the explicit registration is impossible.

The example corresponding to this scenario is shown in fig. 1. It can be used in the
suit of benchmarks for null safety solutions. The method make of the class X creates an
object of the type A and passes a reference to itself (let’s call it x) as an argument. The
constructor initialize of the class A saves a reference to the current object in the object
x. At this point the field data is null. Then a raised exception breaks the execution of the
constructor in initialize. The rescue clause in make intercepts the exception, retrieves
the incompletely initialized object and makes a call on the field data of a non-null type.
This causes the null reference exception.

Kogtenkov A.V.
Towards null safety benchmarks for object initialization 725

A-II. Reclamation of incompletely initialized objects. Finalizers are the methods called
before object’s memory is reused. The finalizers are registered for calling by the run-time
right after object’s memory is allocated and before the constructor is invoked. If the
object initialization does not complete (due to an uncaught exception in the constructor),
the finalizer is invoked on the incompletely initialized object. Unless a programmer keeps
track of object initialization, there is no way to figure out what state the object is in.
Therefore, the current object in a finalizer should be treated like at the beginning of a
constructor.

A-III. Out-of-order object transfer. Most programming languages allow for transferring
references to objects bypassing regular control flow. The most familiar mechanism is
exceptions. If a new exception object referencing an incompletely initialized one is
thrown, the reference to the incompletely initialized object becomes accessible in the
code that relies on the type system rules and does not expect uninitialized fields.

There is no special construct to raise an exception in Eiffel. A qualified call to a
library method is used to do it. According to the condition 3 of the Validity rule, all
objects should be completely initialized at this point, therefore, soundness is preserved.

B. Non-sequential control flow

Approaches solving the object initialization problem with whole-system analysis make
a safe approximation about all possible execution traces. Consequently, these approaches
are non-modular.

The modular approaches are limited by the local analysis only and should assume
worst-case scenarios for operations on incompletely initialized objects. This is achieved by
pretending that sequential execution can break anywhere. In other words, the solutions
do not exclude unexpected interruption. Therefore, here I just list possible scenarios that
can be used to build the benchmark tests:

B-I. Exceptions.

B-II. Concurrency.

B-III. Cooperative execution.

C. Dereferencing

C-I. Unqualified calls. Access to uninitialized fields should either be prohibited or
result in a potentially null value. The condition 2 of the Validity rule sticks to the first
variant.

C-II. Qualified calls. Before all objects are completely initialized, language rules
should either disallow qualified access to fields or make sure the retrieved values are
not considered as safe for use. In particular, these values may be null or (recursively)
have null values in non-null fields of referenced objects. The practical void safety solution
takes the first route and disables qualified calls until all objects are completely initialized.

5.2. Expressiveness

Any example demonstrating a soundness issue from section 5.1 can be turned into a
legitimate one. To this end, one of the conditions that cause the problem should be

726
Моделирование и анализ информационных систем. Т. 24, №6 (2017)

Modeling and Analysis of Information Systems. Vol. 24, No 6 (2017)

data := Current
x.put (Current)
raise (Void)

(a)

raise (Void)
data := Current

(b)

Fig 2. Possible fixes of the method initialize from fig. 1

made false. E.g., setting the field data before passing a reference to the current object
as in fig. 2a or avoiding leaking this reference altogether as in fig. 2b, both make the
example from fig. 1 legitimate.

D. Calls on incompletely initialized objects

Calls on incompletely initialized objects require special precaution, but they allow
for more code reuse.

D-I. Unqualified calls.

1) Method call. One of the key uses of unqualified calls is initialization itself. The
methods that set object fields can be called from different constructors to avoid
code duplication.

2) Field access. For the same reason, access to the fields that might be unset can be
useful outside of object initialization. The code would check if the field value is
null and proceed as needed.

D-II. Qualified calls. In general, qualified calls on incompletely initialized objects are
unsafe. Therefore, additional restrictions should be imposed on the code of the called
methods as well as on the code of the callers. They both cannot rely on the regular type
system rules.

1) Method call. The called methods cannot assume that fields of non-null types are
not null.

2) Field access. Safe access to object fields can be guaranteed only if they have a basic
type without nested references.

E. Circular references.

Object structures with circular references appear to be a common design pattern.
They can be classified by the structure kind:

1) Self-referencing. A new object references itself after creation.

2) Mutual references. (a) Two objects or (b) 𝑛 objects make a circular structure after
creation, where 𝑛 is not necessary fixed at compile time.

3) Complex structures. A combination of cases 1) and 2).

Kogtenkov A.V.
Towards null safety benchmarks for object initialization 727

F. Regular use of a completely initialized object from the constructor

F-I. Callback. When an object is completely initialized, it can be passed from the
constructor as an argument to create another object that makes a callback later. This
pattern is used in some portable GUI libraries.

F-II. Escaping of initialized objects. The scenarios repeat the scenarios A:
1) Registration in an existing object.

2) Out-of-order object transfer.
But now the object is completely initialized and does not cause a problem.

G. Genericity

Solutions can differ by the ability to use a formal generic type as a creation type.
For the practical void safety solution, special convention should be introduced to indicate
whether the constructor of the actual generic parameter satisfies the Validity rule
requirements.

5.3. Modularity

H. Scope. The solution is modular if it is sufficient to analyze (recursively) ancestors
and suppliers of the class to be checked.

The Validity rule depends on the properties of the constructors from the other classes.
Because these constructors are known at compile time, the checks do not depend on the
classes that are not directly reachable from the one being checked. Therefore, a library
can be checked as a standalone entity without the need to recheck it after inclusion in
some other project.

I. Incrementality. The metric tells if changes to previously checked code require a
partial recheck rather than a complete one.

With the practical void safety, fast recompilation is supported if information about
reachable constructors and whether they perform qualified calls is recorded for every
class.

5.4. Simplicity

This group of metrics tells how accessible is the solution.
J. Number of additional annotations. This is the number of different type marks

that need to be added besides the marks “non-null” and “maybe-null”.
K. Ease. This metric describes whether few new simple rules are added to the

language to make object initialization null safe.
L. Performance. The metrics describes the resource consumption to support the

additional checks. This includes:
1) space complexity – how much additional memory is required;

2) time complexity – how much time the new language checks take.
M. Availability. This metric tells if there is a tool (compiler/framework) that

supports the rules.

728
Моделирование и анализ информационных систем. Т. 24, №6 (2017)

Modeling and Analysis of Information Systems. Vol. 24, No 6 (2017)

6. Preliminary results
The table below summarizes results of selected benchmarks for different solutions (a plus
sign indicates a positive result of the benchmark, a minus sign indicates a negative one):

Solution ABC D-I(1) D-I(2) D-II E F H J K M

Raw types + + + + − − + 2+ + +
Masked types + + − + + + + many − −
Free/committed types + + + + + − + 1+ + +
Targeted expressions + + − + + + − 0 ± −
Practical void safety + + − − + + + 0 + +

All the solutions are sound (if the scenario A-II is not taken into account) and support
simple use cases. With modularity and annotation overhead in mind, the best two
solutions are free & committed types and practical void safety. Unqualified access to
uninitialized attributes (D-I(2)) can be easily supported in the latter solution. But
inability to support registration of a newly created object from the constructor in an
existing object (F) with the former solution cannot be fixed easily. Therefore, practical
void safety seems to be a better choice to solve the object initialization problem.

7. Conclusion and future work
In this work, I identify the roots of the object initialization problem in object-oriented
languages and propose a list of benchmarks to compare different null safety solutions.
The benchmarks demonstrate very good results for the practical void safety compared
to other solutions.

The work reveals the following areas of future development:

∙ formalization of null safety models taking into account finalizers and possible
interruption of execution due to asynchronous signals;

∙ improvement of the practical void safety solution by supporting access to uninitialized
attributes and by supporting qualified calls in the context with incompletely initialized
objects;

∙ creation of a test suit with executable examples to compare different implementation
of null safe programming languages.

References
[1] Fähndrich Manuel, Leino K. Rustan M., “Declaring and Checking Non-null Types in

an Object-oriented Language”, Proceedings of the 18th Annual ACM SIGPLAN Con-
ference on Object-oriented Programing, Systems, Languages, and Applications, OOPSLA
’03, ACM, New York, NY, USA, 2003, 302–312, http://doi.acm.org/10.1145/949305.
949332.

[2] Fähndrich Manuel, Xia Songtao, “Establishing Object Invariants with Delayed Types”,
Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-oriented Program-
ming Systems and Applications, OOPSLA ’07, ACM, New York, NY, USA, 2007, 337–350,
http://doi.acm.org/10.1145/1297027.1297052.

http://doi.acm.org/10.1145/949305.949332
http://doi.acm.org/10.1145/949305.949332
http://doi.acm.org/10.1145/1297027.1297052

Kogtenkov A.V.
Towards null safety benchmarks for object initialization 729

[3] Gamma Erich, Helm Richard, Johnson Ralph, Vlissides John, Design Patterns: Ele-
ments of Reusable Object-oriented Software, Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1995.

[4] JetBrains, Kotlin Language Specification, https://jetbrains.github.io/kotlin-spec/kotlin-
spec.pdf, visited on 2017-01-31.

[5] Kogtenkov A.V., “Mechanically Proved Practical Local Null Safety”, Proceedings
of the Institute for System Programming of the RAS, 28:5 (2016), 27–54, DOI:
10.15514/ISPRAS-2016-28(5)-2.

[6] Bertrand Meyer, Targeted expressions: safe object creation with void safety, 2017,
http://se.ethz.ch/ meyer/publications/online/targeted.pdf, visited on 2017-05-08.

[7] Qi Xin, Myers Andrew C., “Masked Types for Sound Object Initialization”, Pro-
ceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’09, ACM, New York, NY, USA, 2009, 53–65,
http://doi.acm.org/10.1145/1480881.1480890.

[8] Spoto Fausto, “Precise null-pointer analysis”, Software & Systems Modeling, 10:2 (2011),
219–252, http://dx.doi.org/10.1007/s10270-009-0132-5.

[9] Summers Alexander J., Müller Peter, “Freedom Before Commitment: A Lightweight
Type System for Object Initialisation”, Proceedings of the 2011 ACM Inter-
national Conference on Object Oriented Programming Systems Languages and
Applications, OOPSLA ’11, ACM, New York, NY, USA, 2011, 1013–1032,
http://doi.acm.org/10.1145/2048066.2048142.

[10] Kogtenkov Alexander, “Practical Void Safety”, Verified Software. Theories, Tools, and
Experiments, 2017, http://dx.doi.org/10.1007/978-3-319-72308-2_9.

Когтенков А. В., "К критериям оценки безопасности нулевых ссылок при иници-
ализации объекта", Моделирование и анализ информационных систем, 24:6 (2017),
718–729.

DOI: 10.18255/1818-1015-2017-6-718-729

Аннотация. Разыменование нулевого указателя остаётся одной из основных проблем в совре-
менных объектно-ориентированных языках. Очевидное добавление ключевых слов, чтобы разли-
чать всегда ненулевые и возможно нулевые ссылки, оказывается недостаточным во время иници-
ализации объекта, когда некоторые поля, объявленные всегда ненулевыми, могут временно быть
нулевыми до окончания инициализации. Данная работа устанавливает ключевые причины про-
блемы инициализации объектов. Она предлагает сценарии и метрики в качестве эталонных тестов
для сравнения решений этой проблемы. Наконец, она демонстрирует применение этих тестов к
предложенному решению инициализации объектов в Eiffel. Статья публикуется в авторской ре-
дакции.

Ключевые слова: разыменование нулевого указателя, безопасность нулевых ссылок, безопас-
ность пустых ссылок, инициализация объектов, статический анализ, эталонные тесты безопасности
нулевых ссылок
Об авторе:
Когтенков Александр Валентинович, orcid.org/0000-0003-4873-8306, кандидат наук (Doctor of Sciences ETH Zurich),
Независимый ученый, г. Подольск, Россия, e-mail: kwaxer@mail.ru
адрес для корреспонденции: редакция журнала МАИС, ул. Советская, 14, г. Ярославль, 150003 Россия

https://jetbrains.github.io/kotlin-spec/kotlin-spec.pdf
https://jetbrains.github.io/kotlin-spec/kotlin-spec.pdf
http://se.ethz.ch/~meyer/publications/online/targeted.pdf
http://doi.acm.org/10.1145/1480881.1480890
http://dx.doi.org/10.1007/s10270-009-0132-5
http://doi.acm.org/10.1145/2048066.2048142
http://dx.doi.org/10.1007/978-3-319-72308-2_9

