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Abstract. Software Defined Networking (SDN) is a promising paradigm for network management.
It is a centralized network intelligence on a dedicated server, which runs network operating system, and
is called SDN controller. It was assumed that such an architecture should have an improved network
performance and monitoring. However, the centralized control architecture of the SDNs brings novel
challenges to reliability, scalability, fault tolerance and interoperability. These problems are especially
acute for large data center networks and can be solved by combining SDN controllers into clusters,
called multi-controllers. Multi-controller architecture became very important for SDN-enabled networks
nowadays. This paper gives a comprehensive overview of SDN multi-controller architectures. The authors
review several most popular distributed controllers in order to indicate their strengths and weaknesses.
They also investigate and classify approaches used. This paper explains in details the difference among
various types of multi-controller architectures, the distribution method and the communication system.
Furthermore, it provides already implemented architectures and some examples of architectures under
consideration by describing their design, communication process, and performance results. In this paper,
the authors show their own classification of multi-controllers and claim that, despite the existence of
undeniable advantages, all reviewed controllers have serious drawbacks, which must be eliminated. These
drawbacks hamper the development of multi-controllers and their widespread adoption in corporate
networks. In the end, the authors conclude that now it is impossible to find a solution capable to solve
all the tasks assigned to it adequately and fully. The article is published in the authors’ wording.
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Introduction

Specialists of the universities of Berkeley and Stanford in 2006 proposed the basic ideas
of the SDN. This approach involves the construction of computer networks in such a
manner that the control plane is separated from the data plane. The control plane is
usually a dedicated server that runs network operating system (OS) called controller. Not
only academic circles were inspired by the SDN architecture, some crucial commercial
companies also became interested in it and formed the ONF (Open Networking
Foundation) community. This community is developing specifications and standards in
the field of SDN. According to ONF, the main ideas of the SDN approach are as follows:

e The control plane is separated from the data plane.
e Unified, vendor independent protocol called OpenFlow is used between planes.

e Control plane is logically centralized, implemented as a network OS, called controller,
and runs some network applications.

The controller manages the network infrastructure and data streams in it, while
network applications are designed to extend the controller’s functionality and
implemented on other equipment to facilitate the functioning of the controller. In fact, the
controller - the core of the SDN - serves as a place where the logic defined by the network
applications is converted into a set of switch configuration rules. Thus, the controller can
become both a point of failure of the network and its performance bottleneck. If the
controller fails, the operation will fail, leading to a complete or partial loss of network
management. In this case, the switching equipment will continue to forward packets
according to the current routing rules. However, if one or more switching equipment
fails, the network will not be able to continue functioning. Therefore, a very important
aspect when implementing the SDN approach for corporate, operators, providers or data
centers networks is to ensure trouble-free operation of the controller.

To solve the above problem, the distributed interaction of controllers can serve, which
will allow, if one controller fails, to retain control over the switching equipment. The
presence of several controllers in the network implies the existence of a mechanism for
exchanging control information between these controllers. The multi-controller
architecture is a set of controllers working together to provide high performance and
scalability. The organization of a multi-controller SDN can be logically or physically
centralized, having one rank or hierarchical structure. Works in these areas are carried
out within the framework of such projects as CoVisor, DISCO, ELASTICON, FlowBrick,
FlowVisor, HyperFlow, Kandoo, ONIX, ONOS and ORION.

1. Distributed controller

1.1. CoVisor

CoVisor [1] is a hypervisor that allows you to use multiple controllers located in the same
SDN to manage it. Unlike existing hypervisors, which are focused on splitting the network
into subnets, CoVisor allows several controllers to simultaneously work with traffic. In
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fact, CoVisor allows you to choose the best functionality from different controllers. For
example, you can use the firewall application from the Floodlight controller, the load
balancer from Ryu and so on, regardless of the programming language and libraries
used. The resulting set of functions can be applied to traffic in whole or in part. CoVisor
abstracts from a specific network topology and creates a virtual one in its place, which
allows the administrator to regulate controller access to packages that it can monitor,
modify and redirect. The main technical feature of CoVisor is a set of efficient algorithms
that handle the policies of controllers and transform the virtual network into a set of
specific OpenFlow rules, as well as ensuring their updating. The hypervisor prototype is
based on the OpenVirteX hypervisor and is written in Java. CoVisor testing results show
that it handles packets more quickly than OpenVirteX by several orders of magnitude.

1.2. DISCO

DISCO 2] is a SDN multi-controller. Each DISCO controller monitors its own local
SDN and provides interconnection of controllers via unique communication channels. The
control and transmission of information in these channels is carried out via the Messenger
module using the AMQP protocol. The communication channels use specialized agents
(Monitoring agent, Reachability agent, Connectivity agent, Reservation agent and others).
Specialized agents and Messenger module are implemented in the inter-domain part of the
controller, which is responsible for monitoring, synchronization, data exchange between
DISCO controllers. The intra-domain part of the DISCO is based on the Floodlight
controller. This part is responsible for the direct operation of the controller over the
dedicated SDN or network applications. In their work [2|, the authors evaluate
experimentally the following: breaking the connection between different local networks
and rebuilding the interconnection of controllers, processing traffic by controller m, which
has priority from controller n, idle time when the controller is migrated to another virtual
machine.

1.3. ELASTICON

ELASTICON [3] is a cluster of standalone controllers that share the workload to provide
a global network view for the management layer. This global view of the network uses
the Distributed Data Store module, through which a logically centralized controller is
created. Each module has a TCP channel that connects it to neighboring controllers.
This ensures the exchange of messages between controllers, the switching of responsibility
zones or coordinating actions while switching equipment is migration process.

The following example can illustrate the typical use case of ELASTICON. The
switching equipment is connected to several controllers. One of them is the master and
the others are slaves. Each controller has a core controller module that is responsible
for connecting the switching equipment and for interacting this equipment with the
controller core applications. It should also be noted that this module is responsible for
choosing which controller will be connected to the new switching equipment and for the
migration of this equipment between the controllers. The controller core applications are
responsible for the executable logic of the switching equipment. The information stored
in them is transmitted via the Distributed Data Store module to a similar application
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in another controller when the switching equipment is migrated. Balancing of switching
equipment between controllers is performed periodically and does not depend on traffic
load.

1.4. FlowBricks

This controller is based on the Floodlight kernel. FlowBricks [4] is built in such a way
that it acts as an intermediary between various controllers and SDN. This approach
was chosen because different parts of different controllers operate more or less efficiently.
Thus, FlowBricks can send both sequentially and in parallel a packet-in to the controllers.
The processing of responses from controllers can be configured and FlowBricks may
decides how to modify the packet-out. The prototype of the controller showed that the
processing time of the OpenFlow package has not increased significantly.

1.5. FlowVisor

FlowVisor [5] is an approach to organization of the SDN architecture that involves
creating an additional layer for processing OpenFlow packets between the SDN controller
and OpenFlow equipment. FlowVisor intercepts, modifies and redirects all packets ex-
changed between controllers and equipment, so that for each individual controller the
network (or part of it) looks controlled only by it. In this way, the network is divided
into layers that work independently. On the one hand, the advantage of this approach
is the relative independence of a particular SDN controller, since the manipulations are
done directly with OpenFlow packages, without affecting the controller’s operation. As
an analogue, you can consider the use of VLAN in a classical network. On the other
hand, the administrator is obliged to configure, control and resolve conflicts between
controllers. The system was based on the NOX controller.

1.6. HyperFlow

HyperFlow [6] is a network application for the NOX controller, which allows you to
turn this controller into a distributed one. This is achieved through WheelFS [7], which
provides passive data synchronization between network applications of controllers. This
synchronization build on the publishing/subscribing events method. It ensures that the
controller does not duplicate the transmitted information, and minimizes the amount of
traffic transmitted by the controllers.

1.7. Kandoo

The Kandoo [8] project involves building a hierarchy of controllers in such a way that
the lower level of the hierarchy is the controllers that manage their domains, and the top
level is the root controller that controls the lower-level controllers. Low-level controllers
process packet-in requests for which they have solutions, otherwise they send it to the
top-level controller, which has a complete view of the entire SDN. For the Kandoo project
to optimize the operation of the SDN two main applications have been created: detect
and reroute. The first application works on the lower level of the controllers. It determines
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large flows (large is considered to be a stream of more than 1 MB). They overflow the
channels and reduce the efficiency of the SDN to transfer other flows. When one of the
controllers determines a large flow, it passes this information to the upper level to rebuild
the routing of all threads in the controlled SDN.

1.8. ONIX

ONIX [9] is a distributed controller that can be run on a cluster. At the same time on
each node of the cluster - a dedicated server - several Onix controllers can be started. The
SDN controlled by ONIX is divided into four logical components: a physical infrastructure
that includes all network devices; the connection infrastructure, which is the connection
between the physical network and ONIX; the management logic that is presented by the
ONIX API for network applications and, finally, the ONIX controller itself, interacting
with the physical infrastructure.

The ONIX API allows network applications to read and write the status of any
network element in the SDN. Each network element can contain one or more data objects
to which network applications should have access. In the NIB information database, each
state of the network is stored as a graph. ONIX controllers support NIB synchronization
and each network applications can read and write status in NIB.

For scalability, the ONIX controller offers three methods: the dynamic load sharing
between multiple copies of the controller, the creation of a hierarchical structure with the
representation of aggregation of controllers at the lower level and the ability to transfer
the state of applications.

1.9. ONOS

The first prototype of the ONOS SDN controller [10] was based on the Floodlight.
It has the switch manager, 1/O loop, link discovery, module management, and REST
APIs. The main characteristics of this prototype were global network view, scalability
and fault tolerance. To ensure higher performance, ONOS was build using the following
frameworks. Firstly, it is the Titan — a distributed graph database, which is storing the
network topology. Secondly, it is Cassandra — a distributed No-SQL database, which is
implemented as a key-value storage and were used for storing information about switches,
ports and so on. Thirdly, is Blueprints API — the interface, on which network applications
receive information about the current network topology.

If the global network view has changed, OpenFlow managers detect it and implement
changes in the real network. Each controller, in this architecture, is responsible for its
own domain. In this case, each switch is connected to several controllers. If a controller
stops responding, then using the ZooKeeper algorithm, there are elections among the
active controllers, who will take responsibility for managing the SDN slice that is left
without a controller.

The main drawback of the proposed approach is low performance due to the high
overhead required to update the network topology stored in Titian and Cassandra. With
the fall of one controller, the reorganization of the SDN lasted up to 30 seconds, which
is unacceptable.
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While creating the second prototype, the focus was on improving the performance of
the first one, keeping the Global network view. In this case, there are two main areas
where the performance gain can be got. The first one concerns making remote operations
as fast as possible, while the second approach focuses on reducing the number of remote
operations. It was decided to change the Titan, Cassandra and Blueprint API stack
to faster in-memory DBs. The creators chose RAMCloud DB, because it provides an
interface compatible with the Blueprint API. In addition, the authors suggested using
topology cache. The essence of this technology lies in the fact that topology changes
are not added immediately in the DB, but store in the cache. If after some time there
are no any new changes, then the cache data is inserted to the DB. In addition, to
improve the inter-controller communication through notifications, the authors applied
inter-instance publish-subscribe event notification and communication system based on
Hazelcast. With the help of it, several notification queues have been created. Network
applications can subscribe to them, and, thus, they will quickly receive the information
they need.

1.10. ORION

ORION [11] is a hybrid hierarchical control plane, which is a mix of flat and hierarchical
architectures. It tries to combine the benefits of both designs and put them all together
in a hybrid structure. A network controlled by ORION has three layers: the physical
layer, which contains all the physical devices, such as OpenFlow switches; the bottom
layer of the control plane that includes the controllers, which handle collecting physical
device and link information, as well as dealing with intra-area requests and updates; and,
finally, the upper layer, which contains the domain controllers.

ORION interdomain controllers’ communication relies on the Horizontal
Communication Module that synchronizes the information among domain controllers
to build a global network view. The interarea and domain controllers’ communication
relies on the Vertical Communication Module, which is a set of TCP connections that
permit area controllers to send the abstracted topology of the infrastructure layer and
request information from the domain controller when a host in some domain wants to
reach a particular host in another domain.

ORION has made a theoretical and an experimental evaluation to test the performance
of its control plane. On one hand, the theoretical evaluation shows that the computing
time of ORION has a linear growth, which is much lower than the traditional Dijkstra
routing algorithm. On the other hand, the experimental evaluation tried to verify the
feasibility and the effectiveness of ORION shows that the delay time increases gradually.

2. Distribution systems analysis

After analyzing the presented multi-controllers and the principles of organizing a
distributed, scalable and fault-tolerant control system for SDN, we classify the controllers
into subgroups and define the methodology for creating the distributed SDN.

Fig. 1 shows the classification of multi-controllers. Physically centralized
multi-controllers are monocontrollers with multi-threaded organization of event processing.
For examples, NOX and Beacon controllers, as well as the CoVisor, FlowBrick or Flow Visor
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hypervisors are typical representatives of this group. Physically distributed
multi-controllers are controllers running as separate instances. Logically distributed multi-
controller is a cluster of SDN controllers that are responsible for different domains and
perform various functions. Depending on the functionality, they can have hierarchical
(Kandoo) or flat (ORION) architecture. Logically centralized multi-controllers performs
a single task in one domain, which is distributed between them depending on the total
load. They can have both a dynamic structure (the number of instances increases and
decreases as necessary) — DISCO, ONIX, ONOS, and the static structure (the number
of instances is invariable) — Elasticon, HyperFlow. Representatives of this class have flat

architecture.
SDMN architecture.
lultiple controllers.
Physically centralized Physically distributed
Logically centralized Logically distributed

Dynamic architecture w
Flat architecture Flat architecture Flat architecture Hierarchical
architecture

Fig 1. The classification of multi-controllers

According of the above-mentioned review of controllers, the distributed system can
be developed with the help of:

e hypervisors — physically centralized controllers;

e special applications functioning as a mediator between the controller and network
applications (HyperFlow);

e special controller core modules linked to corresponding module of another controller
via TCP channel. Most multi-controllers function this way.

The last approach is the most scalable and fault-tolerant. Developers implement
it using publish-subscribe event notification mechanism. Synchronization is achieved by
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updating the information on the monitored SDN and the actions performed on it between
different controllers.

Despite the fact that the main ideas of the SDN approach are the vendor dependence
reduction and centralized network management, the developers of distributed controllers
again impose a restriction that involves using only their multi-controller. On the one
hand, there are hypervisors that can solve this problem, but they do not solve the
bottleneck problem. On the other hand, modern controllers are just a tool for collecting
information and installing logic into network applications, while controllers and network
applications are controlled by a higher-level entity, for example, the ETSI MANO standard
solutions. Thus, to make this system to functioning properly, both highly qualified
specialists and equipment of the data center level are required.

A possible solution for creating distributed interaction between different controllers
and various network applications, without using a higher level entity capable for managing
a distributed SDN that is not a data center, is the creation of a unified kernel module
which should follow several requirements. Firstly, the interaction between controllers and
network applications must be performed using the RPC method, since many controllers
already use it. Secondly, the interconnection between the modules should be performed
via an encrypted TCP channel. Thirdly, the module must have different APIs for
interaction with various controllers and network applications. In fact, this module should
become a distributed hypervisor at the core level of the controller with the ability to
interact with network applications.

3. Conclusion

To create a unified kernel module, the authors developed the PreFirewall [12] network
application and a random rule generator for the firewall of the Floodlight controller core
module. The generator allows you to simulate the interaction of an arbitrary network
application with the SDN controller. In addition, the external module of the Floodlight
controller core Topology Tracker [13] was developed for storing and exchanging
information on the current network topology. It also allows subscribing to events of
a similar module with a distributed controller. The authors designed an external module
of the Floodlight SDN controller called DEventBus [14]. It is able to send events that
occurred in module Topology Tracker to network applications signed for them. The
DEventBus module is a prototype for the organization of interaction between multi-
controller and network applications.

In the future, the authors are planning to unify this module for organizing multi-
controller interaction. For this purpose, we are going to implement various API algorithms
for checking the availability of resources, opening and supporting communication channels.
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Awnnoranus. ITporpammuo-koudurypupyemas cetb (IIKC) — 310 mepenekruBHast mapajurma yrpas-
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¥ perraiTcs myTeM o0beanHeHusi HecKoybKux KoHTposutepoB [IKC B kitactep, Ha3bIBa€MBbIil MyJIbTH-
KOHTpoJutepoM. B manmoit ctaThbe mpeacTaBiieH 0030p HEKOTOPHIX HAMOO/Iee TMOMYJIAPHBIX MYIbTA-KOHT-
posutepos IIKC, BbIe/ieHbl UX CHIBHBIE U CJIa0ble CTOPOHBI, 8 TAKXKe MPUBEIEeHA KJIaCCU(DUKAIIS WC-
[I0JIb3YEMBIX VMU TIOXO0/I0B K OPraHU3allly PACIPEIeIEHHOr0 B3auMoeicTeus. [logpobHo paccMaTpu-
BaIOTCs PA3JINYUsi MEXKJY HECKOJbKUMHU TUIAMHU aPXUTEKTYP MYJIbTH-KOHTPOJLIEPOB, CPEI KOTOPBIX
eCTh KaK HAaXOJAInecsd Ha Tane pa3paboTKU, TaK U YCIENHO (PYHKINOHUPYIONINE B JTAHHOE BPEMs B
JaTa-TieHTpax. ABTOpPBI Ha TIpUMepe pa3pabOTaHHOW UMU KJIACCU(MUKAIUN MYyJIbTH-KOHTPOJLJIEPOB MOKA~
3BIBAIOT, 9TO, HECMOTPs Ha HAJIMYAE HEOCIIOPUMBIX MPEUMYIIECTB, BCE PACCMOTPEHHBIE KOHTPOJIIEPHI
UMEI0T HeJOCTaTKU, KOTOPbIe HeO6XO)ZLI/IMO yYCTPpaHUTD. yCTpa.HeHI/Ie JIaHHBIX HEJOCTAaTKOB IIOMOXKET pa3-
BUTHUIO MYJIBTH-KOHTPOJLJIEPOB W CJeJIaeT BO3MOXKHBIM WX IMUPOKOE KCIIOJIH30BAHUE B KOPIOPATUBHBIX
ceTsX. B 3ak/iroueHrne aBTOPBI TPUXOAAT K BBIBOIY, UTO HA, JMAHHBII MOMEHT HejIb3sl HATH pelreHue,
crtoco0OHOE B TIOJTHOM Mepe PElnuTh Bee mocTaBieHHble 3a1aqn. CTaThs MyOIMKyeTCs B ABTOPCKOI pelak-
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