Modeauposanue u anaausd ungopmayuorrwor cucmem. T.25 Ne3 (2018), c. 251-256
Modeling and Analysis of Information Systems. Vol. 25, No 3 (2018), pp. 251-256

[Tporpammuo-Konpurypupyembie

ceTu

©Morzhov S. V., Nikitinskiy M. A., 2017
DOI: 10.18255,/1818-1015-2018-3-251-256

UDC 004.415.25

A New Approach for Detecting and Resolving

Anomalies in Security Policy of the External Firewall
Module of the Floodlight SDN Controller

Morzhov S. V., Nikitinskiy M. A."
Received December 26, 2017

Abstract. In this paper, the authors analyze the developed PreFirewall network application for the
Floodlight software defined network (SDN) controller. This application filters rules, which are added
into the firewall module of the Floodlight SDN controller in order to prevent the occurrence of anomalies
among them. The rule filtering method is based on determining whether the addition of a new rule will
not cause any anomalies with already added ones. If an anomaly was detected while adding the new
rule, PreFirewall application should be able to resolve it and must report the detection of the anomaly.

The developed network application PreFirewall passed a number of tests. As a result of the stress
testing, it was found that the time of adding a new rule, when using PreFirewall, substantially increases
with increase in the number of previously processed rules. Analysis of the network application PreFirewall
showed that while adding a rule (the most frequent operation), in the worst case it is necessary to
compare it with all existing rules, which are stored as a two-dimensional array. Thus, the operation of
adding a new rule is the most time-consuming and has the greatest impact on the performance of the
network application, which leads to an increase in response time.

A possible way to of solving this problem is to select a data structure used to store the rules, in which
the operation of adding a new rule would be simple. After analyzing the structure of the policy rules for
the Floodlight SDN controller, the authors noted that a tree is the most adequate data structure for its
storage. It provides optimization of memory used for storing the rules and, more important, it allows
to achieve the constant complexity of the operation of adding a new rule and, consequently, solving the
performance problem of the network application PreFirewall.

The article is published in the authors’ wording.

Keywords: firewall, Floodlight, hash table, network controller, policy tree, PreFirewall, rules anomalies
resolving, SDN, software-defined network

For citation: Morzhov S.V., Nikitinskiy M. A., “A New Approach for Detecting and Resolving Anomalies in Security
Policy of the External Firewall Module of the Floodlight SDN Controller”, Modeling and Analysis of Information Systems,
25:3 (2018), 251-256.

On the authors:

Sergey V. Morzhov, orcid.org/0000-0001-6652-3574, graduate student,
P.G. Demidov Yaroslavl State University,

14 Sovetskaya str., Yaroslavl 150003, Russia, e-mail: smorzhov@gmail.com

Mikhail A. Nikitinskiy, orcid.org/0000-0001-8830-8613, system analyst, programmer,
A-Real Group, Energiya-Info Inc., 144 Soyuznaya str., Yaroslavl, 150008, Russia, e-mail: man@a-real.ru

Acknowledgments:
1The work was supported by RFBR, the research project Ne 16-07-01103a.

251

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.25 Ne3 (2018)
252 Modeling and Analysis of Information Systems. Vol. 25, No 3 (2018)

Introduction

The Prefirewall network application for the SDN FloodLight controller [1]|, proposed by
the authors in the article [2], showed good results in filtering the added rules in policies
rule sets. The developed algorithm prevents the occurrence of any anomalies among
them. However, the load testing of the network application revealed a serious drawback
in it — an increasing time the application spent to add a new rule when the number of
processed rules is big enough.

To test the network application, 15 000 rules were created by the random rule
generator. Such an amount of rules was proposed by one of the Russian manufacturer
of UTM (Unified threat management) solutions, based on an analysis of the rule sets
used in customer organizations with an average of 500 users. Testing was performed on a
computer running Ubuntu 14.04 with Intel core i7 processor with a clock rate of 3 GHz.

Firstly, the time taken to load all generated rules directly into the external module
of the Floodlight SDN controller was measured. After that, the same rules have been
added to the Floodlight through PreFirewall network application, which resolves all the
anomalies between them. Fig. 1 illustrates how the time taken to add each rule is growing
with the growth of the number of processed and stored rules. On the x-azis, the scale
values are from 0 to 15 000 and shows the number of installed rules. On the y-axis, the
scale values are from 0 to 2.5 and show the rule installation time in seconds.

Time per rule

W
o

0.5

L
cigaak sl b
ll Ak !E!! L
0.0
o

2000 2000 6000 8000 10000 12000 14000
Rule number

Fig 1. Adding rules to the Floodlight SDN controller through PreFirewall

The growth rate is polynomial due to the algorithm complexity [2]. Table 1 provides
more detailed test results:

Taking into account the results obtained in Table 1 and analyzing possible ways of

reducing the time the network application used to process a new rule, it was decided to
optimize the algorithm used in PreFirewall.

Morzhov S. V., Nikitinskiy M. A.

Detecting and Resolving Anomalies in Security Policy of the External Firewall Module ... 253
Table 1. Test results
Floodlight, s PreFirewall +
Floodlight, s

The average time of adding a new rule 0.0115 0.6333

Standard deviation 0.0073 0.6491

Total time taken to process 15 000 rules 172.055 9499.8394

The time taken to add the first rule 0,01 0,04

Rules were added (out of 15 000) 14781 11631

1. Analysis of data structures for a new algorithm

Analysis of the algorithm used in the network application PreFirewall showed that the
main problem of low performance is the data structure used to store the rules. A two-
dimensional array was used as the repository of rules. As a result of this, the operation
of adding a new rule (one of the most frequent operations) became very slow. In the
worst case, if the new rule is "good" (adding it does not cause anomalies), it should be
compared with all stored rules. Thus, the addition of "good" rules is more complex than
the addition of "bad" rules. Taking into account that "good" rules are added more often
than "bad" rules, in order to optimize the algorithm, first of all, it is necessary to make
the operation of adding "good" rules as simple as possible in terms of complexity. It
is worth noting that, without introducing fundamental changes to the algorithm itself,
you can achieve the task only if you store the processed rules in the form of a tree. The
use of dictionaries, hash tables or databases will not yield any gain, since they are not
fundamentally different from a two-dimensional array in their structure.

Table 2. Floodlight firewall rule fields

Filed name Possible value Description

switchid XXIXX XX XK XK XK XK XX Switch identification number

src-inport short Input switch port number

src-mac XX XX XX XX XX XX Source MAC-address

dst-mac XXIXX XK XX XK XX Destination MAC-address
MAC-azapec noJryvareist

dl-type ARP or IPv4 Protocol

sre-ip AB.C.D/M Source IP-address

dst-ip AB.C.D/M Destination IP-address

nw-proto TCP or UDP or ICMP Protocol

tp-src short Source port number

tp-dst short Destination port number

priority int Priority of the rule (less is more important)

action allow or deny Allow or deny set of network flows which are
match rule

So, let us take a closer look at how to introduce security policy rules in the form of a
tree. Concerning OpenFlow Standard 1.0, the packet headers have 12 fields [3]| (Table 2).
Let us arrange the rule fields by the number of possible values that can be contained
in them, in ascending order. The field priority and action will be placed at the end of
this sequence, since these fields are related to the action of the rule. Thereby, the rules

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.25 Ne3 (2018)
254 Modeling and Analysis of Information Systems. Vol. 25, No 3 (2018)

tree will have a height equals to 12. We establish a one-to-one correspondence between
the levels of the tree and the rules fields in such a way that the smaller the number of
possible values of the field, the lower the tree level corresponding to it. Thus, we establish
a one-to-one correspondence between each rule of security policy that does not contain
any anomalies and tree path started at the root and ended in the leaf.

Let each vertex of the tree contain hash table (key-value pair). The key value will be
the value of the rule field. The value is the address of the corresponding vertex on the
level below. At level 12 of this tree, there will be leaves corresponding to action field and
containing two possible values — allow or deny as keys, and the values will be nullptr.
A simplified tree model is shown in Fig. 2. This tree will be called a police tree. Nodes
marked with a dashed line are not included in the policy tree and are inserted into the

scheme only for numbering the rules.

Ipv4 ARP

i
i

TCP uDpP ICMP

0)
{0
Ul
0

8080 1521 1234

i
e,,
&
U,

192.168.17.102192.168.170.* 192.168.17.93 192.168.*

-
06

06
06
0
R

allow deny allow allow deny
¥ ¥
Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6

Fig 2. Policy tree example

2. Bulding police tree. Anomalies detection
and resolution algorithm

Consider the algorithm for building this tree and finding anomalies among the security
policy rules. The algorithm for adding a new rule to a tree is as follows:

e Discovery routine. The DiscoverAnomaly algorithm called. At this stage, it is
determined whether the set of security policy rules will remain free of any anomalies,

Morzhov S. V., Nikitinskiy M. A.
Detecting and Resolving Anomalies in Security Policy of the External Firewall Module ... 255

after addition of the new rule. If so, go to stage 2, otherwise — the completion of
the algorithm and showing the anomaly detection message.

e Rule insertion routine. The InsertRule algorithm called. Inserting the rule into the
tree and completing the algorithm. Showing message about the insertion of the
rule.

The DiscoveryRoutine algorithm is extremely simple. Each field of the new rule is
compared with every field of the rules already added in the policy tree, in order to search
for anomalies. Anomalies are sought on the basis of their definitions obtained earlier [2].

The decision routine is activated once all the rule fields have been checked and the
action field is reached. At that point, the final anomaly state is determined and reported.
If the rule action coincides with the action of another rule, an anomaly is discovered.
Correlation and generalization are confirmed if the rule actions are different. If the input
anomaly state is a generalization and the actions are the same, the existing rule is
redundant to the new rule. Finally, if the new rule is a subset or equal to the existing
rule, the new rule is redundant if their actions are the same, and is shadowed if their
actions are different. If an anomaly is discovered and decided, the user is reported with
the type of anomaly and the rules involved.

Thus, to determine the type of anomaly or to make sure that there are no any
anomalies, it is required to check the presence of a specific value in hash table on each
of the 12 levels of the policy tree. The complexity of this operation is O(1) [4]. Hence,
the complexity of the DiscoverAnomaly algorithm is also O(1).

The InsertRule function inserts rules to the policy tree that have been tested by the
DiscoverAnomaly function. The complexity of this operation is O(1).

Thus, the proposed modification of the algorithm for determining anomalies have a
constant time complexity.

3. Conclusion

Often, network administrators have to modify existing security policy rules, which can
lead to anomalies or opening security holes. The detection of anomalies in this case
becomes more difficult than detection anomalies while adding new rules, because changing
the rule can potentially lead to serious changes in the policy tree as a whole. Effective
restructuring of the tree, combining the rearrangement of the old rules, is a complex
task. In the future, it is planned to conduct research on the development of effective
algorithms for restructuring the policy tree in the case of editing existing rules, as well
as carrying out stress testing of the proposed algorithm.

References

[1] Floodlight SDN OpenFlow Controller, https://github.com/floodlight /floodlight.

[2] Morzhov S., Alekseev 1., Nikitinskiy M., “Firewall application for Floodlight SDN
controller”, International Siberian Conference on Control and Communications (SIBCON)
(12-14 May, 2016, Moscow, Russia), 1-5.

[3] OpenFlow Switch Specification, — Version — 1.4.0, http://networkstatic.net/wp-
content/uploads/2013/10/openflow-spec-v1.4.0.pdf.

https://github.com/floodlight/floodlight
http://networkstatic.net/wp-content/uploads/2013/10/openflow-spec-v1.4.0.pdf
http://networkstatic.net/wp-content/uploads/2013/10/openflow-spec-v1.4.0.pdf

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.25 Ne3 (2018)
256 Modeling and Analysis of Information Systems. Vol. 25, No 3 (2018)

[4] Cormen T., Leiserson C., Rivest R., Stein C., Introduction to Algorithms, 3rd.,
Massachusetts Institute of Technology Press, 2009, ISBN: 978-0-262-03384-8.

Mopxos C.B., Hukutunckuii M. A., "HoBbiil 1mogxo/1 K 00HapyKEHUIO U yCTpa-
HEHWIO aHOMAJIMii B TOJUTUKE OE30IacHOCTU BHEITHEr0 MOJLYJIs MEXKCEeTEBOTO IKpaHa
kouarposuiepa [IKC Floodlight", Modeauposarue u anaius uH@opmayuonHvix cucmem,

25:3 (2018), 251-256.

DOI: 10.18255/1818-1015-2018-3-251-256

AmnHorarusi. ABTopnl paccMmarpuBaioT pazpaboranuoe cereBoe npuiiokenue PreFirewall mist kon-
TpoJsiepa npozpammno-kongueypupyemot cemu (IIKC) Floodlight. Tannoe cereBoe npuiioxkenue ocy-
LIECTBJIIET (PUILTPAIUIO YCTAHABJIMBAEMBIX IIPAaBUJI B MOAY/b siapa firewall konrposiepa Floodlight
C TIeJIBIO HEeJOMYIIEeHNs] BOSHUKHOBEHUSI aHOMAJIMI MEXKJIy yCTaHABJINBAEMbIMU IpaBuiiamu. Paszpabo-
TaHHOEe ceTeBoe mpusoxkenne PreFirewall mpomuto psi TecroB. B pesyibrare mpoBeIeHHOrO HArpy304-
HOT'O TEeCTUPOBaHUS OBIJIO YCTAHOBJIEHO, UTO BpeMsi J0DABJIEHHS HOBBIX IIPABWUJI, IIPU KCIIOIH30BAHUU
PreFirewall, cepbe3no BozpactaeT ¢ poCTOM KOJUYECTBa paHee 0OpabOTAHHBIX MpaBUI. AHAJU3 ceTe-
Boro npumioxkenus PreFirewall nmokazas, dro upu gobasienuu npasuia (camas dacras oLeparys), B
XY/IIEeM CJIydae HeoOXOMMO MPOU3BECTH €r0 CPaBHEHHE CO BCEMHU CYIECTBYIONUMU IIPABUIAMHU, KOTO-
pble XpaHSATCsl B BHUJE JBYMEPHOIO Maccuba. Takum ob6pasoM, omnepalusi [100aB/JI€HUsI HOBOIO IIPABUIIA
SIBJISIETCsT HamboJiee TPYAOEMKOW U CHJIbHEE BCETO BJIMSIET Ha [IPOM3BOIUTEBHOCTH CETEBOrO MPHUJIOKEe-
HUsl, 9TO TPHUBOIUT K BO3PACTAHUIO BPEMEHH ero OTKJuKa. OJHUM U3 BO3MOXKHBIX IIyTeH perieHus
JIAHHON TPOGJIEMBI SIBJISIETCsT BHIOOD TAKOW CTPYKTYPBI JAHHBIX, UCIOJIL3YEMON Jjisi XpaHeHUs] TPABUII,
B KOTOPO#l omeparius g00aBJIeHsT HOBOTO TpaBuia ObLia Obl mpocToit. B kKadecTBe Takoil CTpyKTYpPBI
[IPEeJIJIAraeTCsl CIIOJIb30BAHME JePeBa, KaxKJas BEPIINHA KOTOPOI'O COIEPKUT BCEBO3MOYKHBIE 3HAUEHUSI
moJjieil B yCcTaHABIUBAEMbIX ITpaBuiiax. JJaHHBI OmX0/] 0becreYnBaeT KOHCTAHTHYO CJI0YKHOCTH Ollepa-
nun J100aBJICHIS HOBOTO IIPABWIIA U, CJIEIOBATEIHLHO, PEIIAET IPOOJIEMY IPOU3BOIATEHHOCTH CETEBOIO
npunoxkenust PreFirewall. Crarbs mybimkyercst B aBTOPCKOM PeIAKITIH.

KuroueBsbie ciioBa: mexkcereBoil skpan, Floodlight, xem-rabsnma, ceTeBoit KOHTPOJLIED, JEPEBO IPa-
Bus1, PreFirewall, pazpemenne Bosuukaromux anomanuit, [IKC, mporpamvuo-koudurypupyemast cetb

O6 aBTopax:

Mopzkos Cepreit Binagunmuposud, orcid.org/0000-0001-6652-3574, marucrpanr,
fApocnasckuit rocymapcrsennsnii yuusepcurer uM. 11.I. lemunosa,

ya. Coserckasi, 14, r. fdpocnasib, 150003 Poccust, e-mail: smorzhov@gmail.com

Hukuruncknit Muxawnsn Asiekcanaposud, orcid.org/0000-0001-8830-8613, nmporpaMMucT-aHAJIUTHK,
00O «ueprusi-Nudoy, yia. Corwsnas, 144, r. dpocinasas, 150008 Poccusi, e-mail: man@a-real.ru

BaaromapHocTu:
1Pa6ora BhImonnena npu dbunancosoii moggep:xke PODU, npoext Ne 16-07-01103a.

	Analysis of data structures for a new algorithm
	Bulding police tree. Anomalies detection and resolution algorithm
	Conclusion
	References
	Описание вероятностной модели
	Оценка средней временной выгоды для вероятностной модели динамики популяции
	Построение наибольшей оценки снизу для средней временной выгоды, выполненной с вероятностью единица
	Список литературы / References
	Области предпочтительной полезности
	Двумерный случай

	Вероятность выбора ареала
	Устойчивость распределения Больцмана
	Заключение
	Список литературы / References
	Введение
	Алгоритм расщепления носителя для индуцированных кодов
	Предварительные сведения
	Индуцированные коды и их свойства
	Алгоритм расщепления носителя

	Применение индуцированных кодов в криптографии
	Криптосистема типа Мак-Элиса на основе индуцированных кодов
	Протокол идентификации на основе индуцированных кодов

	Список литературы / References
	Введение. Числа n и n
	Верхние оценки n
	Нижние оценки n
	О выполнении неравенства n < n+12(n-1)+1
	О равноотсечении для правильного симплекса, вписанного в куб
	Список литературы / References
	Отображение периодов и группы Ходжа
	Типы гладких слоев семейств поверхностей
	Определение групп Ходжа и Мамфорда–Тэйта
	Точки, общие в смысле Ходжа, непостоянное отображение периодов и бесконечная группа монодромии

	Доказательство основной теоремы
	Формулировка основной теоремы
	Морфизмы трансцендентных частей и представления монодромии
	Рациональные когомологии степени 2 и группы Нерона–Севери
	Доказательство основной теоремы
	Следствие из основной теоремы

	Список литературы
	 Введение и основные обозначения
	Равномерная (k,p)-дифференцируемость
	Список литературы / References
	Перестановки функций
	Интегральные неравенства
	Симметризации функций и интегральные неравенства
	Список литературы / References

