Вычислительная геометрия

©Невский М. В., Ухалов А. Ю., 2017

DOI: 10.18255/1818-1015-2018-3-291-311

УДК 514.17+517.51+519.6

Об оптимальной интерполяции линейными функциями на *n*-мерном кубе

Невский М. В., Ухалов А. Ю.

получена 11 декабря 2017

Аннотация. Пусть $n \in \mathbb{N}, \ Q_n = [0,1]^n$. Через $C(Q_n)$ обозначим пространство непрерывных функций $f:Q_n \to \mathbb{R}$ с нормой $\|f\|_{C(Q_n)} := \max_{x \in Q_n} |f(x)|$, через $\Pi_1(\mathbb{R}^n)$ — совокупность многочленов от n переменных степени ≤ 1 (или линейных функций). Пусть $x^{(j)}, \ 1 \leq j \leq n+1$, — вершины n-мерного невырожденного симплекса $S \subset Q_n$. Интерполяционный проектор $P: C(Q_n) \to \Pi_1(\mathbb{R}^n)$, соответствующий симплексу S, определяется равенствами $Pf\left(x^{(j)}\right) = f\left(x^{(j)}\right)$. Норма P как оператора из $C(Q_n)$ в $C(Q_n)$ может быть вычислена по формуле $\|P\| = \max_{x \in \mathrm{ver}(Q_n)} \sum_{j=1}^{n+1} |\lambda_j(x)|$. Здесь λ_j — базисные многочлены Лагранжа, соответствующие S, $\mathrm{ver}(Q_n)$ — совокупность вершин Q_n . Через θ_n обозначим минимальную величину $\|P\|$. Ранее первым автором были доказаны различные соотношения и оценки для величин $\|P\|$ и θ_n , в том числе имеющие геометрический характер. Справедлива эквивалентность $\theta_n \asymp \sqrt{n}$. Подходящими по размерности n неравенствами являются, например, $\frac{1}{4}\sqrt{n} < \theta_n < 3\sqrt{n}$. Для проектора P^* , узлы которого совпадают с вершинами произвольного симплекса максимального объёма в кубе, выполняется $\|P^*\| \asymp \theta_n$. Если существует матрица Адамара порядка n+1, то $\theta_n \leq \sqrt{n+1}$. В настоящей статье приводятся уточнённые верхние границы чисел θ_n для $21 \leq n \leq 26$, полученные с применением симплексов максимального объёма в кубе. Для построения этих симплексов применяются максимальные определители, элементы которых равны ± 1 . Мы также систематизируем и комментируем лучшие на настоящий момент верхние и нижние оценки чисел θ_n для конкретных n.

Ключевые слова: n-мерный симплекс, n-мерный куб, интерполяция, проектор, норма, численные методы

Для цитирования: Невский М.В., Ухалов А.Ю., "Об оптимальной интерполяции линейными функциями на *п*-мерном кубе ", *Моделирование и анализ информационных систем*, **25**:3 (2018), 291–311.

Об авторах:

Невский Михаил Викторович, orcid.org/0000-0002-6392-7618, д-р физ.-мат. наук, доцент, НОМЦ Центр интегрируемых систем, Ярославский государственный университет им. П.Г. Демидова, ул. Советская, 14, г. Ярославль, 150003 Российская Федерация, e-mail: mnevsk55@yandex.ru

Ухалов Алексей Юрьевич, orcid.org/0000-0001-6551-5118, кандидат физ.-мат. наук, НОМЦ Центр интегрируемых систем, Ярославский государственный университет им. П.Г. Демидова, ул. Советская, 14, г. Ярославль, 150003 Российская Федерация, e-mail: alex-uhalov@yandex.ru

Благодарности:

Работа выполнена в рамках государственного задания Министерства образования и науки РФ, проект № 1.12873.2018/12.1

1. Введение. Числа θ_n и ξ_n

В настоящей статье $n \in \mathbb{N}$, $Q_n := [0,1]^n$. Через $C(Q_n)$ обозначается пространство непрерывных функций $f:Q_n \to \mathbb{R}$ с равномерной нормой $\|f\|_{C(Q_n)} := \max_{x \in Q_n} |f(x)|$. Под $\Pi_1(\mathbb{R}^n)$ понимается совокупность многочленов от n переменных степени ≤ 1 ,

под Π_1 (\mathbb{R}^n) понимается совокупность многочленов от n переменных степени ≤ 1 , или линейных функций на \mathbb{R}^n . Запись $L(n) \asymp M(n)$ означает, что существуют $c_1, c_2 > 0$, не зависящие от n, с которыми выполняется $c_1 M(n) \leq L(n) \leq c_2 M(n)$. Соотношение $L(n) \cong M(n)$ означает, что $\lim_{n \to \infty} \frac{L(n)}{M(n)} = 1$. Для многогранника G через ver(G) обозначается совокупность его вершин.

Пусть S — невырожденный симплекс в \mathbb{R}^n . Обозначим вершины S через $x^{(j)} = \left(x_1^{(j)}, \dots, x_n^{(j)}\right), \ 1 \leq j \leq n+1,$ и рассмотрим матрицу

$$\mathbf{A} := \begin{pmatrix} x_1^{(1)} & \dots & x_n^{(1)} & 1 \\ x_1^{(2)} & \dots & x_n^{(2)} & 1 \\ \vdots & \vdots & \vdots & \vdots \\ x_1^{(n+1)} & \dots & x_n^{(n+1)} & 1 \end{pmatrix}.$$

Пусть $\mathbf{A}^{-1} = (l_{ij})$. Обозначим через λ_j многочлен из $\Pi_1(\mathbb{R}^n)$, коэффициенты которого составляют j-й столбец $\mathbf{A}^{-1} : \lambda_j(x) = l_{1j}x_1 + \ldots + l_{nj}x_n + l_{n+1,j}$. Мы называем λ_j базисными многочленами Лагранжа, соответствующими S. Числа $\lambda_j(x)$ являются барицентрическими координатами точки $x \in \mathbb{R}^n$ относительно S. Симплекс S задаётся каждой из систем неравенств $\lambda_j(x) \geq 0$ и $0 \leq \lambda_j(x) \leq 1$.

Через σS обозначим образ S при гомотетии относительно центра тяжести с коэффициентом σ . Под $d_i(S)$ будем понимать i-й осевой диаметр S, представляющий собой максимальную длину отрезка из S, параллельного i-й координатной оси. Понятие осевого диаметра выпуклого тела было введено Скоттом [23], [24].

Пусть $\xi(S) := \min\{\sigma \geq 1 : Q_n \subset \sigma S\}$, $\xi_n := \min\{\xi(S) : S \subset Q_n\}$. Через $\alpha(S)$ обозначим минимальное $\sigma > 0$, для которого Q_n принадлежит трансляту симплекса σS . Многие соотношения для этих величин были доказаны первым автором. В случае $Q_n \not\subset S$

$$\xi(S) = (n+1) \max_{1 \le j \le n+1} \max_{x \in \text{ver}(Q_n)} (-\lambda_j(x)) + 1.$$
 (1)

Для любого S выполняются равенства

$$\alpha(S) = \sum_{i=1}^{n} \frac{1}{d_i(S)} = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n+1} |l_{ij}|.$$
 (2)

(см. [22], [6]; доказательства даются также в [7]).

Всюду далее мы считаем, что $S \subset Q_n$. Интерполяционный проектор $P: C(Q_n) \to \Pi_1(\mathbb{R}^n)$, соответствующий симплексу S, определяется равенствами $Pf\left(x^{(j)}\right) = f\left(x^{(j)}\right)$. Справедлив аналог интерполяционной формулы Лагранжа

$$Pf(x) = \sum_{j=1}^{n+1} f(x^{(j)}) \lambda_j(x).$$

Норма проектора P как оператора из $C(Q_n)$ в $C(Q_n)$ вычисляется по формуле

$$||P|| = \max_{x \in \text{ver}(Q_n)} \sum_{j=1}^{n+1} |\lambda_j(x)|.$$
 (3)

Через θ_n обозначим минимальную величину ||P||. Под θ'_n понимается минимальная величина нормы проектора, узлы которого находятся в вершинах Q_n . Очевидно, $\theta_n \leq \theta'_n$.

Пусть $1 \leq \mu \leq n$. Будем говорить, что точка $x \in \text{ver}(Q_n)$ является μ -вершиной куба Q_n относительно симплекса S, если для проектора $P:C(Q_n) \to \Pi_1\left(\mathbb{R}^n\right)$ с узлами в вершинах S выполняется $\|P\| = \sum\limits_{j=1}^{n+1} |\lambda_j(x)|$ и среди чисел $\lambda_j(x)$ имеется ровно μ отрицательных. Для любого проектора P и соответствующего ему симплекса S в [5] установлено соотношение

$$\frac{n+1}{2n}(\|P\|-1)+1 \le \xi(S) \le \frac{n+1}{2}(\|P\|-1)+1. \tag{4}$$

Правое равенство имеет место тогда и только тогда, когда существует 1-вершина Q_n относительно S. Если для некоторого μ имеется μ -вершина Q_n относительно S, то $\frac{n+1}{2\mu}\left(\|P\|-1\right)+1\leq \xi(S)$. Из (4) следует, что

$$\frac{n+1}{2n}(\theta_n - 1) + 1 \le \xi_n \le \frac{n+1}{2}(\theta_n - 1) + 1.$$
 (5)

Начиная с некоторого n правое неравенство в (5) является строгим.

Если $S \subset Q_n$, то $d_i(S) \leq 1$. Применяя (2), имеем $\xi(S) \geq \alpha(S) \geq n$. С учётом этого (2), (4) и (5) дают

$$||P|| \ge \frac{2}{n+1} \left(\sum_{i=1}^{n} \frac{1}{d_i(S)} - 1 \right) + 1,$$
 (6)

$$\xi_n \ge n, \quad \theta_n \ge 3 - \frac{4}{n+1}. \tag{7}$$

Равенство в (6) достигается тогда и только тогда, когда существует 1-вершина Q_n относительно S и симплекс $\xi(S)S$ описан вокруг Q_n .

Стандартизованным многочленом Лежандра степени п называется функция

$$\chi_n(t) := \frac{1}{2^n n!} \left[(t^2 - 1)^n \right]^{(n)}, \quad n = 0, 1, 2, \dots$$

(формула Родрига). Многочлены Лежандра ортогональны на [-1,1] с весом w(t)=1. Первые многочлены χ_n имеют вид

$$\chi_0(t) = 1, \quad \chi_1(t) = t, \quad \chi_2(t) = \frac{1}{2} (3t^2 - 1), \quad \chi_3(t) = \frac{1}{2} (5t^3 - 3t),$$

$$\chi_4(t) = \frac{1}{8} (35t^4 - 30t^2 + 3), \quad \chi_5(t) = \frac{1}{8} (63t^5 - 70t^3 + 15t).$$

Справедливо рекуррентное соотношение

$$\chi_{n+1}(t) = \frac{2n+1}{n+1}t\chi_n(t) - \frac{n}{n+1}\chi_{n-1}(t).$$

Эти и другие свойства χ_n изложены в [12], [13]. Известно, что $\chi_n(1)=1$; если $n\geq 1$, то $\chi_n(t)$ возрастает при $t\geq 1$. Обозначим через χ_n^{-1} функцию, обратную к χ_n на полуоси $[1,+\infty)$.

Появление многочленов Лежандра в круге наших вопросов связано с оцениванием θ_n снизу (по поводу подробностей этого метода и доказательств см. [7, гл. 3]). Для $n \in \mathbb{N}, \gamma \geq 1$ введём в рассмотрение множество

$$D_{n,\gamma} := \left\{ x \in \mathbb{R}^n : |1 - \sum_{i=1}^n x_i| + \sum_{i=1}^n |x_i| \le \gamma \right\}.$$

В 2003 г. первый автор доказал, что

$$\operatorname{mes}_{\mathbf{n}}(D_{n,\gamma}) = \frac{1}{2^{n} n!} \sum_{i=0}^{n} {n \choose i}^{2} (\gamma - 1)^{n-i} (\gamma + 1)^{i} = \frac{\chi_{n}(\gamma)}{n!}.$$
 (8)

Обозначим через ν_n величину максимального объёма n-мерного симплекса, содержащегося в Q_n . Число ν_n связано со значением h_n максимального 0/1-определителя порядка n равенством $n!\nu_n=h_n$ (см. [19, теорема 2.1]). С применением (8) была доказана оценка

$$\theta_n \ge \chi_n^{-1} \left(\frac{1}{\nu_n} \right). \tag{9}$$

Привлекая известные соотношения для χ_n и ν_n , из (9) удалось получить ряд более обозримых оценок:

$$\theta_n>\frac{\sqrt{n-1}}{e};$$

$$\theta_n>\frac{\sqrt{n}}{e},\quad n\text{ чётное};\qquad \theta_n>\frac{n}{e\sqrt{n-1}},\quad n>1,\quad n\equiv 1(\text{mod }4).$$

Объединяя результаты (7) и (9), можно записать неравенство

$$\theta_n \ge \max\left[3 - \frac{4}{n+1}, \chi_n^{-1}\left(\frac{1}{\nu_n}\right)\right]. \tag{10}$$

Из других соотношений, систематизированных в [7], отметим следующие. Справедливы двойные оценки

$$n \le \xi_n < n+1, \quad \frac{1}{4}\sqrt{n} < \theta_n < 3\sqrt{n}.$$

Таким образом, $\xi_n \asymp n$, $\theta_n \asymp \sqrt{n}$. Если S — симплекс максимального объёма в Q_n , P — интерполяционный проектор, узлы которого совпадают с вершинами S, то $\|P\| \asymp \theta_n$, $\xi(S) \asymp \xi_n$. Точными по порядку n оценками сверху для симплекса максимального объёма и соответствующего проектора являются неравенства

$$\xi(S) \le n+2, \quad ||P|| \le \min\left(n+1, \frac{4\sqrt{e}}{3}\sqrt{n+2}+1\right).$$

Число m будем называть числом Aдамара, если существует матрица Адамара порядка m. По поводу матриц Адамара см., например, [14]. Когда n+1 — число Адамара, и только в этом случае, существует n-мерный правильный симплекс S, для которого $\text{ver}(S) \subset \text{ver}(Q_n)$ (см. [19]). Этот симплекс имеет максимальный объём в Q_n , т. е. для него $\text{vol}(S) = \nu_n$. Выполняется $\xi(S) = n$, откуда $\xi_n = n$ (различные доказательства даются в $[7, \S 3.2]$ и [9]). Соответствующий проектор P удовлетворяет неравенству $\|P\| \leq \sqrt{n+1}$ (см. $[7, \S 3.5]$), поэтому в рассматриваемой ситуации $\theta'_n \leq \sqrt{n+1}$.

Главная цель настоящей статьи — публикация новых оценок величины θ_n для конкретных n. К 2009 г. первый автор разными способами установил, что

$$\theta_1 = 1, \quad \theta_2 = \frac{2\sqrt{5}}{5} + 1 = 1.89 \dots, \quad \theta_3 = 2, \quad 2.2 \le \theta_4 \le \frac{7}{3} = 2.33 \dots,$$

$$\frac{7}{3} = 2.33 \dots \le \theta_5 \le 2.6, \quad \frac{17}{7} = 2.42 \dots \le \theta_6 \le 3, \quad \theta_7 = 2.5;$$

$$\xi_1 = 1, \quad \xi_2 = \frac{3\sqrt{5}}{5} + 1 = 2.34 \dots, \quad \xi_3 = 3, \quad 4 \le \xi_4 \le \frac{13}{3} = 4.33 \dots,$$

$$5 \le \xi_5 \le 5.5, \quad 6 \le \xi_6 \le 6.6, \quad \xi_7 = 7.$$

В дальнейшем некоторые из этих оценок были уточнены. Теоретические результаты общего характера редко дают лучшие верхние оценки для конкретных n. Отмеченные выше свойства делают целесообразным применить для оценивания θ_n и ξ_n сверху симплексы максимального объёма в кубе. Для чисел θ_n , $1 \le n \le 20$, такие результаты описаны в [4], см. также [7, § 3.9]. В статье [11] приведены результаты оценивания указанным методом чисел ξ_n для $n \le 118$. В настоящей статье мы приведём верхние границы чисел θ_n для $21 \le n \le 26$, а также лучшие известные оценки этих величин для всех $n \le 26$.

Для построения симплексов максимального объёма могут применяться 0/1-матрицы порядка n с максимальным определителем. Строки или столбцы такой матрицы, пополненные $(0, \ldots, 0)$, дают набор вершин симплекса максимального объёма в Q_n . Максимальный 0/1-определитель порядка n можно получить из максимального -1/1-определителя порядка n+1. Этот подход, впервые применённый в [4], подробно описан в [7, § 3.9] и [11]. Данные о максимальных -1/1-определителях взяты нами с сайта www.indiana.edu/ \sim maxdet.

Мы приведём также лучшие из известных на настоящий момент нижних оценок θ_n для $n \leq 118$.

2. Верхние оценки θ_n

Наиболее точные из полученных авторами оценок θ_n сверху для $1 \le n \le 26$ приведены в Таблице 1. В случаях, когда известно точное значение θ_n , приводится это точное значение.

Большая часть оценок получена из рассмотрения проекторов с узлами, расположенными в вершинах симплекса максимального (или предположительно максимального) объема в Q_n . Для построения таких симплексов при данном n использованы максимальные -1/1-определители порядка n+1.

Таблица 1: Верхние оценки θ_n для $1 \le n \le 26$ Table 1: Upper estimates of θ_n for $1 \le n \le 26$

n	$\min \lVert \mathbf{P} \rVert$	N	$\theta_{\mathbf{n}} \leq$	
1	1	1	$\theta_1 = 1$	AH
2	3	1	$\theta_2 = \frac{2\sqrt{5}}{5} + 1 = 1.8944\dots$	A
3	2	1	$\theta_3 = 2$	A
4	$\frac{7}{3} = 2.3333$	1	$\frac{3(4+\sqrt{2})}{7} = 2.3203\dots$	В
5	$\frac{13}{5} = 2.6$	1	$\frac{13}{5} = 2.6$	AM
6	3	1	2.60014	В
7	$\frac{5}{2} = 2.5$	1	$\theta_7 = \frac{5}{2} = 2.5$	AH
8	$\frac{22}{7} = 3.1428\dots$	1	$\frac{22}{7} = 3.1428\dots$	M
9	3	1	3	M
10	$\frac{19}{5} = 3.8$	3	$\frac{19}{5} = 3.8$	M
11	3	1	3	Н
12	$\frac{17}{5} = 3.4$	1	$\frac{17}{5} = 3.4$	M
13	$\frac{49}{13} = 3.7692\dots$	1	$\frac{49}{13} = 3.7692\dots$	M
14	$\frac{21}{5} = 4.2$	1	$\frac{21}{5} = 4.2$	M
15	$\frac{7}{2} = 3.5$	5	$\frac{7}{2} = 3.5$	Н
16	$\frac{21}{5} = 4.2$	3	$\frac{21}{5} = 4.2$	M
17	$\frac{139}{34} = 4.0882\dots$	3	$\frac{139}{34} = 4.0882\dots$	M
18	$\frac{95}{17} = 5.5882\dots$	3	$\frac{95}{17} = 5.5882\dots$	M
19	4	3	4	Н
20	$\frac{137}{29} = 4.7241\dots$	7	$\frac{137}{29} = 4.7241\dots$	M
21	$\frac{251}{50} = 5.02$	1	$\frac{251}{50} = 5.02$	M?
22	$\frac{1817}{335} = 5.4238\dots$	1	$\frac{1817}{335} = 5.4238\dots$	M?
23	$\frac{9}{2} = 4.5$	60	$\frac{9}{2} = 4.5$	ВН
24	$\frac{103}{21} = 4.9047\dots$	2	$\frac{103}{21} = 4.9047\dots$	M
25	5	3	5	M
26	$\frac{474}{91} = 5.2087\dots$	1	$\frac{474}{91} = 5.2087\dots$	M?

Максимальность -1/1-определителей порядка $1,\ldots,21$, приведённых на сайте www.indiana.edu/ \sim maxdet, доказана. Более того, на сайте приведены все (с точностью до эквивалентности матриц) максимальные определители порядка ≤ 21 . При получении оценок нами были использованы все эти данные. Максимальность определителей порядков 22, 23 и 27 не установлена. Такие ситуации отмечены в таблице знаком вопроса. Неясно, является ли исчерпывающим приведённый на сайте набор максимальных определителей порядков 25 и 26. Для уточнения верхней оценки θ_n рассматривались все известные нам максимальные -1/1-определители порядка n+1, так как соответствующие проекторы могут иметь различную норму.

Во всех ситуациях, когда n+1 есть число Адамара, нами использован полный набор адамаровых матриц соответствующего порядка. В частности, для получения оценки θ_{23} были рассмотрены все существующие 60 матриц Адамара порядка 24. Этот трудоёмкий случай был отдельно изучен А.Ю. Ухаловым и Е.А. Озеровой (см. [2]).

Вычисления по формуле (3) требуют перебора всех 2^n вершин Q_n . При больших n вычисления становятся довольно трудоёмкими. По этой причине мы ограничились исследованием случаев $1 \le n \le 26$. Для оценивания θ_{27} пришлось бы рассмотреть 487 матриц Адамара порядка 28. Получение этой оценки требует привлечения мощных вычислительных средств.

Если n+1 — число Адамара, то каждый из симплексов максимального объема в Q_n является правильным и его вершины совпадают с вершинами куба. Может показаться, что все эти симплексы расположены в кубе одинаково и достаточно рассмотреть один из них. Наши вычисления, однако, показывают, что это не так. Узлы интерполяционных проекторов, соответствующие различным правильным симплексам, могут располагаться внутри куба различным образом. Эти проекторы могут иметь разные нормы.

Из рассматриваемых нами адамаровых n+1 в четырёх случаях, а именно для порядков 2, 4, 8, 12, существует всего одна (с точностью до эквивалентности) матрица Адамара. Для каждого из остальных адамаровых n+1 эта матрица не является единственной. Опишем эти случаи отдельно.

Имеется пять попарно неэквивалентных матриц Адамара порядка 16. Для соответствующих пяти проекторов $||P_1|| = ||P_2|| = ||P_3|| = 4$, $||P_4|| = ||P_5|| = \frac{7}{2}$. Отсюда следует, что 15-мерный правильный симплекс может быть вписан в куб Q_{15} принципиально по-разному. Более точно, существуют вписанные в Q_{15} правильные симплексы S^* , S^{**} , такие что S^* не переводится в S^{**} с помощью ортогонального преобразования, отображающего куб в себя.

Различное расположение правильных симплексов внутри куба возможно даже в случае, когда нормы соответствующих проекторов совпадают. Такая ситуация может быть выявлена с помощью подсчёта количества μ -вершин для соответствующего проектора (см. п. 1). Распределение μ -вершин для проекторов P_1, \ldots, P_5 приведено в Таблице 2. Несмотря на то, что нормы P_1, P_2 и P_3 совпадают, количество 6-вершин для них различается. Это говорит о различном расположении соответствующих симплексов в Q_{15} .

Существует три неэквивалентные матрицы Адамара порядка 20, однако для всех трёх полученных из этих матриц проекторов норма одинакова и равна 4. Отсюда следует, что $\theta_{19} \le 4$.

$i \backslash \mu$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	0	0	0	0	0	448	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	192	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	64	0	0	0	0	0	0	0	0	0
4	0	0	0	896	1344	5376	0	1344	0	0	0	0	0	0	0
5	0	0	0	896	1344	5376	0	1344	0	0	0	0	0	0	0

Таблица 2: Количество μ -вершин для проекторов P_i Table 2: Number of μ -vertices for projectors P_i

Для следующего адамарова числа 24 имеется уже 60 попарно неэквивалентных матриц Адамара. В этом случае также существуют различные значения норм проектора. Для четырёх матриц норма проектора оказалась равной $\frac{9}{2}=4.5$, а для всех остальных матриц это значение равно $\frac{14}{3}=4.6666\ldots$ Следовательно, $\theta_{23}\leq\frac{9}{2}$. Распределение μ -вершин для этого случая еще более разнообразно, чем в случае n=15. Различным значениям нормы и наборам μ -вершин соответствуют различные расположения правильного симплекса внутри куба Q_{23} .

Нормы могут различаться и в случаях, когда число n+1 не является адамаровым. Например, для получения оценки θ_{25} нами были рассмотрены три -1/1-матрицы порядка 26 с максимальным определителем. Построенные на их основе проекторы T_1 , T_2 и T_3 имеют нормы $||T_1|| = ||T_2|| = \frac{127}{25} = 5.08$, $||T_3|| = 5$.

Для случаев n=4 и n=6 оценки θ_n , следующие из рассмотрения максимальных определителей, удалось улучшить. Эти результаты были получены А. Ю. Ухаловым и И. С. Кудрявцевым с помощью численной минимизации нормы проектора (см. [2]).

Оценка θ_4 получается из рассмотрения проектора P' по узлам

$$\left(1, 1 - \frac{1}{\sqrt{2}}, 0, 0\right), \quad \left(1, 1, \frac{1}{\sqrt{2}}, 1\right), \quad \left(\frac{1}{2}, 0, 1, \frac{1}{2}\right), \quad \left(0, 1 - \frac{1}{\sqrt{2}}, 0, 1\right), \quad \left(0, 1, \frac{1}{\sqrt{2}}, 0\right).$$

Для этого проектора по формуле (3) находим $\|P'\| = \frac{3(4+\sqrt{2})}{7} = 2.320377\dots$ При численной минимизации координаты узлов P' были получены в виде десятичных дробей. Значения, содержащие квадратные корни, были найдены с помощью функции распознавания чисел сайта Wolfram Alpha (http://www.wolframalpha.com). После замены дробей распознанными величинами значение нормы уменьшилось. Итак, $\theta_4 \leq \frac{3(4+\sqrt{2})}{7} = 2.320377\dots$

Верхняя граница θ_6 получается из рассмотрения проектора P'' с узлами

$$(1,0,1,0.091,0,0.4999), (0,1,1,1,0,0), (0.5,1,1,0.091,1,1),$$

 $(0.9106,0.0896,0.0895,1,0.91053,0.9106), (0,0,0.5,0.09115,1,0),$
 $(0,0.49999,0,0.09104,0,1), (1,1,0,0.09105,0.5001,0).$

С помощью (3) находим ||P''|| = 2.600137227... Значит, $\theta_6 < 2.60014$.

Справедливы двойные неравенства

$$\frac{11}{5} = 2.2 \le \theta_4 \le \frac{3(4+\sqrt{2})}{7} = 2.320377\dots,\tag{11}$$

$$\frac{17}{7} = 2.42857... \le \theta_6 < 2.60014. \tag{12}$$

Оценки снизу в (11) и (12) получаются из (7). Отметим, что разница между верхней и нижней границами в неравенстве (11) не превосходит 0.13, а в неравенстве (12) не превосходит 0.18. Таким образом, величины θ_4 и θ_6 оценены с довольно высокой точностью.

Авторы настоящей работы предполагают, что P' является минимальным проектором, т. е. $\theta_4=\frac{3(4+\sqrt{2})}{7}=2.320377\dots$

В первом столбце Таблицы 1 даётся размерность пространства n. Второй столбец содержит минимальную норму проектора, полученную из рассмотрения максимальных -1/1-определителей порядка n+1. В третьем столбце таблицы приводится количество N матриц порядка n+1, рассмотренных для получения результата второго столбца. В четвёртом столбце даётся лучшая известная верхняя оценка θ_n для данного n. Последний столбец таблицы содержит комментарий о способе получения верхней границы θ_n , указанной в четвёртом столбце. При этом используются следующие обозначения.

- A точное значение θ_n получено ранее первым автором, см. [7].
- B оценка сверху получена в работе [2].
- М использован симплекс максимального объема в Q_n , построенный из максимального -1/1-определителя порядка n+1.
- М? использован симплекс, построенный из наибольшего известного определителя порядка n+1. Максимальность данного определителя не доказана.
- Н число n+1 является адамаровым. Использован правильный симплекс, построенный из соответствующей матрицы Адамара.

Отметим, что числа, стоящие во втором столбце Таблицы 1, при всех n являются верхними границами величины θ'_n .

Для вычислений и подготовки таблиц использовался набор программ на языке Wolfram Language (см., например, [21]).

3. Нижние оценки θ_n

В Таблицах 3, 4, 5 представлены лучшие из известных нижних оценок θ_n . Для получения этих оценок использовалось неравенство (10). Для каждого n приводятся значения функций $\chi_n^{-1}(\frac{1}{\nu_n})$ и $3-\frac{4}{n+1}$, а также максимальное из них. Этот максимум и является наиболее точной нижней границей θ_n . В таблицах отсутствуют значения для n=104 и n=116, так как на сайте www.indiana.edu/ \sim maxdet не приведены максимальные определители порядков 105 и 117.

Таблица 3: Нижние оценки θ_n для $1 \le n \le 54$ Table 3: Lower estimates of θ_n for $1 \le n \le 54$

\mathbf{n}	$\chi_{\mathbf{n}}^{-1}(\frac{1}{\nu_{\mathbf{n}}})$	$3-rac{4}{\mathrm{n+1}}$	Max	n	$\chi_{\mathbf{n}}^{-1}(\frac{1}{\nu_{\mathbf{n}}})$	$3-rac{4}{\mathrm{n+1}}$	Max
1	1	1	1	28	2.2768	2.8621	2.8621
2	1.291	1.6667	1.6667	29	2.3074	2.8667	2.8667
3	1.2492	2	2	30	2.3487	2.871	2.871
4	1.3478	2.2	2.2	31	2.3452	2.875	2.875
5	1.4284	2.3333	2.3333	32	2.3955	2.8788	2.8788
6	1.5018	2.4286	2.4286	33	2.4259	2.8824	2.8824
7	1.4678	2.5	2.5	34	2.4642	2.8857	2.8857
8	1.5626	2.5556	2.5556	35	2.4601	2.8889	2.8889
9	1.6034	2.6	2.6	36	2.5019	2.8919	2.8919
10	1.6699	2.6364	2.6364	37	2.5348	2.8947	2.8947
11	1.6488	2.6667	2.6667	38	2.5722	2.8974	2.8974
12	1.7086	2.6923	2.6923	39	2.5697	2.9	2.9
13	1.7659	2.7143	2.7143	40	2.6056	2.9024	2.9024
14	1.8211	2.7333	2.7333	41	2.641	2.9048	2.9048
15	1.8108	2.75	2.75	42	2.6759	2.907	2.907
16	1.8778	2.7647	2.7647	43	2.6747	2.9091	2.9091
17	1.9156	2.7778	2.7778	44	2.7179	2.9111	2.9111
18	1.965	2.7895	2.7895	45	2.743	2.913	2.913
19	1.9587	2.8	2.8	46	2.7791	2.9149	2.9149
20	2.0159	2.8095	2.8095	47	2.7756	2.9167	2.9167
21	2.0588	2.8182	2.8182	48	2.8201	2.9184	2.9184
22	2.1039	2.8261	2.8261	49	2.8413	2.92	2.92
23	2.0958	2.8333	2.8333	50	2.8805	2.9216	2.9216
24	2.1408	2.84	2.84	51	2.8729	2.9231	2.9231
25	2.1847	2.8462	2.8462	52	2.9173	2.9245	2.9245
26	2.2278	2.8519	2.8519	53	2.9362	2.9259	2.9362
27	2.2242	2.8571	2.8571	54	2.9735	2.9273	2.9735

Таблица 4: Нижние оценки θ_n для $55 \le n \le 109$ Table 4: Lower estimates of θ_n for $55 \le n \le 109$

n	$\chi_{\mathbf{n}}^{-1}(\frac{1}{\nu_{\mathbf{n}}})$	$3-rac{4}{\mathrm{n+1}}$	Max	n	$\chi_{\mathbf{n}}^{-1}(\frac{1}{\nu_{\mathbf{n}}})$	$3-rac{4}{\mathrm{n+1}}$	Max
55	2.9669	2.9286	2.9669	82	3.5595	2.9518	3.5595
56	3.0034	2.9298	3.0034	83	3.5546	2.9524	3.5546
57	3.0315	2.931	3.0315	84	3.5899	2.9529	3.5899
58	3.0583	2.9322	3.0583	85	3.6053	2.9535	3.6053
59	3.058	2.9333	3.058	86	3.6355	2.954	3.6355
60	3.0877	2.9344	3.0877	87	3.6307	2.9545	3.6307
61	3.1173	2.9355	3.1173	88	3.667	2.9551	3.667
62	3.1465	2.9365	3.1465	89	3.6803	2.9556	3.6803
63	3.1463	2.9375	3.1463	90	3.7099	2.956	3.7099
64	3.1849	2.9385	3.1849	91	3.7052	2.9565	3.7052
65	3.2039	2.9394	3.2039	92	3.7401	2.957	3.7401
66	3.2375	2.9403	3.2375	93	3.755	2.9574	3.755
67	3.2322	2.9412	3.2322	94	3.783	2.9579	3.783
68	3.2717	2.942	3.2717	95	3.7781	2.9583	3.7781
69	3.2888	2.9429	3.2888	96	3.8121	2.9588	3.8121
70	3.32	2.9437	3.32	97	3.8258	2.9592	3.8258
71	3.3158	2.9444	3.3158	98	3.8542	2.9596	3.8542
72	3.3529	2.9452	3.3529	99	3.8497	2.96	3.8497
73	3.3703	2.9459	3.3703	100	3.8814	2.9604	3.8814
74	3.4023	2.9467	3.4023	101	3.8964	2.9608	3.8964
75	3.3973	2.9474	3.3973	102	3.9246	2.9612	3.9246
76	3.4348	2.9481	3.4348	103	3.92	2.9615	3.92
77	3.4521	2.9487	3.4521	105	3.9662	2.9623	3.9662
78	3.4818	2.9494	3.4818	106	3.9936	2.9626	3.9936
79	3.4769	2.95	3.4769	107	3.989	2.963	3.989
80	3.5138	2.9506	3.5138	108	4.0841	2.9633	4.0841
81	3.5288	2.9512	3.5288	109	4.034	2.9636	4.034

n	$\chi_{\mathbf{n}}^{-1}(\frac{1}{\nu_{\mathbf{n}}})$	$3-rac{4}{\mathrm{n+1}}$	Max	n	$\chi_{\mathbf{n}}^{-1}(\frac{1}{\nu_{\mathbf{n}}})$	$3-rac{4}{\mathrm{n+1}}$	Max
110	4.0615	2.964	4.0615	114	4.1281	2.9652	4.1281
111	4.0568	2.9643	4.0568	115	4.1234	2.9655	4.1234
112	4.0789	2.9646	4.0789	117	4.167	2.9661	4.167
113	4.101	2.9649	4.101	118	4.1937	2.9664	4.1937

Таблица 5: Нижние оценки θ_n для $110 \le n \le 118$ Table 5: Lower estimates of θ_n for $110 \le n \le 118$

Результаты вычислений даются с точностью до 10^{-4} .

Графики функций $\chi_n^{-1}(\frac{1}{\nu_n}),\ 3-\frac{4}{n+1}$ и $\frac{\sqrt{n-1}}{e}$ приведены на Рис. 1. Эти функции определены лишь для целочисленных значений аргумента. Однако для удобства восприятия при построении графиков использовались непрерывные линии различных типов. Неравенство $\chi_n^{-1}(\frac{1}{\nu_n})>3-\frac{4}{n+1}$ выполняется при $n\geq 53$ (см. Таблицу 3).

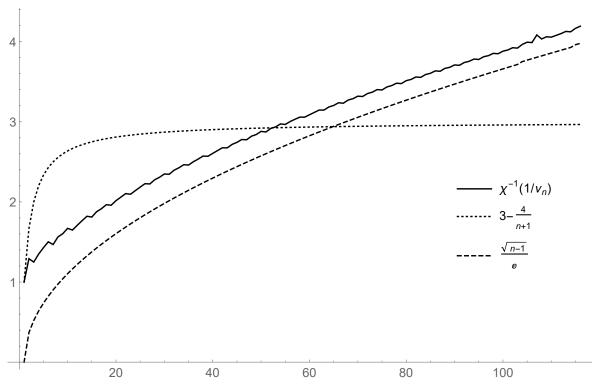


Рис. 1: Графики функций $\chi_n^{-1}(\frac{1}{\nu_n})$, $3-\frac{4}{n+1}$ и $\frac{\sqrt{n-1}}{e}$ Fig. 1: Graphs of the functions $\chi_n^{-1}(\frac{1}{\nu_n})$, $3-\frac{4}{n+1}$, and $\frac{\sqrt{n-1}}{e}$

4. О выполнении неравенства $\xi_n < \frac{n+1}{2} (\theta_n - 1) + 1$

Как отмечалось в п. 1, при любом n справедливо неравенство

$$\xi_n \le \frac{n+1}{2} (\theta_n - 1) + 1. \tag{13}$$

На настоящий момент мы знаем лишь четыре значения n, при которых в этом соотношении имеет место равенство: n=1,2,3 и 7. Это ровно те случаи, в которых известны точные значения θ_n и ξ_n . В [8] авторы выдвинули предположение, что минимальное n, при котором неравенство в (13) является строгим, равно 4.

Заметим, что точное значение $\xi_n=n$ известно для всех n, когда n+1 есть число Адамара, а также для n=5 и n=9. Во всех этих случаях (13) эквивалентно $\theta_n \geq 3-\frac{4}{n+1}$, а равенство в (13) равносильно $\theta_n=3-\frac{4}{n+1}$. Такое точное значение θ_n достигается лишь в ситуации, когда для некоторого симплекса S с условием $\xi(S)=\xi_n$ существует 1-вершина Q_n относительно S (см. п. 1). Однако наши вычисления показывают, что для всех отмеченных $n\leq 24$, когда $\xi_n=n$, 1-вершины куба относительно симплекса, экстремального в смысле ξ_n , существуют только для n=1,2,3,7.

Из асимптотических соотношений $\xi_n \asymp n, \ \theta_n \asymp \sqrt{n}$ следует, что для всех достаточно больших n справедливо строгое неравенство

$$\xi_n < \frac{n+1}{2} (\theta_n - 1) + 1. \tag{14}$$

Обозначим через n_0 минимальное натуральное число, такое что при $n \ge n_0$ верно (14). Вопрос о точном значении n_0 является очень трудным. Известные нижняя и верхняя границы различаются весьма существенно. Из предыдущего имеем оценку снизу $n_0 \ge 8$. Применяя (9) и асимптотические свойства многочленов Лежандра, первый автор в 2009 г. доказал, что $n_0 \le 57$ (см. [5], [7, § 3.7]). Достаточным условием для выполнения (14) при n > 2 является неравенство

$$\chi_n \left(\frac{3n-5}{n-1} \right) \cdot \nu_n < 1. \tag{15}$$

Наши последние вычисления позволяют несколько понизить верхнюю границу числа n_0 . Опишем соответствующие результаты.

Первый подход использует собранные в [11] верхние границы чисел ξ_n и приведённые в п. 3 нижние границы чисел θ_n . Обозначим эти границы через a_n и b_n соответственно. Положим $c_n := \frac{n+1}{2} (b_n - 1) + 1$. Нас интересует то значение n, начиная с которого $a_n < c_n$. Располагая оценками для $n \le 118$, мы обнаружили, что указанное соотношение для a_n и c_n выполняется начиная с n = 53. Данные для $41 \le n \le 60$ приводятся в Таблице 6.

Второй подход базируется на условии (15), гарантирующем строгое неравенство (14). Вычисления показывают, что (15), а с ним и (14), выполняются при $n \geq 54$. Поведение величины $\chi_n\left(\frac{3n-5}{n-1}\right) \cdot \nu_n$ представлено на Рис. 2 и Рис. 3.

Таким образом, $n_0 \le 53$. Иначе говоря, строгое неравенство (14) выполняется по крайней мере начиная с n = 53.

Таблица	а 6: Числа	a_n и c_n Д	іля $41 \leq 1$	$n \le 60$
Table 6:	Numbers a	a_n and c_n	for 41 \leq	$n \le 60$

n	$\mathbf{a_n}$	c_{n}	$a_n - c_n$	n	$\mathbf{a_n}$	c_{n}	$a_n - c_n$
41	41.361	35.4612	5.89973	51	51	49.6955	1.30445
42	42.5439	37.0328	5.51107	52	52.9608	51.8073	1.15348
43	43	37.8441	5.15592	53	53.2758	53.2783	-0.00258699
44	44.9535	39.6528	5.30067	54	54.5135	55.2709	-0.757386
45	45.3273	41.0896	4.23764	55	55	56.0734	-1.07339
46	46.9556	42.8086	4.14692	56	56.2857	58.0955	-1.80977
47	47	43.6153	3.38472	57	57.6179	59.9143	-2.29645
48	48.9574	45.5916	3.3659	58	58.3581	61.7212	-3.3631
49	49.2143	47.0327	2.18158	59	59	62.7385	-3.7385
50	50.5217	48.9515	1.57023	60	60.1515	64.6762	-4.52468

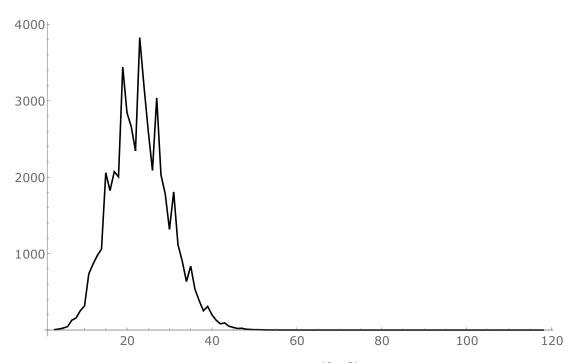


Рис. 2: График функции $\chi_n\left(\frac{3n-5}{n-1}\right)\cdot\nu_n$ для $n\geq 3$ Fig. 2: Graph of the function $\chi_n\left(\frac{3n-5}{n-1}\right)\cdot\nu_n$ for $n\geq 3$

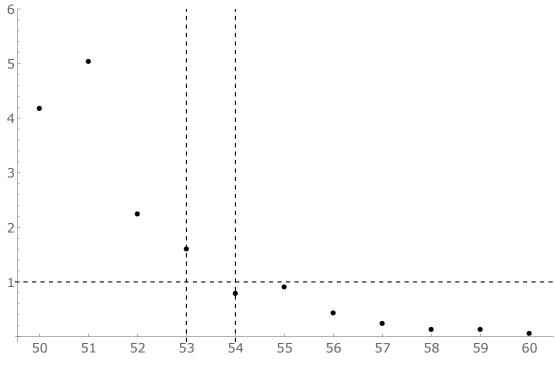


Рис. 3: Величина $\chi_n\left(\frac{3n-5}{n-1}\right)\cdot\nu_n$ для $50\leq n\leq 60$ Fig. 3: Value $\chi_n\left(\frac{3n-5}{n-1}\right)\cdot\nu_n$ for $50\leq n\leq 60$

5. О равноотсечении для правильного симплекса, вписанного в куб

Как мы отметили выше, в случае, когда число n+1 является адамаровым, правильные симплексы, вписанные в Q_n , могут быть расположены относительно вершин куба по-разному. В частности, это ведёт к тому, что нормы интерполяционных проекторов, соответствующих различным симплексам, могут различаться. Однако каждый правильный симплекс S, вписанный в куб, обладает следующим свойством равноотсечения. Каждая из n+1 частей, отсекаемых от куба (во внешнюю относительно симплекса сторону) гиперплоскостями (n-1)-мерных граней S имеет один и тот же объём. Величина этого объёма σ_n зависит только от n, а не от симплекса S. Это свойство правильных симплексов отмечалось авторами в [10], где было сказано, что оно следует из симметрии S. В настоящем пункте мы дадим подробное обоснование этого свойства, а также приведём явные формулы для σ_n и асимптотику этой величины при $n \to \infty$.

Вопросы, связанные с равноотсечением симплексов, рассматривались также в работе [1], где были описаны некоторые семейства двумерных и трёхмерных симплексов с таким свойством.

Пусть k — натуральное, $k \le n$. Эйлеровым числом $A_{n,k}$ называется количество перестановок порядка n, каждая из которых имеет ровно k-1 снижений, т.е. инверсий соседних компонент. Это определение даётся в [18, § 6.2] и [17]. К введению чисел $A_{n,k}$ имеются и другие подходы (см., например, [7, гл. 4]).

Введём в рассмотрение слои куба Q_n , получающиеся при его пересечении гипер-

плоскостями, ортогональными главной диагонали:

$$T_{n,k} := \left\{ x \in Q_n : k - 1 \le \sum_{i=1}^n x_i \le k \right\}, \quad k = 1, \dots, n.$$

Имеют место равенства

$$A_{n,k} = \sum_{j=0}^{k-1} (-1)^j \binom{n+1}{j} (k-j)^n, \tag{16}$$

$$\operatorname{vol}(T_{n,k}) = \frac{A_{n,k}}{n!},\tag{17}$$

$$\sum_{k=1}^{n} A_{n,k} = n!, \tag{18}$$

$$A_{n,k} = (n-k+1)A_{n-1,k-1} + kA_{n-1,k}. (19)$$

Равенство (16) получено в [16]. Соотношение (17) найдено Лапласом [20]; короткое доказательство принадлежит Стенли [26]. Геометрические построения, ведущие к (17), рассматривались Зоммерфельдом (см. обзор [15]). Так как $\sum \operatorname{vol}(T_{n,k}) = \operatorname{vol}(Q_n) = 1$, то из (17) получается (18). Конечно, (18) следует и из того, что число всех перестановок порядка n равно n!. При вычислении эйлеровых чисел по рекуррентному соотношению (19) для k < 1 и для k > n надо взять $A_{n,k} = 0$. Первые эйлеровы числа приведены в Таблице 7. Числа $A_{n,k}$ быстро растут с ростом n. Например, $A_{15,8} = 447\,538\,817\,472$, а $A_{20,10} = 679\,562\,217\,794\,156\,938$.

Таблица 7: Эйлеровы числа для $1 \le n \le 10$ Table 7: Eulerian numbers for $1 \le n \le 10$

$n \backslash k$	1	2	3	4	5	6	7	8	9	10
1	1									
2	1	1								
3	1	4	1							
4	1	11	11	1						
5	1	26	66	26	1					
6	1	57	302	302	57	1				
7	1	120	1191	2416	1191	120	1			
8	1	247	4293	15619	15619	4293	247	1		
9	$\parallel 1$	502	14608	88234	156190	88234	14608	502	1	
10	1	1013	47840	455192	1310354	1310354	455192	47840	1013	1

Пусть $u \in \mathbb{R}$. Обозначим

$$G_{n,u} := \left\{ x \in Q_n : \sum_{i=1}^n x_i = u \right\}, \quad s(n,u) := \text{mes}_{n-1}(G_{n,u}).$$

Для $j=1,\ldots,n-1$ верно $s(n,j)=\frac{\sqrt{n}}{(n-1)!}\cdot A_{n-1,j}$. Доказательство этого и других соотношений для эйлеровых чисел дано в [3] (см. также [7, гл. 4]).

Центральным В-сплайном порядка п называется функция

$$B_n(t) := \frac{2}{\pi} \int_0^\infty \left(\frac{\sin \xi}{\xi}\right)^n \cos(2t\xi) d\xi.$$

Это чётная кусочно-полиномиальная функция степени n-1, принадлежащая $C^{n-2}(\mathbb{R})$. Носитель B_n есть $\left(-\frac{n}{2},\frac{n}{2}\right)$; если |t|< n/2, то $B_n(t)>0$. Кроме того,

$$\int_{-\infty}^{\infty} B_n(t) dt = 1.$$

Для вычислений с В-сплайнами могут применяться формулы

$$B_n(t) = \frac{1}{(n-1)!} \sum_{k=0}^{n} (-1)^k \binom{n}{k} \left(t + \frac{n}{2} - k\right)_+^{n-1},$$

$$B_n(t) = \frac{1}{(n-1)!} \sum_{k=0}^{\lfloor n/2-|t| \rfloor} (-1)^k \binom{n}{k} \left(\frac{n}{2} - |t| - k\right)^{n-1}, \quad |t| \le \frac{n}{2}.$$

Здесь

$$a_+^m := \left\{ egin{array}{ll} a^m, & a \geq 0, \\ 0, & a < 0, \end{array}
ight. \ \mbox{eсли a или $m \neq 0$;} \quad 0_+^0 := rac{1}{2}.$$

Свойства и история B-сплайнов приведены, например, в [15]. Первым, кто выявил связь B-сплайнов с сечениями n-мерного куба, был Зоммерфельд [25]. Им доказаны важные соотношения

$$B_n(t) = \frac{1}{\sqrt{n}} s\left(n, t + \frac{n}{2}\right), \quad n > 1; \qquad B_n(t) \cong \sqrt{\frac{6}{\pi n}} \cdot e^{-6t^2/n}.$$

Из этих соотношений, в частности, получаются следующие результаты об асимптотике мер центрального сечения $G_{n,\frac{n}{2}}$ и близкого к нему сечения $G_{n,\frac{n+1}{2}}$:

$$\operatorname{mes}_{n-1}\left(G_{n,\frac{n}{2}}\right) = s\left(n,\frac{n}{2}\right) = \sqrt{n} \cdot B_n(0) \cong \sqrt{\frac{6}{\pi}},$$

$$\operatorname{mes}_{n-1}\left(G_{n,\frac{n+1}{2}}\right) = s\left(n,\frac{n+1}{2}\right) = \sqrt{n} \cdot B_n\left(\frac{1}{2}\right) \cong \sqrt{\frac{6}{\pi}} \cdot e^{-3/(2n)}.$$

Таким образом,

$$\lim_{n \to \infty} \operatorname{mes}_{n-1} \left(G_{n, \frac{n}{2}} \right) = \lim_{n \to \infty} \operatorname{mes}_{n-1} \left(G_{n, \frac{n+1}{2}} \right) = \sqrt{\frac{6}{\pi}}.$$
 (20)

Теорема 1. Пусть n+1 — число Адамара, большее 2, S — произвольный n-мерный правильный симплекс, вершины которого совпадают c вершинами Q_n . Обозначим через D_1, \ldots, D_{n+1} внешние по отношению κ S части куба, отсекаемые от Q_n гиперплоскостями (n-1)-мерных граней S. Тогда

$$vol(D_1) = \ldots = vol(D_{n+1}) =$$

$$= \frac{1}{n!} \sum_{k=\frac{n+1}{2}+1}^{n} A_{n,k} = \frac{1}{n!} \sum_{k=\frac{n+1}{2}+1}^{n} \sum_{j=0}^{k-1} (-1)^{j} \binom{n+1}{j} (k-j)^{n}.$$
 (21)

Доказательство. Сначала напомним, что длина любого ребра симплекса S равна $\sqrt{\frac{n+1}{2}}$. Действительно, так как число n+1 — адамарово, то существует матрица Адамара $\mathbf H$ порядка n+1. Элементы этой матрицы равны 1 или -1, а строки и столбцы попарно ортогональны. Система строк и система столбцов задают наборы вершин двух правильных симплексов, вписанных в куб $[-1,1]^n$. Рассмотрим правильный симплекс S', построенный на строках $\mathbf H$ как на вершинах. В силу попарной ортогональности строк для любых двух вершин S'

$$||a - b||^2 = (a - b, a - b) = ||a||^2 + ||b||^2 = 2(n + 1)$$

(так как координаты вершин суть ± 1). Значит, длина любого ребра S' равна $\sqrt{2(n+1)}$. Из соображений подобия следует, что длина ребра правильного симплекса S, вписанного в $Q_n = [0,1]^n$, в 2 раза меньше, т.е. составляет $\sqrt{\frac{n+1}{2}}$.

Пусть D — любая из частей D_k из условия теоремы. Обозначим через v ту единственную вершину S, которая не принадлежит D. Без ограничения общности можно считать, что v=0. (Если это не так, выберем в \mathbb{R}^n новую систему координат, начало которой совпадает с v, а оси координат задаются рёбрами куба, исходящими из этой точки.) Поскольку длина ребра S равна $\sqrt{\frac{n+1}{2}}$, а координаты вершин S равны 0 и 1, то все вершины симплекса, отличные от v, принадлежат гиперплоскости $\sum x_i = \frac{n+1}{2}$. Следовательно,

$$D = \left\{ x \in Q_n : \sum_{i=1}^n x_i \ge \frac{n+1}{2} \right\} = \bigcup_{k=\frac{n+1}{2}+1}^n T_{n,k}.$$

Таким образом,

$$vol(D) = \sum_{k=\frac{n+1}{2}+1}^{n} T_{n,k}.$$

Остаётся применить формулы (17) и (16). Теорема доказана.

Заметим, что свойство равноотсечения тривиальным образом выполняется и в случае n=1, когда $S=Q_1=[0,1]$ и $\operatorname{vol}(D_1)=\operatorname{vol}(D_2)=0$.

Обозначим величину, стоящую в (21), через σ_n . Пусть

$$E := \left\{ x \in Q_n : \frac{n}{2} \le \sum_{i=1}^n x_i \le \frac{n+1}{2} \right\}, \quad R := \left\{ x \in Q_n : \sum_{i=1}^n x_i \ge \frac{n}{2} \right\}.$$

Ясно, что $\operatorname{vol}(R) = \frac{1}{2}$. Высота слоя E в направлении большой диагонали куба равна $\frac{1}{2\sqrt{n}}$. Значит, объём E не превосходит $\frac{m}{2\sqrt{n}}$, где m — максимальная из (n-1)-мер сечений $G_{n,\frac{n}{2}}$ и $G_{n,\frac{n+1}{2}}$. Применяя (20), получаем, что с ростом размерности $\operatorname{vol}(E)$ стремится к нулю. Тем самым,

$$\sigma_n = \operatorname{vol}(R) - \operatorname{vol}(E) \to \frac{1}{2}, \quad n \to \infty.$$

Соотношение

$$0 \le \operatorname{vol}(E) = \frac{1}{2} - \sigma_n \le \frac{m}{2\sqrt{n}}$$

означает, что $\frac{1}{2}-\sigma_n=O\left(n^{-1/2}\right)$. Так как $m \to \sqrt{\frac{6}{\pi}}$, см. (20), то оценка

$$\frac{1}{2} - \sigma_n \le C \cdot n^{-1/2}, \quad n+1$$
 — адамарово, $n > n_1$,

за счёт выбора n_1 гарантируется с любой константой $C > \sqrt{\frac{3}{2\pi}} = 0.690988\dots$ Например, при всех достаточно больших n, таких что n+1 есть число Адамара, выполняется неравенство $\frac{1}{2} - \sigma_n \leq 0.7n^{-1/2}$.

Список литературы / References

- [1] Есипова Е. М., "Геометрические характеристики симплексов, обладающих свойством равноотсечения", Современные проблемы математики и информатики, 17, Ярославский государственный университет им. П. Г. Демидова, Ярославль, 2017, 49—61; [Esipova E. M., "Geometricheskie haracteristiki simpleksov, obladayuschih svoistvom ravnootsecheniya", Sovremennye problemy matematiki i informatiki, 17, P. G. Demidov Yaroslavl State University, Yaroslavl, 2017, 49—61, (in Russian).]
- [2] Кудрявцев И.С., Озерова Е.А., Ухалов А.Ю., "Новые оценки для норм минимальных проекторов", Современные проблемы математики и информатики, 17, Ярославский государственный университет им. П.Г. Демидова, Ярославль, 2017, 74–81; [Kudryavtsev I.S., Ozerova E.A., Ukhalov A.Yu., "Novye ocenki dlya norm minimalnyh proektorov", Sovremennye problemy matematiki i informatiki, 17, P. G. Demidov Yaroslavl State University, Yaroslavl, 2017, 74–81, (in Russian).]
- [3] Невский М.В., "Ортогональное проектирование и минимальная линейная интерполяция на *n*-мерном кубе", *Moдел. и анализ информ. систем*, **14**:3 (2007), 8–28; [Nevskij M.V., "Orthogonal projection and minimal linear interpolation on an n-dimensional cube", *Modeling and Analysis of Information Systems*, **14**:3 (2007), 8–28, (in Russian).]
- [4] Невский М.В., Хлесткова И.В., "К вопросу о минимальной линейной интерполяции", Современные проблемы математики и информатики, 9, Ярославский государственный университет им. П.Г. Демидова, Ярославль, 2008, 31–37; [Nevskij M.V., Hlestkova I.V., "On minimal linear interpolation", Sovremennye problemy matematiki i informatiki, 9, P.G. Demidov Yaroslavl State University, Yaroslavl, 2008, 31–37, (in Russian).]
- [5] Невский М. В., "Об одном соотношении для минимальной нормы интерполяционного проектора", *Moden. и анализ информ. систем*, **16**:1 (2009), 24–43; [Nevskij M. V., "On a certain relation for the minimal norm of an interpolational projection", *Modeling and Analysis of Information Systems*, **16**:1 (2009), 24–43, (in Russian).]
- [6] Невский М.В., "Об одном свойстве *n*-мерного симплекса", *Mamem. заметки*, **87**:4 (2010), 580–593; English transl.: Nevskii M.V., "On a property of *n*-dimensional simplices", *Math. Notes*, **87**:4 (2010), 543–555.

- [7] Невский М.В., Геометрические оценки в полиномиальной интерполяции, Ярославский государственный университет им. П.Г. Демидова, Ярославль, 2012; [Nevskii M.V., Geometricheskie ocenki v polinomialnoy interpolyacii, P.G. Demidov Yaroslavl State University, Yaroslavl, 2012, (in Russian).]
- [8] Невский М. В., Ухалов А. Ю., "О числовых характеристиках симплекса и их оценках", *Moden. и анализ информ. систем*, **23**:5 (2016), 602–618; [Nevskii M. V., Ukhalov A. Yu., "On numerical charasteristics of a simplex and their estimates", *Modeling and Analysis of Information Systems*, **23**:5 (2016), 602–618, (in Russian).]
- [9] Невский М. В., Ухалов А. Ю., "Новые оценки числовых величин, связанных с симплексом", *Moden. и анализ информ. систем*, **24**:1 (2017), 34–50; [Nevskii M. V., Ukhalov A. Yu., "New estimates of numerical values related to a simplex", *Modeling and Analysis of Information Systems*, **24**:1 (2017), 34–50, (in Russian).]
- [10] Невский М.В., Ухалов А.Ю., "Об n-мерных симплексах, удовлетворяющих включениям $S \subset [0,1]^n \subset nS$ ", Moden. u анализ информ. cucmem, **24**:5 (2017), 578–595; [Nevskii M.V., Ukhalov A.Yu., "On n-Dimensional Simplices Satisfying Inclusions $S \subset [0,1]^n \subset nS$ ", Modeling and Modeling and Modeling Mod
- [11] Невский М. В., Ухалов А. Ю., "О минимальном коэффициенте поглощения для n-мерного симплекса", Moden. u анализ информ. cucmem, **25**:1 (2018), 140–150; [Nevskii M. V., Ukhalov A. Yu., "On Minimal Absorption Index for an n-Dimensional Simplex", Modeling and Analysis of Information Systems, **25**:1 (2018), 140–150, (in Russian).]
- [12] Сегё Г., Ортогональные многочлены, Гос. изд-во физ.-мат. литературы, М., 1962; Szego G., Orthogonal Polynomials, American Mathematical Society, New York, 1959, (in English).
- [13] Суетин П. К., *Классические ортогональные многочлены*, Наука, М., 1979; [Suetin P. K., *Klassicheskie ortogonalnye mnogochleny*, Nauka, Moscow, 1979, (in Russian).]
- [14] Холл М., Комбинаторика, Мир, М., 1970; Hall M., Jr, Combinatorial theory, Blaisdall publishing company, Waltham (Massachusets)—Toronto—London, 1967, (in English).
- [15] Butzer P. L., Schmidt M., Stark E. L., "Observations on the history of central *B*-splines", *Archive for History of Exact Sciences*, 1988, № 2, 137–156.
- [16] Comtet L., "Permutations by number of rises; Eulerian numbers", Advanced Combinatorics: The Art of Finite and Infinite Expansions", Reidel, Dordrecht, Netherlands, 1974.
- [17] Ehrenborg R., Readdy M., Steingrimsson E., "Mixed volumes and slices of the cube", Journal of Combinatorial Theory. Series A., 81 (1998), 121–126.
- [18] Graham R. L., Knuth D. E., Patashnik O., Concrete mathematics: A foundation for computer science, Addison-Wesley, Reading, MA, 1994.
- [19] Hudelson M., Klee V., Larman D., "Largest *j*-simplices in *d*-cubes: some relatives of the Hadamard maximum determinant problem", *Linear Algebra Appl.*, **241–243** (1996), 519–598.
- [20] de Laplace M., Oeuvres complétes. V. 7, Réédite par Gauthier-Villars, Paris, 1886.
- [21] Mangano S., Mathematica cookbook, O'Reilly Media Inc., Cambridge, 2010.
- [22] Nevskii M., "Properties of axial diameters of a simplex", Discrete Comput. Geom., 46:2 (2011), 301–312.
- [23] Scott P. R., "Lattices and convex sets in space", Quart. J. Math. Oxford (2), 36 (1985), 359-362.
- [24] Scott P. R., "Properties of axial diameters", Bull. Austral. Math. Soc., 39 (1989), 329–333.
- [25] Sommerfeld A., "Eine besonders anschauliche Ableitung des Gaussischen Fehlergesetzes", Festschrift Ludwig Boltzmann gewidmet zum 60, Geburstage, 20. Februar, 1904, Barth, Leipzig, 1904.

[26] Stanley R. P., "Eulerian partitions of a unit hypercube", *Higher Combinatorics*, Proceedings of the NATO Advanced Study Institute, Berlin, West Germany, September 1–10, 1976, Reidel, Dordrecht/Boston, 1977.

Nevskii M. V., Ukhalov A. Yu., "On Optimal Interpolation by Linear Functions on an *n*-Dimensional Cube", *Modeling and Analysis of Information Systems*, **25**:3 (2018), 291–311.

DOI: 10.18255/1818-1015-2018-3-291-311

Abstract. Let $n \in \mathbb{N}$, and let Q_n be the unit cube $[0,1]^n$. By $C(Q_n)$ we denote the space of continuous functions $f:Q_n\to\mathbb{R}$ with the norm $\|f\|_{C(Q_n)}:=\max_{x\in Q_n}|f(x)|,$ by $\Pi_1\left(\mathbb{R}^n\right)$ — the set of polynomials of n variables of degree ≤ 1 (or linear functions). Let $x^{(j)}$, $1 \leq j \leq n+1$, be the vertices of n-dimensional nondegenerate simplex $S \subset Q_n$. An interpolation projector $P: C(Q_n) \to \Pi_1(\mathbb{R}^n)$ corresponding to the simplex S is defined by equalities $Pf(x^{(j)}) = f(x^{(j)})$. The norm of P as an operator from $C(Q_n)$ to $C(Q_n)$ may be calculated by the formula $||P|| = \max_{x \in \text{ver}(Q_n)} \sum_{j=1}^{n+1} |\lambda_j(x)|$. Here λ_j are the basic Lagrange polynomials with respect to S, $ver(Q_n)$ is the set of vertices of Q_n . Let us denote by θ_n the minimal possible value of $\|P\|$. Earlier, the first author proved various relations and estimates for values ||P|| and θ_n , in particular, having geometric character. The equivalence $\theta_n \simeq \sqrt{n}$ takes place. For example, the appropriate, according to dimension n, inequalities may be written in the form $\frac{1}{4}\sqrt{n} < \theta_n < 3\sqrt{n}$. If the nodes of the projector P^* coincide with vertices of an arbitrary simplex with maximum possible volume, we have $||P^*|| \approx \theta_n$. When an Hadamard matrix of order n+1 exists, holds $\theta_n \leq \sqrt{n+1}$. In the paper, we give more precise upper bounds of numbers θ_n for $21 \leq n \leq 26$. These estimates were obtained with the application of maximum volume simplices in the cube. For constructing such simplices, we utilize maximum determinants containing the elements ± 1 . Also, we systematize and comment the best nowaday upper and low estimates of numbers θ_n for a concrete n.

Keywords: n-dimensional simplex, n-dimensional cube, interpolation, projector, norm, numerical methods

On the authors:

 $Mikhail\ V.\ Nevskii,\ orcid.org/0000-0002-6392-7618,\ Doctor\ of\ Science,$

Centre of Integrable Systems, P.G. Demidov Yaroslavl State University,

14 Sovetskaya str., Yaroslavl, 150003, Russian Federation, e-mail: mnevsk55@yandex.ru

Alexey Yu. Ukhalov, orcid.org/0000-0001-6551-5118, PhD,

Centre of Integrable Systems, P.G. Demidov Yaroslavl State University,

14 Sovetskaya str., Yaroslavl, 150003, Russian Federation, e-mail: alex-uhalov@yandex.ru

Acknowledgments:

This work was carried out within the framework of the state programme of the Ministry of Education and Science of the Russian Federation, project N 1.12873.2018/12.1