Modeauposanue u anaausd ungopmayuorror cucmem. T.24, Ne6 (2017), c. 743-754
Modeling and Analysis of Information Systems. Vol.24, No 6 (2017), pp. 743-754

(©Maryasov 1. V., Nepomniaschy V. A., Kondratyev D. A., 2017
DOI: 10.18255/1818-1015-2017-6-743-754

UDC 004.052.42

Invariant Elimination of Definite Iterations
over Arrays in C Programs Verification

Maryasov 1. V.!, Nepomniaschy V. A., Kondratyev D. A.!
Received September 8, 2017

Abstract. This work represents the further development of the method for definite iteration
verification [7]. It extends the mixed axiomatic semantics method [1] suggested for C-light program
verification. This extension includes a verification method for definite iteration over unchangeable
arrays with a loop exit in C-light programs. The method includes an inference rule for the iteration
without invariants, which uses a special function that expresses loop body. This rule was implemented in
verification conditions generator, which is the part of our C-light verification system. To prove generated
verification conditions an induction is applied which is a challenge for SMT-solvers. At proof stage the
SMT-solver CVC4 is used in our verification system. To overcome mentioned difficulty a rewriting
strategy for verification conditions is suggested. A method based on theory extension by new theorems
to prove verification conditions is suggested. An example, which illustrates the application of these
methods, is considered. The article is published in the authors’ wording.

Keywords: C-light, loop invariants, mixed axiomatic semantics, definite iteration, arrays, CVC4,
specification, verification, Hoare logic

For citation: Maryasov 1. V., Nepomniaschy V. A., Kondratyev D. A., "Invariant Elimination of Definite Iterations over
Arrays in C Programs Verification", Modeling and Analysis of Information Systems, 24:6 (2017), 743-754.

On the author:

Ilya V. Maryasov, orcid.org/0000-0002-2497-6484, PhD,

A. P. Ershov Institute of Informatics Systems SB RAS,

6 Akademik Lavrentyev av., Novosibirsk 630090, Russia, e-mail: ivim@iis.nsk.su

Valery A. Nepomniaschy, orcid.org/0000-0003-1364-5281, PhD,
A. P. Ershov Institute of Informatics Systems SB RAS,
6 Akademik Lavrentyev av., Novosibirsk 630090, Russia, e-mail: vnep@iis.nsk.su

Dmitry A. Kondratyev, orcid.org/0000-0002-9387-6735, postgraduate student,
A. P. Ershov Institute of Informatics Systems SB RAS,
6 Akademik Lavrentyev av., Novosibirsk 630090, Russia, e-mail: apple-66@mail.ru

Acknowledgments:
IThis research is partially supported by RFBR grant 15-01-05974.

Introduction

C program verification is an important task nowadays. A lot of projects (e. g. [3, 4])
propose different solutions. But none of the mentioned above suggests any methods for
loop verification without invariants whose construction is a challenge. Therefore, the user
has to provide these invariants. In many cases it is a difficult task. Tuerk [13] suggested

743

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.24, Ne6 (2017)
744 Modeling and Analysis of Information Systems. Vol. 24, No6 (2017)

to use pre- and post-conditions for while-loops but the user still has to construct them
himself.

Our method describes a class of loops, which can be verified without invariants or
pre- and post-conditions for loops. It deals with a definite iteration of a special form. We
extend our mixed axiomatic semantics of the C-light language [1] with a new rule for
verification of such iterations. This extension includes a verification method for definite
iteration over unchangeable arrays with a loop exit in C-light programs. The method
includes an inference rule for the iteration without invariants, which uses a special
function that expresses loop body. This rule was implemented in verification conditions
generator, which is the part of our C-light verification system.

At the proof stage, the SMT-solver CVC4 2] is used. A rewriting strategy for the
induction based verification conditions is suggested to prove them in CVCA4.

Also an algorithm based on theory extension by special implications to prove
verification conditions is suggested. It allows a source formula to be proved successfully.
The induction processing approach [12] implemented in CVC4 is too constrained by
orientation to inductive data types. The suggested algorithm allows to overcome this

difficulty.

1. Definite Iteration and Replacement Operation

The method of loop invariants elimination for definite iteration was suggested in [11]. It
includes four cases:

1. Definite iteration over unchangeable data structures without loop exits.
2. Definite iteration over unchangeable data structures with a loop exit.
3. Definite iteration over changeable data structures with a loop exit.

4. Definite iteration over hierarchical data structures with a loop exit.

The first case was considered in |7]. Our paper deals with the second case.
Consider the statement

for x in S do v := body(v,x) end

where S is a structure, x is the variable of the type “an element S”, v is a vector of
loop variables which does not contain x and body represents the loop body computation,
which does not modify z and S, and which terminates for each x € memb(S), where
memb(S) is the multiset of elements of the structure S. The loop body can contain
only the assignment statements, the if statements and the break statements. Such for
statement is named a definite iteration.

To express the effect of the iteration let us define a replacement operation rep(v, S,
body,n), where rep(v, S, body,0) = v, rep(v, S, body, i) = body(rep(v, S, body,i — 1), s;)
foralli =1,2,...,n if mempty(95).

A number of theorems, which express important properties of the replacement ope-
ration, were proved in [11].

The inference rule [10] for definite iterations has the form [8]:

Maryasov I. V., Nepomniaschy V. A., Kondratyev D. A.
Invariant Elimination of Definite Iterations over Arrays in C Programs Verification 745

E,SPEA{F P(v+ V') ANv=rep(t, S body)} A;{Q}
E,SPt+ {P}for xin S do v := body(v,x) end A:{Q}

Here A are program statements after the loop. We use forward tracing: we move from
the program beginning to its end and eliminate the leftmost operator (at the top level)
applying the corresponding rule of the mixed axiomatic semantics [1] of C-light. E is the
environment which contains an information about current function (its identifier, type
and body) which is verified, an information about current block and label identifier if
goto statement occurred earlier. SP is program specification which includes all precon-
ditions, postconditions, and invariants of loops and labeled statements.

2. Definite Iteration over Arrays with a Loop Exit

Let S be a one-dimensional array of n elements. Consider the special case of definite
iteration

for (i=0;i<n;i+ +) v:=body(v,i) end

where v := body (v, i) consists of assignment statements, if statements (possibly nested)
and break statements.

In order to generate verification conditions we have to determine v, body(v,i), and
the function rep [8].

Let the loop body has the form

{x1 = expry(x1,Xa, ..., Xgk);
Xgp = €Xpra(Xi,Xsa, ..., Xg);
Xk = expri(xi, Xz, ...,Xk); }

where expr;(j = 1,2,...k) are some C-light expressions.

The vector v of loop variable consists of all variables from left parts of assignment
statements: v = (z1, s, ..., 7). From the statements before the loop, we can get the
initial value of v and obtain the first axiom for rep:

rep(v, S, body,0) = (T14, T2y, - - - » Thy)

where z,,7 = 1,2,..., k are the initial values of z; before the loop execution.
At the next step, we make consecutive substitutions

x1 = expri(T1, Lo, . .., Tp);
Tg = expTQ(exprl(‘rhx% R ,$k),$2, s JIk)7
xy, = expri(expri(x1, Ty, . . ., T), expra(expri(T1, Ta, . .., Tk), Tay .oy Th), -+ o5 Th);

And then in the right parts rep((z1, z2, ..., %), S, body, i — 1) is substituted for x;.

For each if statement of the form if (e(i,x1,X2,...,xk)){A; } else {B;}, where A
and B are compound statements consisting of assignment statements, two axioms are
added to the output of verification conditions generator:

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.24, Ne6 (2017)

746 Modeling and Analysis of Information Systems. Vol. 24, No6 (2017)
Va Vg .. Vo e(i, x1, 29, ..., x5) = A*
Va Ve .. Vo —e(i, 21, 29, ..., x) = B*

where A* and B* are obtained by consecutive substitutions as described above.

The break statement could appear at the top level of the loop or in the if statement.
The first case is obvious, it means that the loop iterates no more than once and all the
statements after break in the loop body are ignored. Therefore, the function rep is
defined for ¢ = 0, 1.

The second case means that for some j such that 0 < j < n a loop exit occurs and
such j is defined by the condition of the if statement. Therefore, for all 7 such that
J<isn

Tep((l'l, L2y - 7$k>7 S? bOdy7Z) = 7’6]?((33'1, L2, - - 7:[;]6)7 Sa bOdy>.7)
In this case the following axiom is added:
Ve Vo .. Vo e(i, x1, 2a, ..., x) = (A A (Vi < = AY))

For the case when the break statement is located in the else statement, the negation
of e is used.

For each nested if statements of the form if (e (i, X1, X2, ..., Xk)){A1;if (e2(i, x1, X2,
..., Xk))Agelse Az; Aytelse {B; }, where Ay, A, ... Ay are compound statements con-
sisting of assignment statements, the following axioms are added to the output of verifi-
cation conditions generator:

Ve Vg .. Vo ((e1(d, 21, 22, ..., x) = AT) Aes(i,xq,xa, ..., 2x)) = (Ag; Ag)*
Va Vay .. Vo ((en(t, @1, @a, . wp) = A]) A mea(i, w1, @, . k) = (Ag; Ag)”
Vi Vs .. . Vag —ei(i, x1, Ta, ..., T) = B*

where A}, (Aa; Ay)*, (As; Ay)* and B* are obtained by consecutive substitutions as
described above. For multiple nested if statements we make axioms in the similar way.

Vi(l < @ < k) rep; is automatically generated to simplify the proof of rep-based
verification conditions in CVC4. Note that Vi(1 < ¢ < k) rep; corresponds to variable
x;. This generation is based on substitution of the i-th rep by rep;.

3. Extending Theory to
Prove Verification Conditions

To prove by induction some proposition ¥n P(n) we use Leino approach [6]. It is to add
an extra axiom (induction step) of the form Vj P(j) = P(j + 1) and to modify the
verification condition by adding a base case of induction P(1). In our case of definite
iteration over unchangeable one-dimensional arrays the inductive variable is the length
of array. Therefore, the verification conditions generator is able to rewrite the verification
condition which contains a rep function automatically.

Let us consider the following method of proving formula ¢, which has the form:

V12 Xy 1%y a(T122. Ty 1T) = b(T129... Ty 1Tm), (1)

where

Maryasov I. V., Nepomniaschy V. A., Kondratyev D. A.
Invariant Elimination of Definite Iterations over Arrays in C Programs Verification 747

a = Hl(mKllxKQ"'xKlll—lxKlll) VAN H2($K21Q3K22...ZCK2ZZ_133K212) VAN

(2)

/\anl(xKn,llxKn,b "'xanlln, 113[("711”71) AN Hn(:cKnl SL’KnQ "'xann71xK”zn),

1—

K1UKQUUKn_1UKn = {17 ,m} and |K1| = ll, |K2| = lQ, cees |Kn—1| = ln—l; |Kn| = ln
The formula ¢ and set of axioms and theorems are the input arguments of the
algorithm.
Let us consider the set of axioms and theorems:

Vynylz-.-%plqylpl f17 vy21y22‘-~y2p271y2p2 fz.-. (3)
qu—llyq—w---yq—lpq—l—lyq—lpq—l fq—la qulqu---yqpq—lyqpq fq

The message "The formula ¢ is true" or "unknown" is the output value of the
algorithm.

1. Let i:=1.

2. Let us consider VyilyiQ---yipi—lylpi fz

If the structure of f; is of the form of c(ynyio.. - Yipi—1Y1p;) = d(Yir¥iz---Yip;—1Y1p;)
then go to the step 3 else go to the step 9.

3. If the structure of ¢ is in the form of

G1(Yry, YRiy - YRs, _ YRi,,) N G2(YRy, YRsy - YRa, YRy,) N

th*llt—l) A Gy (thl YRty YRy thlt)7

()
NG (YR, 1, YRi -1y YR

sg—1—1 s¢—1

where t < n, Rl U R2 U...u Rtfl U Rt = {21,22,,?,])1} and |R1| = Sy, ‘R2| =
Sy .oy |Ri—1| = S¢—1, |Re| = s; then go to the step 4 else go to the step 9.

4. Let us consider a subformula of ¢ o' = H{(z") A Hy(z") A ... N H]_,(2") AN H] (2)
where each conjunct H!(x') results from conjunct Hi($Ki1$Ki2---xKil,_lxKil_) by

substitution of all occurrences of xr, Tk,,...Tx, T, by unique identifier 2.
i A

Let us consider subformula ¢ = G| (z') AGY(2') A ... NG, (2") A Gl (2") where each
conjunct Gj(a’) results from conjunct Gi(yr, Yr.,---Yr, _ Yr.,) by substitution of

all occurrences of yg, yr,, .--Yr, _ Yr, Dby unique identifier z’.

U
Let us consider bijection set {eq,es, ..., e, 1,€,} where Vi e; is bijection from the

set {1,..,t} of conjunct indexes of subformula ¢ to the subset U of conjunct indexes
of a. Note that e;(w) = u <= G, (2’) is syntactically equal to H, (z').

5. Let j:=1.

6. Generate a table of correspondence w between variables y of formula ¢ and variables
x of the following formula

HEJ'(I) A He].(g) NN Hej(t—l) AN Hej(t)- (5)

748

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.24, Ne6 (2017)
Modeling and Analysis of Information Systems. Vol. 24, No6 (2017)

10.

11.

using matching between G, and H,,,) subformulas. If there is not such correct
table w then go to the step 8 else go to the step 7.

Let us consider the following formula

d' (w(ya)w(yiz).. w(Yip,—1)w(Y1p,)) =
d[yil — w(yil)vyz? — w(yz'z), ooy Yipy—1 w(yipi—1)7 Yip;, < w(ylpi)]

(6)

It has been generated using simultaneous substitution of y;1, Via, ..., Yip;—1, Y1p; DY
corresponding variables w(vi1), w(yi2), .- W(Yip;—1) s W(Y1p;)-

Let us consider the following formula

Vr1Te.. Tm1Zm aANd = b (7)

It may be proved using Leino approach based on induction. The SMT solver CVC4
may be used in such case. If such proving results in "unsat" then go to the step 11
else go to the step 8.

. Let j:= 7+ 1. If j <wv then go to the step 6 else go to the step 9.

. Let ¢ := i+ 1. If i < g then go to the step 2 else go to the step 10.

The algorithm results in "unknown".

The algorithm results in "The formula ¢ is true".

The suggested algorithm allows the theory for proving verification conditions to be
extended by new theorems. They may be used to simplify proof.

4.

Example: Array Searching Program

Let us demonstrate the application of our method. Consider the following function
search count. For a given integers key and entr it returns 1 if not less than entr
elements of the given array of integers arr are equal to key, where length is arr length.

Otherwise the function returns 0.
The annotated (in SMT-LIB v2 syntax of CVC4) C-light [5] program has the form:

/* (assert (and (> length 0) (> entr 0))) */

int

search_count (int* arr, int length, int key, int entr){
auto int result = 0, cnt = 0, 1i;
for (i = 0; i < length; i++){

if ((key == arr[i]) && (entr > (cnt + 1))){

cnt++;

}

else if ((key == arr[i]) && (entr == (cnt + 1))){
cnt++;

result = 1;

Maryasov I. V., Nepomniaschy V. A., Kondratyev D. A.
Invariant Elimination of Definite Iterations over Arrays in C Programs Verification 749

break;

3

return result;
}
/* (assert (and
(=> (<= entr (COUNT length arr key entr)) (= result 1))
(=> (> entr (COUNT length arr key entr)) (= result 0))) */

The logical function COUNT returns the number of occurrences of key in arr from 0
to length — 1. Note that in CVC4 all functions must be total, so we also need to consider
the case for 7 < 0. The other axioms describe the common case and define COUNT
recursively. Let us consider some of axioms of the function COUNT:

(declare-fun COUNT (Int (Array Int Int) Int Int) Int)

(assert (forall ((i Int) (arr (Array Int Int)) (key Int) (entr Int))
(=>
(and (< 0 1) (= (select arr (- i 1)) key))
(= (COUNT i arr key entr) (+ (COUNT (- i 1) arr key entr) 1)))))

(assert (forall ((i Int) (arr (Array Int Int)) (key Int) (entr Int))
(=
(and (< 0 1) (not (= (select arr (- i 1)) key)))
(= (COUNT i arr key entr) (COUNT (- i 1) arr key entr)))))

In rep function v = (ent,result) and its initial value before the iteration is (0,0).
The approach from section 2 allows axioms of rep to be generated. Let us consider some
of these axioms:

(declare-fun repl (Int (Array Int Int) Int Int) Int)
(declare-fun rep2 (Int (Array Int Int) Int Int) Int)

(assert (forall ((i Int) (arr (Array Int Int)) (key Int) (entr Int))
(=>
(and
(<0 1)
(= key (select arr (- i 1)))
(> entr (+ (repl (- i 1) arr key entr) 1)))
(= (repl i arr key entr) (+ (repl (- i 1) arr key entr) 1)))))

(assert (forall ((i Int) (arr (Array Int Int)) (key Int) (entr Int))
(=>
(and
(< 0 1)
(not (= key (select arr (- i 1))))

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.24, Ne6 (2017)
750 Modeling and Analysis of Information Systems. Vol. 24, No6 (2017)

(> entr (+ (repl (- i 1) arr key entr) 1)))
(= (repl i arr key entr) (repl (- i 1) arr key entr)))))

(assert (forall ((i Int) (arr (Array Int Int)) (key Int) (entr Int))
(=>
(and
(< 0 1)
(> entr (+ (repl (- i 1) arr key entr) 1)))
(= (rep2 i arr key entr) (rep2 (- i 1) arr key entr)))))

(assert (forall ((i Int) (arr (Array Int Int)) (key Int) (entr Int))
(=>
(and
(< 0 1)
(= key (select arr (- i 1)))
(= entr (+ (repl (- i 1) arr key entr) 1)))
(= (rep2 i arr key entr) 1))))

CVC(A4 is the SMT-solver but our task is to check a validity of verification conditions,
not satisfiability. Therefore, the verification conditions generator produces the negation
of the verification condition:

(assert (not (forall ((length Int) (arr (Array Int Int))
(key Int) (entr Int) (result Int))
(=>
(and (> length 0) (> entr 0) (= result (rep2 j arr key entr)))
(and
(=>
(<= entr (COUNT length arr key entr))
(= result 1))
(=>
(> entr (COUNT length arr key entr))
(= result 0)))))))

And then we expect the answer “unsat” which means that the negation is unsatisfiable
therefore the verification condition is true.

However, SMT solvers do not support proofs by induction, which appears inevitably
in our verification method. In this example we get the answer “unknown” which means
that CVC4 is not able to determine whether the formula is satisfiable or not. Rustan
Leino suggested a rewriting strategy and a heuristic for when to apply it to verify simple
inductive theorems [6].

The simplification of verification condition allows it to be considered as a conjunction
of the first conjunct

(assert (forall ((length Int) (arr (Array Int Int))
(key Int) (entr Int) (result Int))
(=>

Maryasov I. V., Nepomniaschy V. A., Kondratyev D. A.
Invariant Elimination of Definite Iterations over Arrays in C Programs Verification 751

(and
(> length 0)
(> entr 0)
(= result (rep2 length arr key entr))
(> entr (COUNT length arr key entr)))
(= result 0))))

and the second conjunct

(assert (forall ((length Int) (arr (Array Int Int))
(key Int) (entr Int) (result Int))
(=>
(and
(> length 0)
(> entr 0)
(= result (rep2 length arr key entr))
(<= entr (COUNT length arr key entr)))
(= result 1))))

They are referred to as the first and the second part of verification condition.
Algorithm from section 3 allows the first conjunct to be proved. The theory has been
extended by the following theorem:

(assert (forall ((j Int) (arr (Array Int Int))
(key Int) (entr Int))
(=
(and
>3 0)
(> entr 0)
(> entr (COUNT j arr key entr)))
(> entr (repl j arr key entr)))))

It has been proved using CVC4. This proof is based on Leino approach.

Note that renaming variables can result in equality of premises of this formula and
some of premises of the first part of the verification condition. Thus, it can result in
extension of premises of the first part of the verification condition by conclusion of the
considered formula.

Leino approach allows extended verification condition to be proved using CVC4. The
base case of induction is trivial. Let us consider the extension of theory by negation of
the induction step:

(assert (not (forall ((length Int))
(=>
(forall ((arr (Array Int Int)) (key Int)
(entr Int) (result Int))
(=>
(and

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.24, Ne6 (2017)
752 Modeling and Analysis of Information Systems. Vol. 24, No6 (2017)

(> length 0)
(> entr 0)
(= result (rep2 length arr key entr))
(> entr (COUNT length arr key entr))
(> entr (repl length arr key entr)))
(= result 0)))
(forall ((arr (Array Int Int)) (key Int)
(entr Int) (result Int))
(=>
(and
(> (+ length 1) 0)
(> entr 0)
(= result (rep2 (+ length 1) arr key entr))
(> entr (COUNT (+ length 1) arr key entr))
(> entr (repl (+ length 1) arr key entr))
(= result 0)))))))

This theorem has been proved using CVCA4.
The proof of the second part of verification condition is similar to the proof of the
first one. The theory has been extended by the following theorem:

(assert (forall ((j Int) (arr (Array Int Int))
(key Int) (entr Int))
(=>
(and
>3 0)
(> entr 0)
(<= entr (COUNT j arr key entr)))
(<= entr (repl j arr key entr)))))

Leino approach allows it to be proved using CVC4. Also this approach has been
applied at the step 7 of the algorithm from section 3. Thus, this algorithm allows the
second part of verification condition to be proved.

Therefore the verification condition has been proved.

5. Conclusion

This paper represents an extension of our system [9] for C-light program verification. In
the case of definite iteration over unchangeable arrays with a loop exit, this extension
allows us to generate verification conditions without loop invariants. This generation is
based on the described inference rule for the C-light for statement which introduces the
replacement operation. It expresses definite iteration in the special form described in the
paper.

The suggested rewriting strategy for induction-based formulas allowed us to prove
obtained verification conditions using CVC4 [2]. The proposed algorithm of extending
the theory allows verification condition to be proved. Proving formula a = b is the

Maryasov I. V., Nepomniaschy V. A., Kondratyev D. A.
Invariant Elimination of Definite Iterations over Arrays in C Programs Verification 753

goal of the algorithm execution. Note that this algorithm is based on using implication
¢ = d where c is a subformula of a after variables renaming. The proof of formula
a = b is reduced to proof of formula (a A d) = b. Using unique identifier allows a
and ¢ to be matched. Also the table of correspondence between variables of a and c¢ is
created by the algorithm. Note that this table is used for renaming variables of formula
d.

The rewriting strategy allowed CVC4 to prove the partial correctness of the example
from [7]. It iterates over an array of integers and for a given integer computes the number
of its occurrences in this array. Another successfully proved example is the program which
for a given integer finds its first occurrence in the given array of integers [8|.

We plan to consider the case of elimination of loop invariant for changeable data
structures and to verify classical array sorting programs without invariants.

References

[1] I.S. Anureev, I. V. Maryasov, V. A. Nepomniaschy, “C-programs Verification Based on

Mixed Axiomatic Semantics”, Automatic Control and Computer Sciences, 45:7 (2011),
485-500.

[2] C. Barrett, C.L., Conway, M. Deters, L. Hadarean, D. Jovanovié¢, T. King, A. Reynolds, C.

Tinelli, “CVC4”, 23rd Int. Conf. CAV, Lecture Notes in Computer Science, 6806 (2011),
171-177.

[3] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen, W. Schulte,
S. Tobies, “VCC: A Practical System for Verifying Concurrent C”, 22nd Int. Conf.
TPHOLSs, Lecture Notes in Computer Science, 5674 (2009), 23-42.

[4] J.-C. Filliatre, C. Marché, “Multi-prover Verification of C Programs”, 6th ICFEM, Lecture
Notes in Computer Science, 3308 (2004), 15-29.

[5] D.A. Kondratyev, “The Extension of the MetaVCG Approach by Semantic Mark-up Con-
cept”, Int. Workshop-conf. ”Tools € Methods of Program Analysis”, St. Petersburg, 2015,
107-118.

[6] K.R.M. Leino, “Automating Induction with an SMT Solver”, 13th Int. Conf. VMCAI,
Lecture Notes in Computer Science, 7148 (2012), 315-331.

[7] 1. V. Maryasov, V. A. Nepomniaschy, “Loop Invariants Elimination for Definite Iterations
over Unchangeable Data Structures in C Programs”, Modeling and Analysis of Information
Systems, 22:6 (2015), 773-782.

[8] I. V. Maryasov, V. A. Nepomniaschy, D. A. Kondratyev, “Verification of Definite Iteration
over Arrays with a Loop Exit in C Programs”, System Informatics, 2017, Ne10, 57-66.

[9] 1. V. Maryasov, V.A. Nepomniaschy, A.V. Promsky, D.A. Kondratyev, “Automatic C
Program Verification Based on Mixed Axiomatic Semantics”, Automatic Control and Com-
puter Sciences, 48:7 (2014), 407-414.

[10] M. Moriconi, R.L. Schwarts, “Automatic Construction of Verification Condition Gener-
ators From Hoare Logics”, Automata, Languages and Programming, Lecture Notes in
Computer Science, 115 (1981), 363-377.

[11] V.A. Nepomniaschy, “Verification of Definite Iteration over Hierarchical Data Structures”,
FASE/ ETAPS, Lecture Notes in Computer Science, 1577 (1999), 176-187.

[12] A. Reynolds, V. Kuncak, “Induction for SMT solvers”, 16th Int. Conf. VMCAI, Lecture
Notes in Computer Science, 8931 (2015), 80-98.

[13] T. Tuerk, “Local Reasoning about While-Loops”, VSTTE, 2010, 29-39.

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.24, Ne6 (2017)
754 Modeling and Analysis of Information Systems. Vol. 24, No6 (2017)

Mapssico U. B., Henomusammit B. A., Konaparses . A., "DuMmunanus nunsa-
pUAHTOB (DUHUTHBIX UTepanuii Haj| MaccuBamu pu Bepudukaruu Cu nporpamm", Mo-
deauposanue u anaausd ungpopmaruonnor cucmem, 24:6 (2017), 743-754.

DOI: 10.18255/1818-1015-2017-6-743-754

Awnnoranuga. lamnas paboTa mpeacTaBiIgeT gajabHeiilee pa3BuTHe METOIa BepuUKAIT (DUHUT-
HOl nTepanuu [7]. OH pacumpsieT METO/] CMENTaHHONH aKCHOMATHIECKON ceMaHThKH [1], mpemioxkeHnbIit
s Bepudukanun C-light nporpamm. DTo pacimupenue BKIIOYAET MeTOH BepuduKaIuu it HUHAT-
HOIl UTepaluu HaJi HeM3MEeHsSeMbIMU MaccuBaMu ¢ BbeIxozoM u3 rukia B C-light mporpammax. Metos
COJIEP2KUT MPABUJIO BBIBOJA JJIs UTepanuu 6€3 NHBAPUAHTOB, KOTOPOE UCIIOJIb3YeT CIEIUAIBHYIO (DYHK-
W10, BBHIPAKAIOIIYIO JeiicTBrE Tesa NuKIa. JaHnoe mpaBuio ObLIO PeaJM30BAHO B T€HEPATOPE YCJIOBU
KOPPEKTHOCTH, SIBJISIIOIIEMCsT 9acThio Hatmeil cucremsl Bepudukanun C-light mporpamm. s mokaza-
TEJILCTBA MOPOYKAEHHDBIX YCJIOBUII KOPPEKTHOCTU TPUMEHSIETCST METOJ] MATEMATHIECKON MH/LYKIIH, Bbi-
3piBatonuii ciaoxkuoctn y SMT-permaresneit. B nameit cucreme Bepudukanum Ha CTa NN JJOKA3ATEIbCTBA
ucrob3yercss SMT-pemarens CVC4. st npeonoseHns yIOMsHYTOH TPYIHOCTHA TPUMEHSIETCS CTpaTe-
rUsi IEPENUChIBAHUS YCJIOBUI KOppeKTHOCTH. JIJIs MOKA3aTeIbCTBa YCIOBUN KOPPEKTHOCTH IIPEJIOXKEH
MeTOJl, OCHOBAHHBII Ha PACIIMPEHUN TEOPHUN HOBBIMHU TeopeMamu. PaccMoTpeH npumep, UILIIOCTPUDYIO-
i TPUMeHeHNe JaHHBIX MeTofoB. CTraThst mybJIMKyeTcss B aBTOPCKOI PeIaKIii.

Kurouesbie ciioBa: C-light, Cu, uHBapuaHThI [UKJIOB, CMEIIAHHAS AKCUOMATHYECKAs CEMAHTHUKA,
dunurnas ureparys, maccusbl, CVC4, crerudukarnusi, BepuduKaImsi, JJOrnka Xoapa

OG6 aBTOpeE:

MapsbsicoB Unbst Bragumuposud, orcid.org/0000-0002-2497-6484, kany. ¢us.-maT. HayK,
WNucruryTt cucrem nadopmaruku um. A. I1. Epmosa CO PAH,

up. Akagemuka JlaBpenTbesa, 6, r. HoBocubupck, 630090 Poccusi, e-mail: ivin@iis.nsk.su

Henomusimuit Basepuit Astekcanaposnd, orcid.org/0000-0003-1364-5281, kanm. dbus.-Mar. HayK,
WNucruryTt cucrem nndopmaruku um. A. I1. Epmosa CO PAH,
up. Akagemuka JlaBpenrtbesa, 6, r. HoBocubupck, 630090 Poccusi, e-mail: vnep@iis.nsk.su

Konpgparwes JmuTpuit Asnekcanaposud, orcid.org/0000-0002-9387-6735, actmpanT,
WNucruryt cucrem nadopmaruku uM. A. I1. Epmosa CO PAH,
up. Axaznemuka JlaBpenrosesa, 6, 1. HoBocubupck, 630090 Poccusi, e-mail: apple-66@mail.ru

BaaromapHocTu:
1Pa6ora wacruuno nommepxkana rpaarom PODU 15-01-05974.

