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Abstract. KeYmaera is an interactive theorem prover and is used to verify safety properties of
cyber-physical systems (CPSs). It implements a Dynamic Logic for Hybrid Programs (HPs), while a HP
models a CPS very precisely. Verifying properties of a given system in KeYmaera can become a challenge
for a user since the proof is authored in a classical sequent calculus framework and a successful proof
requires from the user intimate knowledge of the available calculus rules. Another barrier for widespread
application of KeYmaera is the purely textual representation of current proof goals, what requires from
the user very good training, experience, and patience.

In this paper, we present an alternative verification approach based on KeYmaera, which drastically
improves usability and minimizes user interaction. The main idea is to let the user annotate invariants
and contracts to states of the hybrid automaton.

Thus, the user can employ the graphical representation of the modelled system and is not bound to
the purely textual form of hybrid programs as in KeYmaera. Based on the user-provided contracts, one
can generate proof obligations, which are much simpler than the original proof goal in KeYmaera.

The article is published in the authors’ wording.

Keywords: CPS, KeYmaera, proof contracts, verification, hybrid systems, usability, interactive provers

For citation: Baar T., Staroletov S., “A Control Flow Graph Based Approach to Make the Verification of Cyber-Physical
Systems Using KeYmaera Easier”, Modeling and Analysis of Information Systems, 25:5 (2018), 465-480.

On the authors:

Thomas Baar, orcid.org/0000-0002-8443-1558, PhD,

Hochschule fiir Technik und Wirtschaft Berlin University of Applied Sciences, Germany

75 A Wilhelminenhofstrasse, D-12459, Berlin, Germany, e-mail: thomas.baar@htw-berlin.de

Sergey Staroletov, orcid.org/0000-0001-5183-9736, PhD,
Polzunov Altai State Technical University,
46 Lenina avenue, Barnaul, Altai region, 656038 Russian Federation, e-mail: serg soft@mail.ru

1. Motivation

A cyber-physical system (CPS) is a system that tightly combines software with physical
components. The state of a CPS consists of the discrete state of its software and the
analogous state of its physical parts. Safety analysis of CPSs must take into account
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physical laws, which apply to physical parts as well as the code structure of the software
part [8].

The notion of hybrid automaton (HA) [3, 9] has proven to be useful for the precise
description of the behaviour of CPSs. Like a classical UML state machine [5], a hybrid
automaton consists of states, transitions between states, and state variables. Transitions
can carry annotations for both an execution condition and an action. An action changes
the value of a state variable upon executing the transition. New in hybrid automata is,
that the value of (some) state variables (called continuous state variables) can change
according to given differential equations when the system has entered a long-running
state. This extension of hybrid automata to classical UML state machines reflects the
physical parts of the modeled system. For examples, the current position (z) of the system
changes according to the current velocity by 2z’ = v, where 2z’ denotes the derivation of z
over time.

Logic-based analysis of a given hybrid automaton has been thoroughly investigated
by Platzer in [12] and became practically feasible by the tool KeYmaera [14]. This tool
is an interactive theorem prover and allows the user to formally prove safety properties
taken both discrete and continuous state variables into account. However, KeYmaera
does not work directly on the hybrid automaton but needs as input a so-called hybrid
program (HP). A hybrid automaton can be seen as the control flow graph of a hybrid
program.

In this paper, we propose an approach to overcome some of the obstacles the user
faces when authoring a proof using KeYmaera. One enormous problem is the complexity
of proofs due to the length and complexity of the system implementation represented
by a hybrid program. KeYmaera expects a proof goal of form preCond — [a]postCond,
where « is the hybrid program representing the whole system implementation.

Instead, our approach applies the idea already formulated in 1967 by Robert W.
Floyd [7] for flowchart verification on the verification of a CPS: The user is allowed
to annotate the control flow graph of hybrid program « with fine grained knowledge
about intermediate states. This additional knowledge can be given in form of invariants
(similar to loop invariants) and contracts for long-running states. Based on the provided
invariants and contracts, one can generate proof obligations, which are much simpler
than the original proof goal in KeYmaera and can often be automatically discarded.

2. Verification of CPSs using KeYmaera

In KeYmaera, a CPS is modelled in form of a Hybrid Program (HP), for which properties
expressed in Dynamic Logic can be proven. A HP is built on variables (always of type
float), derivations of (continuous) variables, arithmetic expressions, first-order formulas
for conditions on the current state, and a simple execution language with operators for
assignment (:=), sequential execution (;), non-deterministic repetition (), and others.
For a detailed introduction to HP and the logic of KeYmaera, the reader is referred to
[13].
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2.1. Running Example: Simple Velocity Controller

As an illustrative example, we introduce a simple velocity controller. The velocity v of
the controlled system (e.g. a car or a train) is set by the controller either to a fixed
velocity vy or to 0 (zero). Note that the controlled system is moving if v > 0, i.e. the
system’s position (encoded by z) changes for a time-period A with z = z 4+ v * A. The
change of the system’s position based on the current velocity v is a physical law, which
holds independently from the considered controller and has to be taken into account for
all long-running states the systems can be in. An alternative (and widely-established)
notation for this law is 2 = v, what is more general than the above z = z + v x A, since
velocity v might now even change over time.

Our simple velocity controller periodically updates the chosen velocity based on the
information how far away from an obstacle (whose position is encoded with m) the
system currently is. If the distance to the obstacle m — z is greater than what the system
can move within a period € (encoded in our program as variable SB), the system will
keep velocity v = vy. Otherwise controller sets v = 0, what means that the system stops
(very abruptly). The safety property we want to prove is, that the controller never stops
the system too late, i.e. under all circumstances we will have z < m.

Our example is actually a simplified version of the tutorial example given in [13| and
formulated as a Hybrid Program « as follows:

{

SB :=m — € * vy,

vf z2< SB

o= then {v:i=wvyt:=0;2' =v,t/ =1&t <€}
else  {v:=0;2 =v}
endi f

}x

The Hybrid Program « has the form of the nondeterministic repetition * of a block
{...} while within the block we have a sequence of statements (separated by ;). Nondeter-
ministic repetition means, that the annotated block can be executed arbitrarily often,
including 0 times.

Inside the block, the first statement is the assignment SB := m — € x vg. The second
(and last) statement in the block is an if — then — else statement.

The then-branch is a block consisting of assignments v := vy and ¢t := 0 followed
by the last statement in the block: a reference to a long-running state with properties
2= v, t' = 1&t < e. Note that after entering a long-running state, the system can
remain in this state as long as the state’s domain constraint (here t < ¢€) permits.
However, the system can leave the long-running state at any time (nondeterministically)
and the program « proceeds with executing the next statement. The differential equation
2z = v is the physical law already discussed above while ' = 1 is a helper equation for
a new variable . Each long-running state can be annotated with an already mentioned
domain constraint, which indicates conditions that must hold as long as the systems
stays in this long-running state. In other words: The system must leave the long-running
state at latest when the domain constraints flips from true to false. In our case, the
domain constraint is ¢t < e. Together with the equation ¢ = 1 the domain constraint
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ensures, that the system stays a maximum period of € in this long-running state.

The else-branch v := 0;2' = v is similar to the then-branch and consists of an
assignment and a long-running state.

In the remaining paper, we would like to prove for our hybrid program « the safety
property that the system will never reach the obstacle at position m, when it is started
in a position smaller than m. Formally, this safety property reads as:

z<mAe>0Avy>0—[a]z<m

3. Our Approach: Graphical Representation and
Contracts

Starting with the textual hybrid program a shown above, we extract the control flow
graph (CFG) of a as shown in Fig. 1. The only difference to the original definition of
a, that the two long-running states in the program are now named with driving and
stopped.

driving

zZ'=v
t=1
t<e

stopped

zZ'=v

Fig. 1. Control Flow Graph for a (Hybrid Automaton)

The program « is executed by entering the graph via the start node (left side)
and following the transitions between the nodes. Transitions can be annotated with an
assignment (e.g. SB := m—exwp) or with a condition (e.g. z < SB). The diamond in the
graph represents an if-then-else statement. The nodes for the long-running state contain
the annotated differential equations and the domain constraint (gray background). Note
that our CFG is very close to the notation of Hybrid Automata [9].

In a second step, our diagram is extended with the safety property to be proven as
shown in Fig. 2. This diagram contains notes for a pre- and a post-condition. The tool
KeYmaera is supposed to prove now pre — [a]post, but due to the complexity of «, it
often becomes a challenge to manually create a proof using KeYmaera for this claim.

In a third step, we want to make the work of the KeYmaera user much easier. The
idea is to provide a system description that already contains key facts for proving the
correctness as shown in Fig. 3.

We allow the user to add so-called proof contracts. A proof contract can be a pre-
/post-condition attached to a long-running state or an invariant attached to a normal
state. For example, the desired property z < m basically holds in every state of the
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«requires»
z<m
£>0
vo>0

«ensures»
-
z<m

N
«requires»

z<m
£>0

Vo> 0
«inv»
z<m

«onEntering»

z<m-g*v,

@ «ensures»
z<m

«onEntering»
v=0

Fig. 3. Proof contracts have been added

control flow graph and especially in the nodes after the start state and before the end state
(indicated in Fig. 3 by notes with stereotype «invs). The long-running state driving
has now attached a pre-condition z < m — e *xvg Av = vy A z < m (indicated by note
with stereotype <onEnterings; the lines within the note are implicitly connected with
logical conjunction A) and the post-condition z < m (indicated by a note with stereotype
<onLeavings).

3.1. Generation of Proof Obligations for the Control Flow Graph

Once we have annotated the control flow graph with additional proof contracts, we want
to know whether the annotated graph is still correct. Correctness basically means, that
between any annotated states s,,. and s,.s, which are connected by a transition path
t1,...,ty, the property specified for sp,s holds, whenever the system evolves from state
spre With its specified properties and executes transitions ¢y, ..., %,.

To illustrate the approach, all transition paths resulting into proof obligations are
marked in Fig. 4. The proof obligations can be grouped according to their characteristics.
We discuss here only the most important aspects of the proof obligations. The full version
of all proof obligations can be found in appendix A. They are written in the input syntax
of KeYmaera.
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«requires»

z<m
£>0
Vo> 0

Bl b
z<m

' topped

Z=v

Fig. 4. Transition paths resulting into proof obligations

Transition paths between <requiress/<ensuress properties and
first /last state of the system (@, @)

The control flow graph starts always with a start node and finishes with a final node.
The start/final node has a successor /predecessor node respectively, which are annotated
with an invariant (in our case, the invariant is in both cases z < m, cmp. Fig. 4). Two
proof obligations must now ensure, that

e the «requiress properties entails the invariant of the first node (i.e., the successor
node of the start state) — see transition path (1)

e the «ensuress properties is entailed by the invariant of the last node (i.e., the
predecessor node of the final state) — see transition path (2)

In mathematical notation we have:
REQUIRES — INV tipst
INV 4t — ENSURES

Transitions paths between invariant nodes (3), @)

There are two nodes in the system that are annotated with an invariant (called the
first/last node, see above). Both nodes are connected by a direct transition in each
direction. In our case, these two transitions connect the two states directly and they
do not have any annotation (no condition, no assignment). However, annotations would
be allowed as well as a sequence of transitions to establish the connection between two
invariant nodes.

If two invariant nodes ni, ny are connected with a transition path t,...,t,, then
the proof obligation has to ensure that the invariant of ny is entailed by invariant of n;
followed by the execution of {t1;...;t,}

In mathematical notation we have:

INV ., — [{t1;.. 5t} INV,,
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Transitions paths between invariant node and <«onEnterings
property (®, ©)

There might be also a transition path ¢,...,¢, connecting an invariant node n; with a
long-running state no. The long-running state must be annotated with an <onEnterings
property. The proof obligation has to ensure that the «onEnterings property is entailed
by invariant of n; followed by the execution of {t;...;¢,}

In mathematical notation we have:

INV,, — [{t1;...;t,}JONENTERING,,

Note that this is the first proof obligation in our example, in which {t;;...;,} is not
an empty sequence since the transitions are really annotated with condition/assignment
(cmp. appendix A).

Relating <onEnterings and <«onLeavings properties for each long-
running state (@), ®)

For each long-running state n, there is a proof obligation that the «onLeavings property
is entailed by the given «onEnterings property and the differential equations including
the domain constraint attached to the long-running state. Proving this entailment might
be non-trivial and usually needs some additional help from the user.

Let’s consider node stopped for a rather simple example. We have to prove that
from the <onEnterings property v = 0 A z < m and the differential equation 2z’ =
v the <onLeavings property z < m follows. However, the value of variable z in the
<onLeavings property might be different from the value for z in the «onEnterings
property. Furthermore, we have to deal with the differential equation 2z’ = v, for which
our formalism for proof obligations (first-order logic) is not made for.

To cope with this problem, we introduce separate versions of the variables in the
<onLeavings> property and substitute the original variables with the new version. For
example, the «onLeavings property z < m become z,,; < m when we introduce z,,; for
z. In addition, we let the user formulate additional formulas to resolve the differential
equations attached to the long-running state. In case of state stopped, the user might
resolve 2/ = v t0 2oy = 2 + v x A, where A encodes the time the systems stays in the
long-running state stopped. Sometimes, it is important to know that A >= 0 holds.

For the long-running state stopped, we come up with the following proof obligations:
(V=0Az2<M)AzZou =2+ V* AN0<=A — 2,y <M

In mathematical notation we have:

(ONENTERING, N AXIOMS FOR_DIFFEQSN

DOMAIN CONSTRAINT, N DOMAIN CONSTRAINT ,[v < vou])
— ONLEAVING ,[v < Uput]

for all variables v that might change their value in state n. Note that f[v <— vu]
denotes the substitution of v by v, in f.
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Transitions paths between <onLeavings property and invariant
node ((®, (10))

If a long-running node n; is succeeded by a transition path t,...,t, going to an invariant
node no, we need a proof obligation showing that after leaving n; and executing the
transition path tq,...,%,, the invariant of n, is entailed.

In mathematical notation we have:

ONLEAVING,,, — [{t1;...:t,}]INV,,

3.2. Discarding the generated proof obligations using KeYmaera

We used KeYmaera version 3.6.17 to show the validity of generated proof obligations.

Our KeYmaera installation was 'pure’ in the sense that no background prover such as
Reduce, Z3, or Mathematica was configured.

K KeYmaera -- Prove

File View Proof Options About

Start Prune Proof Reuse

mm[H

[/ Inner Node

Tasks
@ pssvi1B8PaperAnnotated_ invPathd key - 5
.@' pssvi8PaperAnnotated__invPath4 key %
@ pssvi8PaperAnnotated  invPath4 key -
[ ] [Iv]

e BB L R L S S s s |

[v]

==>

VI
R v0, ep, m,
VI

. -

SB, v, z, Lt
0 A vD > 0
Z < m
> \[

SB =

Proof Search Strategy | Rules | i »
1 Proof r
Proof

ii Proof Tree
1:declare variable .
2:—rimply right t
3:Aland left
4-—rimply right : \I o
5:;compose :
6:5B ;= (m-ep *v0)
7:.compose

8:7z < SB

9:Update Simplification
10:;compose

111=0

12:Update Simplification
13v =v0

Hybrid Strategy r Goals

(m — ep
PZ < SB ;
=0 ;
v = v0

* vo)

D

z €« m — ep

m))

vl A Vv =v0 ALt =20

FA- S

Proof closed X

@

Property proved!
Statistics:
Nodes: 22
Branches: 1

lication:
e decl {

14:Update Simplification
15:close equality
16:close equality

17 simplify &true
18:simplify &true
19:replace_known_left
20:simplify true&
21:axiom_close

& 22-Closed goal

altr}

7| TUETT

| \endmodality post

1)

| \replacewith ( post )

| Vheuristics ( simplify )
1}

[4]

4]

ﬁy Strategy: Applied 21 rules (0.0 sec), closed 1 goal, 0 remaining

Fig. 5. Automatic proof of obligation using KeYmaera
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Nevertheless, all generated obligations except of one could be proven automatically
without any additional user interaction. Fig. 5 shows as a typical example the automatic
proof of the non-trivial obligation (5). The only proof obligation that could not be
discarded automatically was obligation (7), because the proof exploits transitivity of the
< relationship. Nonetheless, the prover PRINCESS [15] could prove also this obligation
fully automatically.

4. Related Work

According to the nature of CPSs, we can identify three main layers for their specification:
(1) transition automata with discrete jumps, (2) continuous dynamic calculations in each
state (what makes the system to be a hybrid system) and (3) safety properties which
are interesting for a user to check.

In this section we browse among some known techniques to verify such specifications
and describe issues one can face. We use a simple demo system with the velocity controller
and the simple goal z < m.

Firstly, the user’s goals about constant or unexpected behaviour can be easily trans-
formed into LTL(Linear Time Logic) formulas with temporal operators "always" and
"eventually". For example, if the property z < m is supposed to hold in all reachable
states during execution of the CPS, then we can express this as [z < m.

But after expressing the goals we will get a major issue when we try to describe the
behaviour model of a system: It is near to impossible to implement the continuous (or
at least close to continuous) dynamic behaviour in each state, even if we hard code the
mathematical expressions and solve it without loose of accuracy. The main problem here
is an explosion of the number of internal states and memory being used in a verifier to
express such a system.

According to the design of a well-known tool in Model Based Checking world, Spin’s
Promela language doesn’t include floating point arithmetic to the models, because the
purpose of the language is to encourage abstraction from the computational aspects and
focusing on the verification of process interaction [2|. So we need a more than integer-
based arithmetic and it cannot be done in most of the cases.

Next, we can move to tools that use rather complex automaton models, especially
timed automata. One great representative is Uppaal [4]. It offers construction of such
extended automata, check invariants and can verify properties expressed with modalities
(i.e. always predicate). For example, if we would like to test z < m during a particular
system run, we can check it dynamically by putting z < m as an invariant in desired states
or statically verify that goal by using a query with E[|(z < m). To describe the system
in the Uppaal, we should implicitly create the behaviour automaton. We can introduce
control variables and during transitions we can update them by calling our functions
that are being written in a code which almost looks like C. The creators of Uppaal made
a big step from ordinary discrete automaton — they introduce a SMC(Statistical Model
Checking) extension [6] that offers making controlled non-determined transitions, adds
double datatype to user’s code, adds floating-point clocks type (user can specify the delta
step for it in the settings) and they even target to model and verify hybrid systems by
introducing time based derivatives in the invariants.
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The main disadvantage of writing code for hybrid systems in Uppaal (as in some other
tools) is that we should program it almost implicitly using the offered language and it is
hard to write complicated ODESs or other types of mathematical models. Uppaal supports
time-based derivatives, we can use for checking invariants when staying in a state (as an
additional way to check the correctness of a mathematical model implementation, see
Figure 6).

g_driving

Fig. 6. Derivatives of an invariant on a Uppaal model

Lastly, we refer to the rich world of verification tools for C. Note, that a huge amount
of mathematical libraries has been written in C. The modular platform for static analysis
Frama-C [10] can prove a lot of types of C programs, it uses the deductive approach and
extends the Hoare logic to work with pointers, memory and various type conversions. The
floating point arithmetic is supported. They use a Weakest Precondition (WP) method
and the verification of the program in this case will consist of calculating the weakest
precondition from the end to the beginning of the function code and setting up the
problem of proving the reverse derivation to the theorem prover (an internal and some
externals interactive provers can be used). So, it is a very strict method and to prove
the function, all the precondition, post-conditions, changes the variables, loops, internal
function calls must be annotated in a special form (see the invariant with z < m on
Figure 7). The ISO-standardized language ACSL [1] is used.

To verify the hybrid system with Frama-C, the mathematical model for it should be
solved (by direct or numerical methods) and annotated in C (and annotations can occupy
huge places in a code). There is no explicit way to write it in the terms of mathematics.

A similar approach is pursuited by Ariadne [11], a framework implemented in C++.
The user can encode a CPS in form of a hybrid automaton including its requirements as
instances of C+-+ classes. More precisely, there are special classes for declaring states,
transitions and invariants of the modeled system. After defining the system, the user
can execute code to do reachability analysis and prove properties of the described
system, especially for safety verification. Ariadne allows parametric verification, which
exhaustively checks all possible values of the parameters and determines for which values
the component obeys the guarantees. For setting up physical formulas in a model, the
user has to use overloaded operations, which are not fully supported by the framework
yet. Also, a graphical system representation is not supported yet and enforces the user
to work with plain C+--code all time.
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0 /*8 requires z0 0 = 0
O requires z0 0 < m
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O 0
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-

requires vo 1 =
requires dt > 0;
ensures ‘\result < \old(m):

#
r

*/
double model (double z0 0, double v0 1, double m, double eps, double dt)
{

double SB = (double)d:

double z 0 = =z0 0;

double v = v0 1;

states g = g start:

double £t 0 = (double)d:

int weRun = 1:

/*8 loop invariant
loop invariant
loop invariant
loop invariant we
loop assigns z 0,
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[=]= =]
T T T

=1 v weRun = 0;
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*f
while (t 0 <= eps)
v o= vl 1;

~

}
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t

L
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a

Fig. 7. Annotations in the simple hybrid model in C

5. Conclusion and Future Work

In this paper, we discussed one of the biggest barrier of verification tools such as
KeYmaera to get widely acceptance in industry: They assume the user to be highly
trained in mathematical logic and to know in detail the system’s proof rules. In addition,
a particular problem of KeYmaera is the representation of a proof. The actual proof of
a system property can be saved by KeYmaera, but inspection of it by the user is very
hard, since the key ideas of a proof are cluttered by many other proof rule applications,
which are necessary to get a formal proof right.

Based on a simple but typical example, we illustrated our new approach to let the
user annotate key proof facts to the system description itself. As a result, there are much
more proof obligations to be proven by KeYmaera, but they are much simpler now and
require much less user interaction while the formality of the proof is preserved.

So far, we treated the illustrated example as a pen-and-pencil case study. The next
step will be to build a prototypical front-end tool, that allows the user to specify the
system graphical as shown in Fig. 3 and which will generate the proof obligations for
KeYmaera automatically.



Modeauposanue u anaausd ungopmavyuornoz cucmem. T.25, Ne5 (2018)

476 Modeling and Analysis of Information Systems. Vol. 25, No5 (2018)
References
[1] Baudin P. et al., ACSL: ANSI/ISO C Specification Language. Version 1.12, https://

2]
3]
)
51
6]
7]
8]
9]
[10]
11)
12)

[13]

[14]

[15]

A

frama-c.com/download/acsl_1.12.pdf.

Spin: Promela reference. float - floating point numbers, http://spinroot.com/spin/Man/
float.html.

Alur R. et al., “Hybrid Automata: An Algorithmic Approach to the Specification and
Verification of Hybrid Systems”, Hybrid Systems, Lecture Notes in Computer Science,
736, 1993, 209229, https://doi.org/10.1007/3-540-57318-6_30.

Behrmann G. et al., “A tutorial on uppaal”, Formal methods for the design of real-time
systems, Springer, 2004, 200-236.

Booch G. et al., The unified modeling language user guide — covers UML 2.0, Second
Edition, Addison Wesley object technology series, Addison-Wesley, 2005.

David A. et al., “Uppaal SMC tutorial”, International Journal on Software Tools for
Technology Transfer, 17:4 (2015), 397-415.

Floyd R.W., “Assigning Meanings to Programs”, Proceedings of Symposium on Applied
Mathematics, 19 (1967), 19-32.

Hybrid Systems, Lecture Notes in Computer Science, 736, ed. Robert L. Grossman et al.,
1993.

Henzinger Thomas A., “The Theory of Hybrid Automata”, Proceedings 11th Annual IEEE
Symposium on Logic in Computer Science, 1996, 278-292.

Kirchner F. et al., “Frama-C: A software analysis perspective”, Formal Aspects of
Computing, 27:3 (2015), 573-6009.

Nuzzo P. et al., “A platform-based design methodology with contracts and related tools for
the design of cyber-physical systems”, Proceedings of the IEEFE, 103:11 (2015), 2104-2132.

Platzer A., Logical Analysis of Hybrid Systems: Proving Theorems for Complexr Dynamics,
Springer, Heidelberg, 2010.

Platzer A., “Logic and Compositional Verification of Hybrid Systems (Invited Tutorial)”,
Computer Aided Verification, 23rd International Conference, Lecture Notes in Computer
Science, 6806, 2011, 28—43.

Quesel J.-D. et al., “How to Model and Prove Hybrid Systemswith KeYmaera:A Tutorial
on Safety”, STTT, 18:1 (2016), 67-91.

Rimmer Ph., Princess Homepage, http://www.philipp.ruemmer.org/princess.shtml.

Generated Proof Obligations

For the running example of this paper introduced in Sect. 2. and for the additional proof contracts
formulated in Sect. 3. the following proof obligations were generated (in KeYmaera syntax). For the
numbering of each proof obligation (PO) the reader is referred to Sect. 3.1.

1.1. PO1

\problem {
\[ R vO, ep, m, SB, v, z, t ; \] (
z<mé&ep>0&v0 >0

->
z <
)
}

m


https://frama-c.com/download/acsl_1.12.pdf
https://frama-c.com/download/acsl_1.12.pdf
http://spinroot.com/spin/Man/float.html
http://spinroot.com/spin/Man/float.html
https://doi.org/10.1007/3-540-57318-6_30
http://www.philipp.ruemmer.org/princess.shtml
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1.2. PO 2

\problem {

\[ R v0O, ep, m, SB, v, z, t ; \] (
z <m

->

z <m

)

}

1.3. PO 3

\problem {

\[ R vO, ep, m, SB, v, z, t ; \] (
ep >0 & v0O >0

-> (

z <m

->

(z<m

)

)

}

1.4. PO 4

\problem {

\[ R v0, ep, m, SB, v, z, t ; \] (
ep >0 & vO > 0

> (

z <m

->

(z < m

)

)

}

1.5. PO5

\problem {
\[ R vO, ep, m, SB, v, z, t ; \] (
ep >0 & v0O >0

-> (

z <m

->\I[

SB :=m - ep * vO; 7 2z < S8B; t :=0; v :=v0
\]
(z<m-ep*xv0O&t=0&v=v0&z<m
)

)

}
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1.6. POG6
\problem {

\[ R v0, ep, m, SB, v, z, t ; \] (
ep >0 & v0O >0

-> (

z <nmn

->\[

SB :=m-ep *xv0; 27! z<SB; v :=0
\1

(v=0%&2z<m

)

)

}

1.7. PO7

For this proof obligation on node driving the user provided the additional formula
Zout = 2 FVxtdif f Ntoys =t +tdif f

\problem {

\[ R vO, ep, m, SB, v, z, t, z_out, t_out, tdiff ; \] (
ep >0 & v0O >0

-> (

(z<m-ep*xv0&v=v0&t=0&z<m&

(0 <= tdiff) &

(t <= ep) &

(t_out <= ep) &

(z_out = z + v * tdiff & t_out = t + tdiff)

->

z_out < m

)

)

}

1.8. POS8

For this proof obligation on node stopped the user provided the additional formula
Zout = 2 +vxtdif f

\problem {

\[ R vO, ep, m, SB, v, z, t, z_out, t_out, tdiff ; \] (
ep > 0 & vO > 0

-> (
(v=0&z<m&

(0 <= tdiff) &

(true) &

(true) &

(z_out = z + v * tdiff)
->

z_out <m

)

)

}
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1.9. PO9

\problem {

\[ R vO, ep, m, SB, v, z, t ; \] (
ep >0 & v0 >0

-> (

z <m

->

(z<m

)

)

}

1.10. PO 10

\problem {

\[ R vO, ep, m, SB, v, z, t ; \] (
ep >0 & v0O >0

-> (

z <m

->

(z<m

)

)

}

Baap T., CraposeroB C.M., " Viuporienue mporecca Bepudukaiinu Kubep-pu3nieckmx
CHCTEM C UCTIOJIb30BAHNEM TI0/IX0/1a ¢ Tpad oM IMOTOKa yipasjeHus B cpejacTse KeYmaera",
Modeauposanue u anarusd ungopmayuonnvr cucmem, 25:5 (2018), 465-480.

DOTI: 10.18255/1818-1015-2018-5-465-480

Awnnoramusi. KeYmaera siBisieTcss CpeJiCTBOM MHTEPAKTUBHOTO JOKA3ATEIbCTBA TEOPEM U UCITO/Th-
3yercs JJis IPOBepKH cBoiicTB 6e3onacuoctu kKubep-busndeckux cucreM (CPS). IIposepka Takux cBoiicTB
B MHTEPAKTUBHOM PEKMME MOXKET ObITh OCJIO?KHEHA, MOCKOJIbKY JI0KA3aTELCTBO OCYIIECTBIIAETCS C MC-
[TOJIb30BAHUEM KJIACCHYIECKOIO CEKBEHTHOI'O JIOTMYECKOIO UCUUCJIEHNs U YCIIEITHOE JI0KA3aTeHLCTBO TPe-
OyeT OT 1oJib30BaTe sl IIyOOKUX 3HAHUII O JOCTYIIHBIX [PaBUJIAX, UMEIOIIUXCSA B JIOTUKE NCUUCJIEHUSI.
FEie omauM npensitcTBreM Jitst IMIUPOKOro mpuMeHeHnst KeYmaera siBjisieTcst MpeiCTaBIeHNe TeKYIINX
1eJieil TOJIbKO B BHJIE TEKCTA, UTO IPEJINOJIATaeT XOPOIIYIO TOJATOTOBKY TOJIB30BATENs JJIs TOCTPOCHUST
YCIIEIITHBIX TI0KA3aTEBCTB. B 9T0it craThe MBI IIPeCTaB/IseM aJIbTEPHATUBHBIN METO/ BePUMPUKAIIAN [IJTsT
KeYmaera, koTopbiit 3HAYUTETHHO TOBBIMIAET YI00CTBO MCIOJIH30BAHUS U MUHUMHU3UPYET PabOTy MOTb-
zoBareseit. OCHOBHAs Ues 3aK/II09A€TCs B TOM, ITOOBI TIO3BOJIUTD MOJIH30BATEIO JI00ABIATH AHHOTAIIUH
B BUJIe MHBAPUAHTOB U KOHTPAKTOB K COCTOSIHUSIM IM'MOPU/IHOM IIporpaMMbl. B HaleM moixozie moab30Ba-
TeJIb MOXKET UCIIOJIb30BaTh I'PaGUIECKUil sI3bIK IIPEICTABIEHUs] MOJIEIUPYEMON CUCTEMBI, ITO TIO3BOJISIET
eMy He paboTaTb C YHCTO TEKCTOBBIM (DOPMATOM THOPUIHBIX ITPOCPAMM, SBJISIOMIMMCS BXOIHBIM JJIsT
cpeacrsa KeYmaera. Vcxons n3 mpenocTaBieHHBIX TOJIH30BATEEM KOHTPAKTOB, MOXKHO IIOJIy9aTh J0-
Ka3aTeJIbCTBa, KOTOPhIE TOPA3/0 IPOIIE, YeM HUCXOAHAs IeIb J0Ka3aTeabcTs B KeYmaera, u KOTOpbIe
MOI'yT ObITH 0OpabOTaHbI B OOJIBIIMHCTBE CJIyYaeB HOJHOCThIO aBroMaTudeckKu. Crarbs IyOIMKyeTCs B
ABTOPCKON PeJIaKIIUU.

Kuarouesbie ciioBa: kubep-dusudeckue cucreMbl, KeYmaera, KOHTPaKkThl, BepuuKalius, TaOpuIHbIE

CUCTEMbI, THTEPaKTHUBHbIC JJOKa3aTeJIn TeOpeM
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