
Моделирование и анализ информационных систем. Т. 25, №2 (2018), с. 165–173
Modeling and Analysis of Information Systems. Vol. 25, No 2 (2018), pp. 165–173

c©Yauhen Klimiankou, 2017

DOI: 10.18255/1818-1015-2018-2-165-173

UDC 004.051; 004.451.35; 004.451.46

Measuring Overhead of Concurrency
and Virtual Memory

Yauhen Klimiankou

Received November 7, 2017

Abstract. We present the methodology, as well as results of measurements and evaluation of
overhead created by concurrency and virtual memory. A special measurement technique and testbed
were used to obtain the most accurate data from the experiments. This technique is focused on the
measurements of the overall performance degradation that is introduced by concurrency in the form
of lightweight user-level threads on IA-32 processors. We have obtained and compared results of the
experiments in an environment with and without enabled virtual memory to understand what loss of
performance is caused by virtual memory in itself, and how it affects the overhead associated with
concurrency. The results showed that overhead of concurrency outweighs virtual memory overhead and
that there is a complex dependency between them. The article is published in the author’s wording.

Keywords: virtual memory, concurrency, overhead, performance, measurements

For citation: Yauhen Klimiankou, “Measuring Overhead of Concurrency and Virtual Memory ”, Modeling and Analysis
of Information Systems, 25:2 (2018), 165–173.

On the authors:
Yauhen Klimiankou, orcid.org/0000-0001-7449-7986, MSc, PhD student
Belarusian State University of Informatics and Radioelectronics,
6 P. Brovki Street, Minsk 220013, Belarus, e-mail: klimenkov@bsuir.by

1. Introduction

In this paper we describe a work motivated by the desire to understand the influence
of concurrency and virtual memory to the performance of the system. To understand
that, we have measured the overhead created by the multithreading in its lightest-
weight form called fibers. Fibers are used to provide concurrency on the application
level. Additionally, we wanted to find out how the virtual memory affects performance
of both concurrent and serialized workloads.

Accurate and fine-grained performance measurements on the low level of the system
is challenging and requires taking into account a number of features of system and
CPU. We have used a benefit of having of our own research operating system to create
the вЂњClean RoomвЂќ environment, in which we have eliminated interference of the
measurements with other activities asynchronously going in the system.

165

166
Моделирование и анализ информационных систем. Т. 25, №2 (2018)

Modeling and Analysis of Information Systems. Vol. 25, No 2 (2018)

2. Related Work
There are a variety of works done to understand a context switch overhead, yet none
of them has considered concurrency in general on the modern CISC processors. It is
hard to find the published results of actual measurements of virtual memory overhead.
Moreover, interdependence between concurrency and virtual memory overheads was not
investigated.

The first research in that field was done by Agarwal et al. [1], where it demonstrated
that multiprogramming activity significantly degrades cache performance. After that,
Mogul advanced and widened original research [8]. In both cases results were achieved
through simulation but not actual experiments and concurrency were considered in the
heavyweight form – multiprocessing. Additionally, CPUs have significantly advanced
during the last two decades. There is a concern that both works do not reflect the
behavior of the modern CPUs.

McVoy et al. measured the cost of context switch between multiple processes using
lmbench [7]. While this work provides results of experiments done in real-world environ-
ments, it considers multiprocessing rather than concurrency in general and accounts not
only CPU but also OS overhead.

Li et al. has conducted a research similar to our work [5]. He has quantified context
switch cost, but like in previous cases, he has focused on Linux multiprocessing, and had
not cut off overhead created by contention on memory bus.

Finally, the David et al. [2] has considered concurrency in general instead of multi-
processing. But his measurements were performed on RISC processor (ARM), while
we were interested in understanding of concurrency overhead created on advanced and
full-featured CISC processors (IA-32).

We are not aware about any good paper with evaluation of virtual memory overhead.
It is interesting, but the only paper that sheds some light to this issue is an overview of
Singularity OS [4]. But even it considers entire overhead created by virtual memory and
does not dig into details.

3. Measurement Methodology
Our measurement methodology was designed to provide the cleanest and accurate results
with a fine-grained resolution. We have eliminated interference with interrupt handling
and operating system kernel scheduler on macro-level. Furthermore, we have taken into
account potential disturbance of the branch prediction, influence of the measurements
on the instrumented code execution time and potential issues related to caching on
micro-level.

3.1. System Structure

Experimental setup is depicted on Figure 1. We have used an advantage of having our
own experimetal operating system to create testbed. In particular, the OS loader was
modified by injections of three code modifications.

One of the injections is used to disable multiprocessor boot. By this, influence of the
contention on memory bus to the results of measurements was eliminated. Despite the

Yauhen Klimiankou
Measuring overhead of concurrency and virtual memory 167

BIOS PXE Bootstrapper IBM PC Bootstrapper OS Loader System

Benchmark

In
je

ct
io

n

Test:
Singlethreaded

Workload

Test:
Multithreaded

Workload

VM enabler/disablerMP Boot Disabler Fix

Fig 1. Experiment setup

fact that computer system equipped by two CPUs was used during performance tests,
only one CPU was bootstrapped and used. The second one was leaved in the uninitialized
state. In addition, the Hyper-Threading technology was disabled through the BIOS for
the time of all experiments.

The second code injection has added the switch which controls enabling of the virtual
memory. Availability of this switch has allowed to consider influence of virtual memory
to the system performance.

Finally, the last code injection contains microbenchmark with two test cases. The
first test case reproduces batched singlethreaded processing of workload. In the second
scenario, the same workload is processed concurrently by two user-level threads. Bench-
mark finishes its work by halting the future loading of the operating system, which is
unneeded and unsafe.

Benchmark applications use the same preallocated buffer in both test scenarios.

3.2. Benchmark Implementation

Benchmark starts work by disabling interrupts. By this, we eliminate potential interferen-
ce of measurements with interrupt handling, which can affect accuracy of the measure-
ment results.

Before the start of measurements, user-level multithreading environment is initialized.
In our experiments only two threads are in use. Thus thread switch pointer should be set
up and two stacks should be allocated and prepared. Each user-mode thread uses its own
“top of the stack” pointer, which is also initialized during preparation to measurements,
as well as initial stack frame.

Measurements is taken for a number of different workload sizes starting from 0 and
ending by 24MB. Due to this benchmark performs a number of iterations of measure-
ments, each time doubling the workload (0, 1b, 2b, 4b, ..., 24MB). On each iterations
two experiment scenarios are executed: singlethreaded and multithreaded and, therefore,
two measurements are taken. Before each experiment, cache warmup is performed by run
of few experiments which execution time is not accounted for in measurement results.
Finally, two experiment scenarios are played.

During experiment we emulated work of the application with variable working sets.
Two buffers of the same fixed size were used to emulate working sets. The goal of the
application was zeroing of buffers. Each scenario was replayed 100000 times.

168
Моделирование и анализ информационных систем. Т. 25, №2 (2018)

Modeling and Analysis of Information Systems. Vol. 25, No 2 (2018)

In the singlethreaded scenario application sequentially refills first buffer by zeroes. In
such a way it emulates the first program working with data in its working set. After the
first buffer will be refilled 100000 times, application repeats the same procedure for the
second buffer, emulating the second sequentially executing program.

In the multithreaded scenario, both emulated applications execute concurrently. After
each buffer refill context switch to another application is performed. This process conti-
nues until both buffers will be refilled 100000 times.

3.3. User-Level Threads Implementation

The primary goal of our experiments is to understand the impact of concurrency to the
performance, but not the impact of some specific implementation of concurrency. Due
to this the lightest form of multithreading was chosen.

Implemented multithreading environment supports only two user-level threads and
is based on cooperative form of multitasking. As a result, it does not require presence of
scheduler. Additionally, run queue has degraded to the switch point, because we always
have a system in a state where one thread is running and one thread is in ready state.
Hence, context switch can be considered as a simple swapping of the roles/states between
these two threads. Due to this environment maintains minimal global state consisting
only of one variable, which stores stack pointer of the thread that is in the ready state.
State of the user-level threads includes only state of eight general purpose registers of
IA-32 processor. During context switch, outgoing thread stores its state on the top of its
own stack. Then it swaps content of the global state variable and stack pointer register
of processor. Finally, incoming thread loads its state from the top of its own stack.

The function for the user-level thread switch is implemented as follows:

; ECX − address o f g l o b a l s t a t e
SwitchThread :

pushad
mov EAX , [ECX]
mov [ECX] , ESP
mov ESP , EAX
popad
ret

3.4. Measurement Methodology and Points

The primary tool which was used for execution time measurements is a IA-32 time stamp
counter. Time stamp counter provides a highest resolution with granularity equal to a
tick of system bus. It was safe to use time stamp counter in our experiments, because
we had full control over CPU and were assured that thread migration to another CPU
is prevented.

To reduce the effects of the measurements on the results, the number of the measure-
ments taken was minimized. Furthermore, all measurements were done using the same
framework, where only test scenarios were replaced. As a result the difference in measured
time for two experiments will show only difference in execution time of test scenarios.
Framework and test scenarios are depicted on Figure 2.

Yauhen Klimiankou
Measuring overhead of concurrency and virtual memory 169

Cache Warmup

Start of Measurement

Fill Buffer A

I = 0; I < 100000

I++

Fill Buffer B

I = 0; I < 100000

I++

End of Measurement

Start

End

Cache Warmup

Start of Measurement

Fill Buffer A/B

I = 0; I < 100000

Switch Context

I++

End of Measurement

Start

End

Singlethreaded
Scenario

Multithreaded
Scenario

Fig 2. Experiment Scenarios

In our approach we have taken into account all effects of advanced processor features
such as superscalarity, branch prediction and out-of-order execution, because we wanted
to know the full impact of multithreading and virtual memory on the performance. Due
to this the overall time of the entire series of 100000 experiments was measured. Note
that in multithreaded experiment scenario two iteration counters were actually used,
one per each thread stack. Thus, the entire experiment actually performs 200000 buffer
refills, 100000 per each buffer.

3.5. Experimental Platform

All measurements were done on the Dell PowerEdge 2650 server [3] with two Intel Xeon
CPUs [6] (Details are provided in Table 1).

Table 1. Experiment platform
CPU Intel R© Xeon R© Processor
Microarchitecture NetBurst
Codename Prestonia
Frequency 2.4 GHz
TLB 64 + 64 entries

L1 code cache 12 K-Оjop
8-way set associative

L1 data cache
8 KByte
4-way set associative
64 byte line size

L2 cache
512 KByte
8-way set associative
64 byte line size

170
Моделирование и анализ информационных систем. Т. 25, №2 (2018)

Modeling and Analysis of Information Systems. Vol. 25, No 2 (2018)

4. Results
Figures 3 and 4 visualize the measured overhead imposed by concurrency in the form
of light-weight user-level multithreading as discussed in section 3.3. Both figures contain
two graphs that show overhead measured in the environment with enabled and disabled
virtual memory. Figure 3 represents an absolute overhead measured during a series of
experiments and Figure 4 shows the same results, but in a form of relative overhead.

16

64

256

1k

4k

16k

64k

256k

1M

4M

1 B 32 B 1kB 32kB 1MB 32MB

ov
er

he
ad

, t
ic

ks

workset size, bytes

VM enabled
VM enabled

Fig 3. Absolute overhead of multithreading

0

50

100

150

200

250

300

350

400

1 B 32 B 1kB 32kB 1MB 32MB

ov
er

he
ad

, %

workset size, bytes

VM enabled
VM disabled

Fig 4. Relative overhead of multithreading

As reader can see, concurrency always creates performance penalty which is in the
worst case raises up to almost 1.125 millions of wasted CPU ticks per time quantum used
by thread or 352% of overhead. This worst case represents the scenario with working set
of size 0.5MB, which is a size of L2 cache in our experimental setup. In the case of
absence of concurrency entire working set is loaded into the cache once, where it is
processed multiple times. But in the case of concurrency entire cache is considered as
completely polluted and thus is constantly reloaded after each context switch. In general,
overhead is significant and reaches acceptable levels only for working set sizes of near
128KB and bigger than 2MB.

Yauhen Klimiankou
Measuring overhead of concurrency and virtual memory 171

Figure 5 shows how enabled virtual memory affects the overhead imposed by concur-
rency. In most cases it reduces performance penalty created by concurrency. In some
cases even significantly (up to -90% for the case of working set of 16KB). In other cases,
enabled virtual memory can boost concurrency overhead (up to +44% for the case of
working set of 1.5KB). It would be interesting to note that influence of enabled virtual
memory on concurrency overhead for the scenarios with working sets bigger than 0.5MB
is negligible.

-100

-80

-60

-40

-20

0

20

40

60

1 B 32 B 1kB 32kB 1MB 32MB

ov
er

he
ad

, %

workset size, bytes

VM enabled
VM disabled

Fig 5. Impact of virtual memory onto the concurrency overhead

Another aspect discussed here is how the enabled virtual memory affects performance
of the application and concurrency overhead. Figures 6 and 7 shows the results of
measurements of overhead for enabled virtual memory. As in the previous case, Figure
6 represents performance penalty in absolute values, when Figure 7 represents the same
results but as relative overhead.

256k
64k
16k
4k
1k

256
64
16
4
1

-1
-4

-16
-64

-256
-1k
-4k

-16k
-64k

-256k
-1M

1 B 32 B 1kB 33kB 1MB 34MB

ov
er

he
ad

, t
ic

ks

workset size, bytes

multithreaded
singlethreaded

Fig 6. Absolute overhead of virtual memory

It is interesting to note that in contrast to the concurrency, impact of the virtual
memory to the application performance is not trivial. In most cases enabled virtual
memory degrades performance of the application, or its impact is negligible. But actually,

172
Моделирование и анализ информационных систем. Т. 25, №2 (2018)

Modeling and Analysis of Information Systems. Vol. 25, No 2 (2018)

-40

-30

-20

-10

0

10

20

30

40

1 B 32 B 1kB 32kB 1MB 32MB

ov
er

he
ad

, %

workset size, bytes

multithreaded
singlethreaded

0

Fig 7. Relative overhead of virtual memory

we can see the cases when virtual memory boosts application performance. What is even
more interesting, that boost is significant for the concurrent workload (up to 39% for
16KB working set) when it negligible for the serialized workload (up to 7.5% for 3MB
working set). Impact of concurrency onto virtual memory overhead is demonstrated on
Figure 8.

-40

-30

-20

-10

0

10

20

30

40

1 B 32 B 1kB 32kB 1MB 32MB

ov
er

he
ad

, %

workset size, bytes

multithreaded
singlethreaded

Fig 8. Impact of concurrency on virtual memory overhead

5. Conclusions and Outlook

We presented the results of the measurements of the overhead incurred by concurrency
and virtual memory. During measurements special focus was pointed to achievement of
the most accurate and fine-grained results. Due to this the “Clean room” methodology
was used.

We have demonstrated that concurrency creates significant overhead which can grow
up to 350% in a terminal case. Reason for this is an advanced multilevel caching used

Yauhen Klimiankou
Measuring overhead of concurrency and virtual memory 173

by CPUs to hide the cost of access to main memory and by cache pollution introduced
by concurrency.

In contrast, impact of virtual memory on the system performance is not trivial.
Furthermore, it largely depends on the type of workload. In particular, we have found
an interesting phenomena when virtual memory even significantly boosts performance
of concurrent workload (up to 39%).

References
[1] A. Agarwal, J. Hennessy, M. Horowitz, “Cache Performance of Operating System and

Multiprogramming Workloads”, ACM Trans. Comput. Syst., 6:4 (1988), 393–431.

[2] F. M. David, J. C. Carlyle, R. H. Campbell, “Context Switch Overheads for Linux on
ARM Platforms”, Proceedings of the 2007 Workshop on Experimental Computer Science,
ExpCS’07, ACM, New York, NY, USA, 2007.

[3] INFOBrief: Dell PowerEdge 2650, Dell Inc., 2004.

[4] G. Hunt, J. Larus, “Singularity: Rethinking the Software Stack”, ACM SIGOPS Operating
Systems Review, 41:2 (2007), 37–49.

[5] C. Li, C. Ding, K. Shen, “Quantifying the Cost of Context Switch”, Proceedings of the
2007 Workshop on Experimental Computer Science, ExpCS’07, ACM, New York, NY,
USA, 2007.

[6] IA-32 Intel R© Architecture Software Developer’s Manual. Volume 3: System Programming
Guide, Intel Corporation, 2002 (245472-007).

[7] L. McVoy, C. Staelin, “Lmbench: Portable Tools for Performance Analysis”, Proceedings
of the USENIX Annual Technical Conference, San Diego, California, USA, January 22–26,
1996, 279–294.

[8] J. C. Mogul, A. Borg, “The Effect of Context Switches on Cache Performance”, SIGPLAN
Not., 26:4 (1991), 75–84.

Клименков Е.И., "Измерение накладных расходов на параллелизм и виртуаль-
ную память", Моделирование и анализ информационных систем, 25:2 (2018), 165–
173.

DOI: 10.18255/1818-1015-2018-2-165-173

Аннотация. В данной статье представляется методология и результаты измерений и оценки
накладных расходов, связанных с параллелизмом и виртуальной памятью. Для получения наибо-
лее точных экспериментальных данных использовалась специальная методика измерений. Данная
методика сфокусирована на измерениях совокупных потерь производительности, создаваемых па-
раллелизмом, выраженным в форме легковесных потоков пользовательского режима на процессо-
рах с архитектурой IA-32. Были получены и проанализированы данные, произведенные в средах с
виртуальной памятью и без нее. Таким образом стало известно, какая потеря производительности
вызывается виртуальной памятью, а также то, как она влияет на накладные расходы, связанные
с параллелизмом. Эксперименты показали, что накладные расходы на параллелизм гораздо суще-
ственнее накладных расходов на виртуальную память. И тем не менее, между ними существует
сложная взаимозависимость. Статья публикуется в авторской редакции.

Ключевые слова: виртуальная память, параллелизм, накладные расходы, измерения
Об авторах:
Клименков Евгений Иванович, orcid.org/0000-0001-7449-7986, магистр техн. наук, аспирант,
Белорусский государственный университет информатики и радиоэлектроники,
ул. П. Бровки, 6, г. Минск, 220013 Республика Беларусь, e-mail: klimenkov@bsuir.by

	Задача о рюкзаке
	Последовательный алгоритм решения задачи
	Рекурсивно-параллельный алгоритм
	Результаты тестирования
	Список литературы / References
	Introduction
	Related Work
	Measurement Methodology
	System Structure
	Benchmark Implementation
	User-Level Threads Implementation
	Measurement Methodology and Points
	Experimental Platform

	Results
	Conclusions and Outlook
	References
	Обобщенная модель функционирования МВС РВ
	Сети временных автоматов с остановкой таймеров
	Структура обобщенной модели функционирования МВС РВ

	Корректность проверки допустимости конфигураций МВС РВ
	Проверка выполнения требований к моделям компонентов МВС РВ
	Подход на основе автоматов-наблюдателей к верификации параметризованных автоматов
	Проверка требований корректности к моделям компонентов МВС РВ

	Корректность модели в целом
	Детерминированность модели

	Список литературы / References
	Классификация и области применения методов коммутации
	Модель вычислительной решетки со сквозной коммутацией пакетов
	Модель узла со сквозной коммутацией пакетов
	Модель генератора трафика
	Модель пушки пакетов
	Модель вычислительной решетки с узлом, реализующим сквозную коммутацию пакетов

	Сравнительный анализ устойчивости вычислительных решеток с различной архитектурой узла
	Масштабирование времени
	Исследование характеристик моделей решеток в условиях рабочей нагрузки
	Оценка влияния злонамеренного трафика на параметры качества обслуживания решеток

	Список литературы / References
	Distributed controller
	CoVisor
	DISCO
	ELASTICON
	FlowBricks
	FlowVisor
	HyperFlow
	Kandoo
	ONIX
	ONOS
	ORION

	Distribution systems analysis
	Conclusion
	References
	Постановка задачи исследования
	Математическая модель системы
	Результаты проверки математической модели
	Заключение
	Список литературы / References
	Предварительные сведения о диэдральной групповой алгебре
	Структура кодов в алгебре FqD2n
	Пример
	Список литературы / References

