
Моделирование и анализ информационных систем. Т. 25, №5 (2018), с. 534–548
Modeling and Analysis of Information Systems. Vol. 25, No 5 (2018), pp. 534–548

Синтез и преобразования программ
Program Synthesis and Transformations

c©Grechanik S.A., 2018

DOI: 10.18255/1818-1015-2018-5-534-548

UDC 519.681.3

Polyprograms and Polyprogram Bisimulation

Grechanik S.A.

Received 10 September 2018

Abstract. A polyprogram is a generalization of a program which admits multiple definitions of a
single function. Such objects arise in different transformation systems, such as the Burstall–Darlington
framework or equality saturation. In this paper, we introduce the notion of a polyprogram in a non-strict
first-order functional language.

We define denotational semantics for polyprograms and describe some possible transformations of
polyprograms, namely we present several main transformations in two different styles: in the style
of the Burstall–Darlington framework and in the style of equality saturation. Transformations in the
style of equality saturation are performed on polyprograms in decomposed form, where the difference
between functions and expressions is blurred, and so is the difference between substitution and unfolding.
Decomposed polyprograms are well suited for implementation and reasoning, although they are not very
human-readable.

We also introduce the notion of polyprogram bisimulation which enables a powerful transformation
called merging by bisimulation, corresponding to proving equivalence of functions by induction or coin-
duction. Polyprogram bisimulation is a concept inspired by bisimulation of labelled transition systems,
but yet it is quite different, because polyprogram bisimulation treats every definition as self-sufficient,
that is a function is considered to be defined by any of its definitions, whereas in an LTS the behaviour
of a state is defined by all transitions from this state.

We present an algorithm for enumerating polyprogram bisimulations of a certain form. The algo-
rithm consists of two phases: enumerating prebisimulations and converting them to proper bisimulations.
This separation is required because polyprogram bisimulations take into account the possibility of pa-
rameter permutation. We prove correctness of this algorithm and formulate a certain weak form of its
completeness.

The article is published in the author’s wording.

Keywords: polyprograms, program transformation, equality saturation, bisimulation

For citation: Grechanik S.A., “Polyprograms and Polyprogram Bisimulation”, Modeling and Analysis of Information
Systems, 25:5 (2018), 534–548.

On the authors:
Sergei A. Grechanik, orcid.org/0000-0001-8575-9689, PhD,
Keldysh Institute of Applied Mathematics,
4 Miusskaya sq., Moscow 125047, Russia, e-mail: sergei.grechanik@gmail.com

Acknowledgments:
This work was supported by Russian Foundation for Basic Research, grant No. 18-31-00412.

534

Grechanik S.A.

Polyprograms and polyprogram bisimulation 535

Introduction

Many program transformation methods can be seen as special cases of the Burstall-
Darlington framework [3]. The idea behind this framework consists in viewing a program
as a set of equations and then transforming this set by inferring new equations. Such a set
of equations is essentially a program without the uniqueness constraint on the definitions
of its functions (i.e. each function may have several definitions), thus we propose to call it
a polyprogram (short for “polyvariant program”, a term coined by Mikhail Bulyonkov).

Equality saturation [8] may also be considered an instance of the Burstall-Darlington
framework if we restrict ourselves to so-called decomposed polyprograms. In decomposed
polyprograms every definition has a very simple form containing only one nontrivial lan-
guage construct, thus decomposed polyprograms are essentially closer to ASTs and E-
PEGs (E-PEG is a Program Expression Graph with an equivalence relation on nodes [8]),
definitions of polyprograms corresponding to nodes and outgoing edges of E-PEGs, and
functions corresponding to classes of node equivalence. Decomposed polyprograms can
be represented as graphs, or, more precisely, directed hypergraphs, whose nodes corre-
spond to functions and hyperedges to definitions. Thus decomposed polyprograms are
better for implementation and formulation of transformations. Every complex defini-
tion can be split into several simple definitions by introducing intermediate functions, so
every polyprogram can be transformed into a decomposed one.

One of the transformation rules of the Burstall-Darlington framework is called redef-
inition. It allows replacing one function for another if they have isomorphic recursive
definitions. In this paper we show how this rule can be formulated using the notion
of polyprogram bisimulation, which has the benefit of dealing with situations when the
definitions are not exactly isomorphic (e.g. the functions are equal only up to argument
permutation). Thus, we prefer to call this transformation rule merging by bisimulation.

This paper is a continuation of the work on equality saturation for functional lan-
guages [5]. In that previous paper the theory behind the implementation wasn’t described
thoroughly enough, in particular, the semantics wasn’t discussed at all, the notion of
polyprogram bisimulation wasn’t presented, and thus there was no proof of correctness
of the bisimulation enumeration algorithm. The present paper discusses these topics in
more detail, and its contributions are as follows:

• Articulation of the notion of a polyprogram.

• A polyprogram-based formulation of equality saturation which shows the connec-
tion between equality saturation and the Burstall-Darlington framework.

• The notion of polyprogram bisimulation and an algorithm for enumerating polypro-
gram bisimulations together with a proof of its correctness. This is the main con-
tribution, and most of the paper is devoted to this topic.

The paper is structured as follows: first of all, we describe the language we use
throughout the paper and give the definitions of a polyprogram and a decomposed
polyprogram in this language (Section 1.), then we show some basic transformation
rules (Section 2.), and after that we introduce the notion of polyprogram bisimulation
and present an algorithm for enumerating bisimulations (Section 3.).

536
Моделирование и анализ информационных систем. Т. 25, №5 (2018)

Modeling and Analysis of Information Systems. Vol. 25, No 5 (2018)

1. Polyprograms

In this paper we use a simple first-order language. We denote variables with letters
x, xi (from X), functions names with f, fi (from a set of functional symbols F), and
constructors with C,Ci. A set of functional symbols is just a set F equipped with an
arity function arity : F → N.

Definition 1. A polyprogram (in our language) is a set of definitions of the form
f(x1, . . . , xn) ≡ e where e has the following form1:

e ::= x | f(e1, . . . , em) | C(e1, . . . , em) | case e0 of { Ci(xij) → ei; }

where there is no variable duplication in case patterns and in left hand sides of definitions.

In a polyprogram each function is allowed to have any number of definitions. The
intention is that such definitions should be semantically equal, but may be different
performance-wise. Here is an example of a polyprogram:

not(t) ≡ case t of {F → T ;T → F}
even(x) ≡ case x of {Z → T ;S(y)→ odd(y)}
even(x) ≡ not(odd(x))

odd(x) ≡ case x of {Z → F ;S(y)→ even(y)}
odd(x) ≡ not(even(x))

Note that the functions even and odd have two definitions each.

Definition 2. A polyprogram in decomposed form, or just decomposed polyprogram, is
a polyprogram such that all right hand sides of its definitions have the following form:

e ::= r | x | f(r1, . . . , rm) | C(r1, . . . , rm) | case r0 of { Ci(xij) → ri; }
r ::= f(x1, . . . , xl), where all xj differ from each other

We call expressions of the form f(x1, . . . , xl), where variables are different, elementary
calls. That is, every right hand side of a decomposed polyprogram is either an elementary
call or an expression such that each of its maximal proper subexpressions is an elementary
call.

Decomposed form is not very human-readable, but it is better suited for reasoning
and implementation. Consider the following polyprogram consisting of one definition:

f(x, z) ≡ case x of {Z → Z;S(y)→ f(y, y)}

To transform it into a decomposed polyprogram, we have to factor out subexpressions
x, Z, y, and f(y, y) (the last one because it has a duplicated variable). This gives us the
following decomposed polyprogram:

f(x, z) ≡ case id(x) of {Z → g();S(y)→ h(y)}
id(x) ≡ x

g() ≡ Z

h(y) ≡ f(id(y), id(y))

1E〈ei〉 expands to E〈e1〉, . . . , E〈en〉 for some n = max i

Grechanik S.A.

Polyprograms and polyprogram bisimulation 537

1.1. Polyprogram semantics

It is straightforward to define denotational semantics for polyprograms. However, instead
of considering only the least fixed point, we consider all fixed points, or models, because
this makes semantics compositional, i.e. we can replace polyprogram fragments with
semantically equivalent fragments without changing the meaning of the whole polypro-
gram. This property would not hold if we considered only the least fixed point, because
the equivalence based on the least fixed point semantics is too coarse.

Our polyprograms operate first-order values from the set A which is the greatest
solution of the following equation (i.e. it includes both finite and infinite data built out
of constructors):

A = {C(a1, . . . , an) | ai ∈ A, C is a constructor} ∪ {⊥}.

Let D be the set of continuous functions [10] over A of arbitrary arity, i.e. D =
⋃
n[An →

A]. Now let’s define the notion of an interpretation.

Definition 3. Let P be a polyprogram with the set of function names F . Then an
interpretation of P is a function η : F → D such that arity(η(f)) = arity(f).

Now let’s define the valuation of a term t given an interpretation η and a valuation
of variables ν : X → A, written [[t]]η,ν :

[[x]]η,ν = ν(x)

[[f(e1, . . . , en)]]η,ν = η(f)([[e1]]η,ν , . . . , [[en]]η,ν)

[[C(e1, . . . , en)]]η,ν = C([[e1]]η,ν , . . . , [[en]]η,ν)

[[case e0 of{Ci(y1, . . . , ym)→ ei}]]η,ν = [[ek]]η,ν{yi→ai}

where [[e0]]η,ν = Ck(a1, . . . , am) for some k ∈ {1, . . . , max i}

Given a definition d, its valuation [[d]]η is a Boolean value defined as follows:

[[e1 ≡ e2]]η = (∀ν.[[e1]]η,ν = [[e2]]η,ν)

Definition 4. An interpretation µ is called a model of a polyprogram P if for every
definition d ∈ P , [[d]]µ is true.

2. Polyprogram transformation rules

According to both the Burstall-Darlington framework and equality saturation, polypro-
grams should be transformed with some rules which add new function definitions to a
polyprogram. After that a new program may be extracted from the polyprogram by
choosing a single definition for each function.

We write transformation rules as P1 7→ P2. Application of such a rule to a polypro-
gram consists in replacing the subpolyprogram corresponding to the left hand side up
to function and variable renaming with the right hand side. We assume that rules may
add new definitions and functions, and also remove some definitions

538
Моделирование и анализ информационных систем. Т. 25, №5 (2018)

Modeling and Analysis of Information Systems. Vol. 25, No 5 (2018)

We will consider only a couple of basic rules in two different styles: in the style of
the Burstall-Darlington framework and in the style of equality saturation. The latter
one assumes that polyprograms are in decomposed form.

The main difference between the two styles is that rules of equality saturation are
more local and fine-grained, because equality saturation was originally designed to per-
form mostly intraprocedural optimizations (inside function bodies) by rewriting expres-
sions. However, for decomposed polyprograms the difference between expressions and
functions becomes blurred, so interprocedural transformations become as naturally ex-
pressible in equality saturation as intraprocedural.

2.1. Rules in the style of the Burstall-Darlington framework

Unfolding {
f(xi) ≡ E〈g(ej)〉
g(yj) ≡ H

}
7→


f(xi) ≡ E〈g(ej)〉
g(yj) ≡ H

f(xi) ≡ E〈H{yj 7→ ej}〉


This rule substitutes a function call with the function body.

Folding {
f(xi) ≡ H〈E{yj 7→ zj}〉
g(yj) ≡ E

}
7→


f(xi) ≡ H〈E{yj 7→ zj}〉
g(yj) ≡ E

f(xi) ≡ H〈g(zj)〉


This rule does the inverse: it replaces an instance of some function’s body with a call of
this function. Note that it is less powerful than the corresponding rule from the paper
by Burstall and Darlington [3] because it allows replacing only renamings of g’s body,
not arbitrary special cases.

2.2. Rules in the style of equality saturation

Decomposed polyprograms are very similar to E-PEGs from the work of Tate et al.
on equality saturation [8]. They enable more effective sharing of subexpressions, which
is crucial for big polyprograms, especially when a simple heuristic-free rule application
strategy is used, as in equality saturation.

However, rules in the form from the previous subsection cannot be applied to decom-
posed polyprograms because their left hand sides are not in decomposed form. One of
the solutions to this problem is to rewrite the rules in such a way that both their sides
are in decomposed form. In this case the rules will not only be applicable to decomposed
polyprograms but also will preserve them in decomposed form.

Transitivity with symmetry

{
f(xi) ≡ E

g(yj) ≡ E

}
7→


f(xi) ≡ E

g(yj) ≡ E

f(xi) ≡ g(yj)



Grechanik S.A.

Polyprograms and polyprogram bisimulation 539

This rule is analogous to folding. It infers function equivalence from their having coincid-
ing definitions. The correctness of this rule follows from the transitivity and symmetry
of equality, hence the name.

Congruence {
g(yj) ≡ h(yθ(j))

D〈g(ej)〉

}
7→

{
g(yj) ≡ h(yθ(j))

D〈h(eθ(j))〉

}
This rule allows propagating information about function equivalence by replacing one
function with another. This rule is best applied to every call site of the function being
replaced at once: in this case we can simply remove the old function from the polypro-
gram. We call such a procedure merging by congruence since the functions are effectively
merged.

Deduplication {
f(xi) ≡ E

f(xi) ≡ E

}
7→
{
f(xi) ≡ E

}
This rule is used after merging by congruence to remove a coinciding definition of a func-
tion. Its only purpose is to reduce memory consumption. The three aforementioned rules
together implement congruence closure [6] which lies at the heart of equality saturation.

Unfolding of a function consisting of a function call

{
f(xi) ≡ h(ej(xi))

h(yj) ≡ g(dk(yj))

}
7→



f(xi) ≡ h(ej(xi))

h(yj) ≡ g(dk(yj))

f(xi) ≡ g(qk(xi))

qk(xi) ≡ dk(ej(xi))


The unfolding rule breaks apart into several simpler rules. We show only one of these
rules for brevity. The most interesting thing is that we don’t need a separate operation
for substitution into an expression (E{x 7→ e}) since non-elementary calls play the role
of explicit substitutions.

3. Polyprogram bisimulation

Merging by bisimulation is a generalization of the redefinition rule from the Burstall-
Darlington framework. Consider the following polyprogram:

f() ≡ S(f())

g() ≡ S(h())

h() ≡ S(g())

The goal is to infer f() ≡ g(). Turns out, this cannot be done directly with the simple
rules mentioned above, so we need something more powerful. In this case the definitions

540
Моделирование и анализ информационных систем. Т. 25, №5 (2018)

Modeling and Analysis of Information Systems. Vol. 25, No 5 (2018)

of these functions are not even isomorphic, so we need a more general relation than
isomorphism, which we call a bisimulation because it remotely resembles the notion of
bisimulation for labeled transition systems.

3.1. The notion of polyprogram bisimulation

First of all, let’s give some auxiliary definitions. If θ is a function from {1, . . . ,m} to
{1, . . . , n} (which we will write just as θ : m→ n) then it can be applied to any functional
symbol to permute, omit and duplicate its parameters. We write this application simply
as θf and use the following reduction rule:

(θe0)(e1, . . . , en) e0(eθ(1), . . . , eθ(m))

Definition 5. A morphism of functional symbols from F1 to F2 is a function φ that maps
each functional symbol f ∈ F1 to a pair φ(f) = (θ, h) where h ∈ F2 and θ : arity(h) →
arity(f).

We will often write φ(f) = θh instead of φ(f) = (θ, h).
A morphism of functional symbols maps functional symbols, possibly permuting and

dropping their parameters. Morphisms of functional symbols can be applied to definitions
and polyprograms. If d is a definition then φ(d) is obtained by replacing all function
names f in d with θh, where φ(f) = θh, with subsequent normalization with respect to
 . If P is a polyprogram then φ(P) = {φ(d) | d ∈ P}. For example, if φ(g) = idg and
φ(f) = θh where θ(1) = 2 and θ(2) = 1, then φ(f(f(x, y), g(x))) = h(g(x), h(y, x)).

Note that even if P is a polyprogram, φ(P) is not necessarily a polyprogram, because
φ may introduce variable duplication in left hand sides of definitions. We call such objects
quasipolyprograms. However, if φ maps every f into a pair (θ, f ′) such that θ is injective
then φ(P) will be a polyprogram if P is a polyprogram.

By definition, morphism application affects both elementary and non-elementary
calls. This actually considerably complicates the theory of polyprogram bisimulations,
because the ability of morphisms to rearrange parameters in non-elementary calls re-
quires considering all possible permutations in the bisimulation enumeration algorithm.
To simplify things, we use the following semantically equivalent construct instead of a
non-elementary call f(e1, . . . , en):

case C(e1, . . . , en) of { C(x1, . . . , xn)→ f(x1, . . . , xn) }

Since it is not human-readable, f(e1, . . . , en) will still be used as a syntactic sugar. Note
that now morphisms of functional symbols only affect the order of bound variables. More-
over, in subsequent proofs and definitions we will need to consider only three language
constructs.

We call two definitions α-equivalent, written d1 ≈ d2, if they are equal up to variable
renaming. We use the notation P1 ⊂∼ P2 if P1 is a subpolyprogram of P2 up to α-
equivalence of its definitions.

Definition 6. A polyprogram bisimulation over a polyprogram P is a polyprogram B
with two morphisms of functional symbols φ and ψ such that φ(B) ⊂∼ P , ψ(B) ⊂∼ P , and
if a function f ∈ B has no definitions then φ(f) = ψ(f).

Grechanik S.A.

Polyprograms and polyprogram bisimulation 541

Polyprogram bisimulations are useful for proving equivalence of functions (and sub-
sequently merging them, the transformation we call merging by bisimulation) using the
following theorem.

Theorem 1. Let B with φ and ψ be a polyprogram bisimulation over P . If for every
interpretation ν of B’s functions without definitions there is only one model µ that co-
incides with ν on B’s functions without definitions then it is possible to add definitions
of the following form into P for each function f ∈ B without changing the set of P ’s
models:

g(xθ(1), . . . , xθ(m)) ≡ h(xξ(1), . . . , xξ(n))

where (θ, g) = φ(f), (ξ, h) = ψ(f), m = arity(g), n = arity(h).

Proof. Let µ be a model of P . Then there are two models of B: µφ(f) = θµ(g) where
(θ, g) = φ(f), and µψ(f) = ξµ(h) where (ξ, h) = ψ(f). But for every function f ∈ B
with no definitions φ(f) = ψ(f), hence µφ(f) = µψ(f). Since for every interpretation
ν of B’s functions without definitions there is only one model of B, models µφ and
µψ must be equal. This means that for every function f ∈ B, θµ(g) = ξµ(h), i.e.
µ(g)(xθ(1), . . . , xθ(m)) = µ(h)(xξ(1), . . . , xξ(n)). This is exactly the semantics of the new
definitions, so they can be safely added to P , and µ will still be a model of the augmented
quasipolyprogram.

Since adding definitions cannot expand the set of models, the assertion of the theorem
is proved.

Not every bisimulation is good enough for merging by bisimulation, because it must
also satisfy the model uniqueness property. To test this property some decidable sufficient
conditions may be used, like structural and guarded recursion [1], or the presence of
ticks [7]. This topic is out of scope of this paper.

3.2. Enumerating bisimulations

In this section we assume that polyprograms are in decomposed form and non-elementary
calls are encoded using case expressions. There is an infinite number of polyprogram
bisimulations, so we are going to present an algorithm that produces an infinite stream
polyprogram bisimulations, but only of some specific form. The algorithm can be in-
formally outlined in the following way: first enumerate prebisimulations, quasipolypro-
grams that are precursors of bisimulations, and then transform each prebisimulation into
a polyprogram bisimulation if possible.

Prebisimulations will be quasipolyprograms consisting of products of definitions of
the original polyprogram. Its idea of a product of two definitions def-product(d1, d2) is
to combine every pair of corresponding functions into a single one with their parameter
lists concatenated, e.g.:

def-product((f(x) ≡ x), (g(y) ≡ y)) = (〈f, g〉(x, x) ≡ x)

def-product((f(x, z) ≡ case h() of{S(y)→ g(x, y)}),
(f ′(x) ≡ case h′(x) of{S(y)→ g′(y, x)})) =

= (〈f, f ′〉(x, z, x′) ≡ case 〈h, h′〉(x′) of{S(y)→ 〈g, g′〉(x, y, y, x′)})

542
Моделирование и анализ информационных систем. Т. 25, №5 (2018)

Modeling and Analysis of Information Systems. Vol. 25, No 5 (2018)

Definition 7. Let d and d′ be two decomposed definitions with the same language con-
struct, the same number of function calls and the same number of variables bound by
corresponding patterns. Assume also that corresponding variables in corresponding pat-
terns of the two definitions have coinciding names, and also if the right hand sides have
the form x then x is the same for both definitions, but there are no more variable collisions
between the definitions (these requirements may be satisfied by applying α-conversion).
Then the product of these definitions is defined as follows:

def-product(f(x1, . . . , xn) ≡ xi, f
′(y1, . . . , ym) ≡ yj) =

= 〈f, f ′〉(x1 . . . xn, y1 . . . yj−1, xi, yj+1ym) ≡ xi

def-product(f(x) ≡ C(g1(x1), . . . , gn(xn)),

f ′(y) ≡ C(g′1(y1), . . . , g
′
n(y1))) =

= 〈f, f ′〉(x, y) ≡ C(〈g1, g′1〉(x1, y1), . . .)

def-product(f(x) ≡ case g0(x0) of{C1(z1)→ g1(x1); . . .},
f ′(y) ≡ case g′0(y0) of{C1(z′1)→ g′1(x

′
1); . . .}) =

= 〈f, f ′〉(x, y) ≡ case g0(x0, x′0) of

{C1(z1)→ 〈g1, g′1〉(w1, w′1{z′1 7→ z1}); . . .}

Here 〈f, g〉 denotes a unique functional symbol corresponding to f and g with arity
arity(f) + arity(g).

We enumerate prebisimulations in the form of trees with back edges growing from a
pair of functions. The enumeration procedure is shown in Fig. 1 in the form of a function
taking a polyprogram and two functional symbols and returning a set of prebisimulations
(programmatically this function should be implemented as returning a stream). Its idea
is to traverse the polyprogram P in depth-first order simultaneously from the functions
f and f ′. A branch may be finished if we encounter a pair of coinciding functions
(reflexivity) or a pair of functions which we have already visited (folding). If we do not
finish the branch then we choose a pair of definitions of these functions such that the
product of these definitions is defined, and descend to pairs of corresponding functions
in their right hand sides.

Now let’s define two morphisms, π1(〈f1, f2, l〉) = (γ1, f1) where γ1(i) = i, and
π2(〈f1, f2, l〉) = (γ2, f2) where γ2(i) = i + arity(f1). A prebisimulation with π1 and
π2 is not yet a bisimulation for two reasons: it is not a polyprogram because of variable
duplication, and π1 and π2 differ on functions without definitions.

To transform a prebisimulation into a polyprogram bisimulation duplicated variables
should be merged. To do so, we propagate the information about variable equivalence,
thus making the quasipolyprogram “coarser”. If this process succeeds, the resulting
quasipolyprogram may be transformed into a polyprogram, moreover, it will be a bisim-
ulation.

Definition 8. A quasipolyprogram Q1 is no more coarse than Q2, written Q1 v Q2, if
their definitions are in one-to-one correspondence, and for every definition d1 ∈ Q1 the
corresponding definition d2 is α-equal to d1{x 7→ y} for some variables x and y.

Grechanik S.A.

Polyprograms and polyprogram bisimulation 543

prebisimulations(P, f, f ′) = B

where (, B) = prebisimulations ′(P, f, f ′, {})

prebisimulations ′(P, f, f ′, history)

= {(fnew , {}) | f = f ′}
∪ {(fold , {}) | (f, f ′, fold) ∈ history}
∪ {(fnew , {q′} ∪B1 ∪ . . . ∪Bn) |

d = (f(. . .) ≡ L(. . .)) ∈ P,
d′ = (f ′(. . .) ≡ L(. . .)) ∈ P,
such that def-product(d, d′) is defined,

q = def-product(d, d′),

(〈f, f ′〉(. . .) ≡ L(〈g1, g′1〉(. . .), . . .)) = q,

history ′ = history ∪ {(f, f ′, fnew)},
(hi, Bi) ∈ prebisimulations ′(P, gi, g

′
i, history ′),

q′ is q with 〈f, f ′〉 replaced with fnew

and 〈gi, g′i〉 replaced with hi}
where fnew = 〈f, f ′, l〉 where l is a fresh unique label,

fnew has arity arity(f) + arity(f ′)

Figure 1. Enumeration of prebisimulations

Information about variable equivalence may be propagated with the following trans-
formation.

Definition 9. Let Q be a quasipolyprogram and f(x1, . . . , xn) be a term from some
of Q’s definitions such that xi and xj are one and the same variable. The following
transformation is called variable equivalence propagation step: for some definition of Q
containing a term f(y1, . . . , yn) replace yj with yi in the whole definition.

Example 1. Consider the following polyprogram:

g(x, y, z) ≡ C(f(x, y), g(z, x, y))

f(x, x) ≡ x

Since f(x, x) in the second definition has a variable duplication, it can be propagated to
the first definition by replacing y with x, leading to the following definition:

g(x, x, z) ≡ C(f(x, x), g(z, x, x))

Now g(x, x, z) contains variable duplication, so variable equivalence may be propagated
further, resulting in the definition g(x, x, x) ≡ C(f(x, x), g(x, x, x)).

Sometimes variable equivalence propagation may lead to variable duplication in pat-
terns (like case h(x) of{C(x, x) → f(x, x)}). Quasipolyprograms containing such defi-
nitions will not lead to bisimulations and may be filtered out.

544
Моделирование и анализ информационных систем. Т. 25, №5 (2018)

Modeling and Analysis of Information Systems. Vol. 25, No 5 (2018)

If Q′ is derived from Q by a variable equivalence propagation step then Q v Q′ by the
definition ofv. In particular, it means that we can fully propagate variable equivalence in
a finite number of steps. Another important property of variable equivalence propagation
is that it commutes with v in the following sense.

Proposition 1. If Q1 v Q2 and it is possible to apply a variable equivalence propagation
step to Q1 and get Q′1 then it is possible to apply no more than one variable equivalence
propagation step to Q2 and get Q′2 such that Q′1 v Q′2.

This implies confluence of variable equivalence propagation.
Before performing variable equivalence propagation we need to fix another issue of a

prebisimulation: we need to equate corresponding variables of functions without defini-
tions. That is, for each call of function without definitions of the form

〈f, f, l〉(x1, . . . , xm, y1, . . . , ym),

where m = arity(f), replace yi with xi in the whole definition containing this call.
This transformation is very similar to a variable equivalence propagation step, and the
resulting quasipolyprogram is more or equally coarse than the original prebisimulation.

If variable equivalence is fully propagated then for every term f(x1, . . . , xn) from the
quasipolyprogram, if variables xi and xj coincide then for every other term f(y1, . . . , yn)
variables yi and yj also coincide. In this case the following proposition may be applied
to transform the quasipolyprogram into a polyprogram.

Proposition 2. Let Q be a quasipolyprogram. Assume that for each function f of arity
n, the set {1 . . . n} of its argument positions can be partitioned into m equivalence classes
such that if i and j are from the same class then for every term of the form f(x1, . . . , xn)
from Q the variables xi and xj coincide. Then there is a pair of morphisms, σ and σ′

such that σ′(σ(Q)) = Q. Moreover, if for every term of the form f(y1, . . . , yn) such that
variables yi and yj coincide, i and j are from the same class, then the quasipolyprogram
σ(Q) is a polyprogram.

Proof. For each function f ∈ Q of arity n with m equivalence classes there is a mapping
ξf : n → m that maps each position to the corresponding equivalence class index, and
a mapping ξ−1f : m → n, its right inverse, which maps each equivalence class index to

some representative. Let’s define σ(f) = (ξ−1f , f ′) where f ′ is a function with arity m
corresponding to the function f , and σ′(f ′) = (ξf , f).

Note that σ′ is not a left inverse of σ, so we need to prove that σ′(σ(Q)) = Q.
For each definition d ∈ Q, σ′(σ(d)) will replace each occurrence of f(x1, . . . , xn) with
(ξ−1f ξff)(x1, . . . , xn) which reduces to to f(xξ−1

f ξf (1)
, . . . , xξ−1

f ξf (n)
). Now if ξ−1f ξf (i) = j

then i and j are from the same class, so xj = xi by the hypothesis of the proposition,
and we can rewrite this term as f(x1, . . . , xn) which is equal to the corresponding term
in d. Therefore σ′(σ(d)) ≈ d, and thus σ′(σ(Q)) ≈ Q.

Now assume that for every term from Q of the form f(y1, . . . , yn), if variables yi
and yj coincide then i and j are from the same class. In this case any such term will
be mapped by σ into the term f ′(yξ−1

f (1), . . . , yξ−1
f (m)) which cannot contain duplicate

variables, because if yξ−1
f (l) and yξ−1

f (k) (l 6= k) coincide then ξf (ξ
−1
f (l)) = ξf (ξ

−1
f (k)), and

consequently l = k. Then in this case σ(Q) is a polyprogram.

Grechanik S.A.

Polyprograms and polyprogram bisimulation 545

Now let’s combine everything into a polyprogram bisimulation enumeration algo-
rithm, expressed as a function returning a set.

Definition 10.

bisimulations(P, f, f ′) =

= {〈B, π′1, π′2〉 | Q ∈ prebisimulations(P, f, f ′),

Q′ is Q with corresponding variables of functions

without definitions equated,

Q′′ is Q′ with variable equivalence fully propagated,

B = σ(Q′′) is converted from Q′′ by Proposition 2,

let π′1 = π1 ◦ σ′ and π′2 = π2 ◦ σ′,
B with π′1 and π′2 is a polyprogram bisimulation}

Note that we still need to check if the result is a polyprogram bisimulation, because
variable equivalence propagation may equate too much, resulting in π′i(B) not being
subpolyprograms of P .

The presented algorithm is not strictly complete, since it enumerate bisimulations
only of a certain shape, but it is still possible to prove that if there is a bisimulation of
this shape, then an equivalent bisimulation will be found by the algorithm.

Theorem 2. Let P be a polyprogram and B with φ and ψ be a polyprogram bisimulation
over it such that:

• Every functions of B has no more than one definition.

• B has a shape of a tree with back edges (as if it was built by depth-first search).

Let φ(s) = (, sφ) and ψ(s) = (, sψ). Then there is a polyprogram bisimulation R ∈
bisimulations(P, sφ, sψ) with φR and ψR such that φ(B) ≈ φR(R) and ψ(B) ≈ ψR(R).

The proof is omitted for brevity.
Note that the found bisimulation may differ from the original one despite their images

being equal. Consider the following polyprogram:

f(x) ≡ S(f(x))

g(x) ≡ S(g(x))

We can construct a bisimulation B = {h(x) ≡ S(h(x))} with morphisms φ = {h 7→
(id , f)} and ψ = {h 7→ (id , g)} which will lead to the definition f(x1) ≡ g(x1) being
added to the polyprogram.

But the function bisimulations will not return this bisimulation. Indeed, it will find
a prebisimulation D = {〈f, g, l〉(x, y) ≡ S(〈f, g, l〉(x, y))}, but this prebisimulation has
variable equivalence information fully propagated, and it will not be changed during
conversion to a polyprogram. So the resulting bisimulation will be exactly D with
π1 = {〈f, g, l〉 7→ ({1 7→ 1}, f)} and π2 = {〈f, g, l〉 7→ ({1 7→ 2}, g)}. This bisimulation
will lead to the definition f(x1) ≡ g(x2) which is better than f(x1) ≡ g(x1) because it
indicates that the parameters of the both functions are dummy.

546
Моделирование и анализ информационных систем. Т. 25, №5 (2018)

Modeling and Analysis of Information Systems. Vol. 25, No 5 (2018)

3.3. Performance tricks and limitations

The described algorithm is quite inefficient if implemented directly, so in practice it is
important to apply some tricks.

• The algorithm was described in a modular way: first enumerate prebisimulations,
then try to convert them to bisimulations. In practice it is much more efficient to
filter out classes of prebisimulations which cannot be converted to bisimulations
before they are fully constructed. To do this we need to add a parameter to the
function prebisimulations describing the relationship between variables we have in-
ferred so far from the parent pairs of definitions and check if it does not contradict
the information we can infer from the pair of definitions we are currently consid-
ering to add to the prebisimulation. This will actually perform partial variable
equivalence propagation. Note though that we still need to fully propagate vari-
able equivalence in the end since this trick cannot filter out all prebisimulations
not leading to bisimulations.

• Since we are only interested in bisimulations for which we can prove model unique-
ness, we can also partially check these model uniqueness conditions in the function
prebisimulations . They should be usually checked during folding to one of the
predecessor pairs of functions (e.g. forbid folding if we haven’t passed through a
constructor or a pattern matching).

• For many pairs of functions it is immediately obvious that we cannot find a bisim-
ulation with a unique model growing from this pair of functions, because they just
cannot be equal. This information can be inferred by analyzing certain definitions
of these functions, for example if one function has a definition f(. . .) ≡ C(. . .),
and the other has g(. . .) ≡ D(. . .), then they cannot be equal because of different
top-level constructors. Another way is to run the functions on some data to find
counterexamples to their equivalence.

• Running functions on test data can also help to infer more information about
variable equivalence which can be used in conjunction with the first trick.

• The algorithm enumerates an infinite number of bisimulations, which may be use-
less in practice. Of course, we can limit the depth of our search with kn2m!, where
k is the number of definitions, n is the number of functions and m is the maxi-
mal arity: all deeper bisimulations will be just equivalent to some more shallow
bisimulations. But this is still a big number, so in practice it is better to limit the
number of generated prebisimulations and use some depth-limiting heuristics (like
limiting the factor of loop unrolling). Note that if all the aforementioned filtering
tricks are used, then usually the first found prebisimulation will be a bisimulation
with a unique model.

• Sometimes we visit the same pair of functions several times, so we can memoize
sets of prebisimulations. It is especially important in the case when we want
to find prebisimulations for all pairs of functions. Note though that the set of
prebisimulations depends not only on the pair of functions, but also on the history.

Grechanik S.A.

Polyprograms and polyprogram bisimulation 547

4. Related work

Polyprograms are essentially systems of equations from the Burstall-Darlington frame-
work [3]. Decomposed polyprograms are closer to AST and can be used to implement
equality saturation [8] for functional languages, which indicates that equality saturation
may be seen as another instance of the Burstall-Darlington framework.

Our definition of polyprogram bisimulation is not relational and instead it is based
on the notion of a span, although it can be reformulated in relational form. It should
be noted that polyprogram bisimulation and LTS bisimulation are quite different since
nondeterminism in polyprograms is not related to nondeterminism in LTS. Polyprogram
bisimulation also resembles the notion of term graph bisimilarity [2].

Polyprogram bisimulation is used to implement merging by bisimulation, a general-
ization of the redefinition rule from the Burstall-Darlington framework. Correctness of
merging by bisimulation has to be established for each bisimulation by checking addi-
tional conditions which are not discussed in this paper. These conditions may be based
on termination and productivity conditions [1] as in our previous work, or on the theory
of improvement [7] as in the supercompiler of Ilya Klyuchnikov [11].

Our bisimulation enumeration algorithm is related to finding intersection of two lan-
guages of term equalities [4]. It is also structurally very similar to supercompilation [9].

5. Conclusion

In this paper we have introduced the notions of a polyprogram and a decomposed
polyprogram. A polyprogram is a generalization of a program which admits multiple
definitions of a single function. Decomposed polyprograms are polyprograms whose defi-
nitions are decomposed into definitions of the simplest form by introducing intermediate
functions. Decomposed polyprograms are better suited for reasoning and implementa-
tion.

We have presented several main transformation rules in two styles: in the style of the
Burstall-Darlington framework for ordinary polyprograms and in the style of equality
saturation for decomposed polyprograms. This shows the connection between the two
program transformation methods.

We have also introduced the notion of polyprogram bisimulation, on which merging by
bisimulation is based. We have presented a bisimulation enumeration algorithm, which
enumerates polyprogram bisimulations of a specific form, and proved its correctness.

References
[1] Abel A., Altenkrich T., “A predicative analysis of structural recursion”, Journal of Func-

tional Programming, 12:1 (2002), 1–41.

[2] Ariola Z. M., Klop J. W., Plump D., “Bisimilarity in Term Graph Rewriting”, Information
and Computation, 156 (2000), 2–24.

[3] Burstall R. M., Darlington J., “A transformation system for developing recursive pro-
grams”, Journal of the ACM, 24:1 (1977), 44–67.

[4] Emelyanov P., “Analysis of equality relationships for imperative programs”, CoRR, 2006,
https://arxiv.org/abs/cs/0609092.

 https://arxiv.org/abs/cs/0609092

548
Моделирование и анализ информационных систем. Т. 25, №5 (2018)

Modeling and Analysis of Information Systems. Vol. 25, No 5 (2018)

[5] Grechanik S., “Inductive prover based on equality saturation (extended version)”, Proceed-
ings of the Fourth International Valentin Turchin Workshop on Metacomputation, 2014,
26–53.

[6] Nelson G., Oppen D.C., “Fast decision procedures based on congruence closure”, Journal
of the ACM, 27:2 (1980), 356–364.

[7] Sands D., “Total correctness by local improvement in the transformation of functional
programs”, ACM TOPLAS, 18:2 (1996), 175–234.

[8] Tate R., Stepp M., Tatlock Z., Lerner S., “Equality saturation: a new approach to opti-
mization”, SIGPLAN Not., 44:1 (2009), 264–276.

[9] Turchin V., “The concept of a supercompiler”, ACM TOPLAS, 8:3 (1986), 292–325.

[10] Scott D.S., “Domains for Denotational Semantics”, Automata, Languages, and Program-
ming: 9th Colloquium Aarhus, Denmark, Lecture Notes in Computer Science, 140, 1982,
577–610.

[11] Klyuchnikov I., Romanenko S., “Towards Higher-Level Supercompilation”, Proceedings of
the Second International Workshop on Metacomputation in Russia, 2010, 82–101.

Гречаник С.А., "Полипрограммы и бисимуляция полипрограмм", Моделирование
и анализ информационных систем, 25:5 (2018), 534–548.

DOI: 10.18255/1818-1015-2018-5-534-548

Аннотация. Полипрограмма — это обобщение программы, допускающее множественность
определений одной и той же функции. Подобные объекты возникают в различных системах пре-
образования программ, таких как система Бёрстолла–Дарлингтона и насыщение равенствами. В
данной работе мы вводим понятие полипрограммы на нестрогом функциональном языке первого
порядка. Мы определяем денотационную семантику полипрограмм и описываем некоторые пре-
образования полипрограмм в двух разных стилях: в стиле системы Бёрстолла–Дарлингтона и в
стиле насыщения равенствами. Преобразования в стиле насыщения равенствами осуществляют-
ся над полипрограммами в расчленённой форме, в которой стирается грань между функциями и
выражениями и между подстановкой и раскрытием вызова функции. Расчленённые полипрограм-
мы хорошо подходят для реализации и проведения рассуждений, но трудны для человеческого
восприятия. Мы также вводим понятие бисимуляции полипрограмм, на котором основано преоб-
разование — слияние по бисимуляции, соответствующее доказательству эквивалентности функций
по индукции или коиндукции. Бисимуляция полипрограмм — понятие, вдохновлённое понятием
бисимуляции размеченных систем переходов, но несколько от него отличающееся, поскольку би-
симуляция полипрограмм рассматривает каждое определение как самодостаточное, т.е. функция
полипрограммы задаётся любым своим определением, в то время как в размеченной системе пере-
ходов поведение системы в состоянии определяется всей совокупностью переходов, которые можно
осуществить из этого состояния. Мы предлагаем алгоритм перечисления бисимуляций некоторого
определённого вида. Алгоритм состоит из двух фаз: перечисление пребисимуляций и преобразо-
вание их в бисимуляции. Такое разделение требуется из-за того, что бисимуляции полипрограмм
учитывают возможность перестановки параметров функций. Мы доказываем корректность данно-
го алгоритма, а также формулируем некоторую слабую форму его полноты. Статья публикуется
в авторской редакции.

Ключевые слова: полипрограммы, преобразование программ, насыщение равенствами, биси-
муляция
Об авторах:
Гречаник Сергей Александрович, orcid.org/0000-0001-8575-9689, канд. физ.-мат. наук,
Институт прикладной математики им. М.В. Келдыша РАН,
Миусская пл., 4, г. Москва, 125047 Россия, e-mail: sergei.grechanik@gmail.com

Благодарности:
Работа выполнена при поддержке гранта РФФИ №18-31-00412

	Polyprograms
	Polyprogram semantics

	Polyprogram transformation rules
	Rules in the style of the Burstall-Darlington framework
	Rules in the style of equality saturation

	Polyprogram bisimulation
	The notion of polyprogram bisimulation
	Enumerating bisimulations
	Performance tricks and limitations

	Related work
	Conclusion
	References

