
Моделирование и анализ информационных систем. Т. 25, №5 (2018), с. 549–560
Modeling and Analysis of Information Systems. Vol. 25, No 5 (2018), pp. 549–560

c©Shilov N.V., 2018

DOI: 10.18255/1818-1015-2018-5-549-560

UDC 519.68

Etude on Recursion Elimination

Shilov N.V.

Received September 26, 2018

Abstract. Transformation-based program verification was a very important topic in early years of
theory of programming. Great computer scientists contributed to these studies: John McCarthy, Amir
Pnueli, Donald Knuth ... Many fascinating examples were examined and resulted in recursion elimination
techniques known as tail-recursion and co-recursion. In the paper, we examine just a single example (but
new we hope) of recursion elimination via program manipulations and problem analysis. The recursion
pattern of the example matches descending dynamic programming but is neither tail-recursion nor co-
recursion pattern. Also, the example may be considered from different perspectives: as a transformation
of a descending dynamic programming to ascending one (with a fixed-size static memory), or as a proof
of the functional equivalence between recursive and iterative programs (that can later serve as a case-
study for automatic theorem proving), or just as a fascinating algorithmic puzzle for fun and exercising
in algorithm design, analysis, and verification. The article is published in the author’s wording.

Keywords: recursive and standard program schemata, recursive and iterative programs, functional
equivalence of programs and program schemata, ascending and descending dynamic programming,
recursion elimination, static and dynamic memory, associative and standard arrays
For citation: Shilov N.V., “Etude on Recursion Elimination”, Modeling and Analysis of Information Systems, 25:5 (2018),
549–560.

On the authors:
Nikolay V. Shilov, orcid.org/0000-0001-7515-9647, PhD,
Autonomous noncommercial organization of higher education "Innopolis University"
1 Universitetskaya str., Innopolis, Tatarstan Republic, 420500, Russia, e-mail: shiloviis@mail.ru

1. Introduction

1.1. McCarthy 91 function

We would like to start with a short story about the McCarthy 91 function that follows
(in principle) the corresponding article [21] “From Wikipedia, the free encyclopedia”.

The function M : N → N is a recursive function, defined by John McCarthy1 as a
test case for formal verification within computer science. The function is defined as

M(n) =

{
n− 10, if n > 100;
M(M(n+ 11)), if n ≤ 100.

1Maybe the only Turing Laureate that was employed in Soviet Academy of Sciences,
namely Novosibirsk Computing Center (http://ershov-arc.iis.nsk.su/archive/eaindex.asp?
lang=1&did=20184&_ga=1.44945571.687493938.1476117474, accessed September 26, 2018).

549

http://ershov-arc.iis.nsk.su/archive/eaindex.asp?lang=1&did=20184&_ga=1.44945571.687493938.1476117474
http://ershov-arc.iis.nsk.su/archive/eaindex.asp?lang=1&did=20184&_ga=1.44945571.687493938.1476117474

550
Моделирование и анализ информационных систем. Т. 25, №5 (2018)

Modeling and Analysis of Information Systems. Vol. 25, No 5 (2018)

The results of evaluating the function are given by

M(n) =

{
n− 10, if n > 101;
91, if n ≤ 101. (1)

The function was introduced in papers published by Zohar Manna, Amir Pnueli and
John McCarthy in 1970 [16, 15]. These papers represented early developments towards
the application of formal methods to program verification. The function has a “complex”
recursion pattern (contrasted with simple patterns, such as recurrence, tail-recursion or
co-recursion).

Nevertheless the McCarthy 91 function can be computed by an iterative algorithm
(program). Really, let us consider an auxiliary recursive function Maux : N× N→ N

Maux(n,m) =

n, if m = 0;
Maux(n− 10, m− 1), if n > 100 and m > 0;
Maux(n+ 11, m+ 1), if n < 100 and m > 0.

Then M(n) = Maux(n, 1) because of Maux(n,m) = Mm(n) = M(. . .M︸ ︷︷ ︸
m−times

(n) . . .) for

all m,n ∈ N (assuming that M0 = (λn ∈ N.n)). Since definition of Maux matches
tail-recursion pattern then the McCarthy 91 function can be computed by an iterative
algorithm/program (and even by a very efficient iteration-free algorithm (1)). A formal
derivation of an iterative version from the recursive one was given in [20] in 1980 based
on the use of continuations.

As the field of Formal Methods advanced, this example appeared repetitively in the
research literature. In particular, it is viewed as a “challenge problem” for automated
program verification. Donald Knuth generalized the function to include additional par-
ameters [11], formal proofs (using ACL2 theorem prover) that Knuth’s generalized func-
tion is total can be found in [4, 5].

1.2. Hull Strength Puzzle

We started with a short story about the McCarthy function because we would like
to justify our interest to study of translation of other examples functional/recursive
programs into iterative algorithms/programs in general and the following problem2 that
we call in the sequel Hull Strength Puzzle (HSP).

Let us characterize the mechanical stability (strength) of a hull of a mobile
phone by an integer h that is equal to the height (in meters) safe for the case
to fall down, while height (h + 1) meters is unsafe (i.e. the brick breaks).
You have to determine the stability of hulls of a particular kind by dropping
them from different levels of a tower of H meters. (One may assume that
mechanical stability does not change after a safe fall.) How many times do
you need to drop hulls, if you have 2 hulls in the stock? What is the optimal
number (of droppings) in this case?

2The problem formulation is just a literary version of the formulation of the Dropping Bricks
Problem used in [18, 19], another variant of the problem formulation — Egg dropping puzzle — can be
found in Wikipedia article on Dynamic Programming at https://en.wikipedia.org/wiki/Dynamic_
programming#Egg_dropping_puzzle (accessed September 26, 2018).

https://en.wikipedia.org/wiki/Dynamic_programming#Egg_dropping_puzzle
https://en.wikipedia.org/wiki/Dynamic_programming#Egg_dropping_puzzle

Shilov N.V.
Etude on Recursion Elimination 551

Basically, the question to answer is how to compute the optimal number of droppings
GH , if the height of the tower is H and you have 2 bricks in the stock.

Our purpose is to prove that the problem is solved by the following simple formula

G(H) = argminn :
n× (n+ 1)

2
≥ H (2)

that can be implemented as a trivial non-recursive function (i.e. with iterative body)
Giter(H : N):

1. var n : N;

2. n := 0;

3. while n×(n+1)
2

< H do n := n+ 1;

4. Giter := n.

With a purpose to get the above formula (2), let us start with a recursive solution
for HSP. This problem is an example of optimization problems. Any optimal method to
define the mechanical stability should start with some step (command) that prescribes
to drop the first phone from some particular (but optimal) level h. Hence the following
equality holds for this particular level h:

GH = 1 +max{(h− 1), GH−h},

where (in the right-hand side)

1. 1+ corresponds to the first dropping,

2. (h − 1) corresponds to the case when the hull of the first phone breaks after the
first dropping (and we have to drop the remaining second phone from the levels 1,
2, . . . (h− 1) in a series),

3. GH−h corresponds to the case when the hull of the first phone is safe after the
first dropping (and we have to define stability by dropping the pair of phones from
(H − h) levels in [(h+ 1) . . . H]),

4. ‘max’ corresponds to the worst in two cases above.

Since the particular value h is optimal, and optimality means minimality, the above
equality transforms to the following one:

GH = min
1≤h≤H

(1 + max{(h− 1), GH−h}) = 1 + min
1≤h≤H

max{(h− 1), GH−h}.

Besides, we can add one obvious equality G0 = 0.
Remark that the sequence of integers G0, G1, ... GH , ... that meet these two equalities

is unique since G0 is defined explicitly, G1 is defined by G0, G2 is defined by G0 and G1,
GH is defined by G0, G1, ... GH−1. Hence it is possible to move from the sequence G0,

552
Моделирование и анализ информационных систем. Т. 25, №5 (2018)

Modeling and Analysis of Information Systems. Vol. 25, No 5 (2018)

G1, ... GH , ..., to a function G : N → N that maps every natural x to Gx and satisfies
the following functional equation for the objective function G:

G(x) = if x = 0 then 0 else 1 + min
1≤h≤x

max{(h− 1), G(x− h)}. (3)

This equation has a unique solution as it follows from the uniqueness of the sequence
G0, G1, ... GH , ... Let us summarize the above discussion as the following proposition.

Proposition 1. Functional equation (3) has unique solution in NN.

Moreover we can go further: the equation (3) can be adopted as a recursive definition
of a function, i.e. a recursive algorithm presented in a functional pseudo-code.

1.3. A Special Case of Dynamic Programming

Dynamic Programming was introduced by Richard Bellman in the 1950s [2] to tackle
optimal planning problems. At this time, the noun programming had nothing in common
with more recent computer programming and meant planning (compare: linear prog-
ramming). The adjective dynamic points out that Dynamic Programming is related
to a change of state (compare: dynamic logic, dynamic system). Bellman equation is
a recursive functional equality for the objective function that expresses the optimal
solution at the “current” state in terms of optimal solutions at next (changed) states.
It formalizes a so-called Bellman Principle of Optimality : an optimal program (or plan)
remains optimal at every stage.

After analysis of Bellman equations for particular problems [6] several versions of
a (recursive template for/of) (descending) dynamic programming were suggested and
examined. In the present paper we use the most recent and general one [19]:

G(x) = if p(x) then f(x) else g

(
x,
{
hi
(
x,G(ti(x))

)
, i ∈ [1..n(x)]

})
. (4)

We consider the template as a recursive program scheme [9, 12, 17], i.e. a recursive control
flow structure with uninterpreted symbols :

• G is the main functional symbol representing (after interpretation of base function-
al and predicate symbol) the objective function G : X → Y for some X and Y ;

• p is a basic predicate symbol representing (after interpretation) some known3

predicate p ⊆ X;

• f is a basic functional symbol representing (after interpretation) some known3

function f : X → Y ;

• g is a basic functional symbol representing (after interpretation) some known3

function g : X × Z∗ → X for some appropriate Z (with a variable arity n(x) :
X → N);

3 i.e. that we know how to compute

Shilov N.V.
Etude on Recursion Elimination 553

• all hi and ti (i ∈ [1..n(x)]) are basic functional symbols representing (after inter-
pretation) some known3 function hi : X × Y → Z, ti : X → X (i ∈ [1..n(x)]).

In the sequel do not make an explicit distinction in notation for symbols and interpreted
symbols but just verbal distinction by saying, for example, symbol g and function g.

Equation (3) for Hull Strength Puzzle is a particular example of functional equation
that matches the recursive template for descending dynamic programming (4). In the
case we have:

• predicate λx.(x = 0) is interpretation for p,

• constant function λx.0 is interpretation for f ,

• identical function λx.x is interpretation for the arity n,

• for every i ∈ [1..n(x)], function λx.(x− i) is interpretation for ti,

• for every i ∈ [1..n(x)], function λt.max{(i− 1), t} is interpretation for hi,

• function λx.λw1 . . . λwn.(min1≤i≤xwi) is interpretation for g.

A natural question arises: maybe there exists a standard scheme [9, 12, 17] (i.e.
a flowchart with uninterpreted predicate and functional symbols instead of predicate
and functions) that is functionally equivalent to recursive scheme (4)? Unfortunately,
in general case the answer is negative according to the following proposition proved by
M.S. Paterson and C.T. Hewitt [12, 17].

Proposition 2. The following special case of the recursive template of descending dyn-
amic programming

F (x) = if p(x) then x else f(F (g(x)), F (h(x)))

is not equivalent to any standard program scheme (with fix-size static memory).

This proposition does not mean that (potentially) unbounded memory (e.g. system
stack or dynamic heap) is always required; it just says that for some interpretations of
uninterpreted symbols p, f , g and h the size of required memory depends on the input
data. But if p, f , g and h are interpreted, it may happen that function F can be computed
by an iterative program without unbounded memory. For example, Fibonacci numbers

Fib(n) = if (n = 0 or n = 1) then 1 else F ib(n− 2) + Fib(n− 1)

matches the pattern of scheme in the above proposition 2, but just three integer variables
suffice to compute it by an iterative program.

Thus proposition 2 rules out an opportunity to get iterative solution for Hull Strength
Puzzle by specialization [8, 10] of a standard program scheme equivalent to the recursive
scheme (4). But this proposition does not prohibit existence of an iterative algorithm for
HSP that uses interpreted functions and predicates.

554
Моделирование и анализ информационных систем. Т. 25, №5 (2018)

Modeling and Analysis of Information Systems. Vol. 25, No 5 (2018)

2. Iterative Algorithm for HSP

2.1. Toward Iterative Algorithm

Let us present some (not very formal) derivation of the formula (2) for Hull Strength
Puzzle and start with a look at Fig. 1 that depicts an initial part of the graph of G
computed according to (3). One can observe that

(monotonicity): G is a non-decreasing function,

(jump property): it has no jumps greater 1.

Fig. 1. First values of the function G

Basically these monotonicity property and jump property follow from semantics of
the function G as a solution for HSP, but we do not know how to prove them formally
from the equation (3).

Then let us proceed symbolically G(x) according to recursive algorithm (3):

G(x) = 1 + min1≤h≤x max{(h− 1), G(x− h)} =

= 1 + min
{
max{0, G(x− 1)}, max{1, G(x− 2)},

............................
max{(y − 2), G(x− y − 1)},

max{(y − 1), G(x− y)},
max{(y, G(x− y + 1)},

............................
max{(x− 2), G(1)}, max{(x− 1), G(0)}

}
where line in bold max{(y − 1), G(x− y)} corresponds to the last value h ∈ [1..x] such
that (h− 1) ≤ G(x− h). Due to the monotonicity property we have

G(x) = 1 +G(x− y). (5)

Due to monotonicity and jump properties we have[
either G(x− y) = y
or G(x− y) = (y − 1)

;

Shilov N.V.
Etude on Recursion Elimination 555

let us accept the late option and rule out the former (but we can not prove why we may
do it):

G(x− y) = (y − 1). (6)

Now, for the technical convenience, let a be (x− y), b — (y− 1); then x = (a+ b+1)
and (5) and (6) lead to the equality

G(a) = b inplies G(a+ b+ 1) = (b+ 1). (7)

Together with another equality G(0) = 0 it leads to the following equality (that can be
proved by induction)

G(
h=n∑
h=1

h) = n. (8)

2.2. An Optimal Procedure for Mechanical Strength

Formula (8) leads also to the following procedure Strength(Hight : N) to define
mechanical strength of the hull using 2 identical mobile phones (named the first and
the second in the sequel):

1. var n, step, Current, Next : N;

2. let n := argminn : n×(n+1)
2
≥ H;

3. let step := n and Current := 0;

4. dropping the first phone:
while Current < Hight and step > 0 do

(a) let Next := min{Hight, (Current+ step)}
and drop the first phone from the Next level;

(b) if the drop was unsafe (i.e. the hull of the first phone breaks)
then break the loop and go to 5 (dropping the second phone);

(c) let Current := Next and step := (step− 1);

5. dropping the second phone:
let Current := (Current+ 1);

6. while Current < Next do

(a) drop the second phone from the Current level;

(b) if the drop was unsafe (i.e. the hull of the second phone breaks)
then break the loop and go to 7 (report the strength);

(c) let Current := (Current+ 1);

7. report the strength: (Current− 1).

556
Моделирование и анализ информационных систем. Т. 25, №5 (2018)

Modeling and Analysis of Information Systems. Vol. 25, No 5 (2018)

To explain the idea of the procedure Strength(H) (where H ∈ N), let us assume that
the height of the tower H is exactly the sum of an arithmetic progression n, (n − 1),
... (2), 1. Then the procedure divides the tower onto n layers of heights step1 = n,
step2 = (n− 1), ... step(n−1) = 2 and stepn = 1. (For example, in the left part of Fig. 2
one can see a tower of hight 10 divided on 4 layers of heights 4, 3, 2 and 1.)

The first loop in the procedure prescribes to drop the first phone in a sequence (while
it is safe) from the (top of) layers at levels n,

(
n+(n− 1)

)
,
((
n+(n− 1)

)
+(n− 2)

)
, ...

until it breaks after dropping from the top of some layer k ≥ 1 from the level
(
. . .
((
n+

(n − 1)
)
+ (n − 2)

)
· · · + (n − (k − 1))

)
. (In the exercise of the procedure in the right

part of Fig. 2 k = 2.)
The second loop in the procedure prescribes to use the second phone moving one by

one (while the phone is safe) all levels from
(
. . .
((
n+ (n− 1)

)
+ (n− 2)

)
· · ·+ 1)

)
to(

. . .
((
n + (n− 1)

)
+ (n− 2)

)
· · · + (n− (k − 2))

)
of the layer k ≥ 1 (from the top of

which the first phone fell down and broke). (In the exercise of the procedure in the right
part of Fig. 2 two levels — 5 and 6 — were examined.)

The mechanical strength of the hull is the last level from which the second brick was
safely dropped. (In the exercise of the procedure in the right part of Fig. 2 it is level 5.)

Fig. 2. The layers (left) and an exercise (right) of the procedure Strength for the tower
of height 10 and two bricks (F and S) of mechanical strength 5

Optimality (i.e. the minimality of droppings) of the procedure Strength can be proved
by contradiction. Really, let us assume in contrary that for some H ∈ N another method
gives better number m of droppings in the worst case. Better number this time means
thatm < n = argminn : n×(n+1)

2
≥ H. This method also divide the tower on layers from

top of which the first phone have to be dropped (according to the method): assuming
Level0 = 0,

• the top of the first layer is Level1 = Level0 +m1,

• the top of the second layer is Level2 = (Level1 +m2),

Shilov N.V.
Etude on Recursion Elimination 557

•

• the top of the last layer is Levellast = Levellast−1 +mlast = H.

Remark that last ≤ m, because the first phone can survive all m droppings. Then we
have:

• m1 ≤ m, because the first phone can break after the first dropping;

• m2 ≤ (m− 1), because the first phone can break after the second dropping;

•

• mk ≤ (m − (k − 1)), because the first phone can break after k-th dropping, (1 ≤
k ≤ last);

•

• mlast ≤ (m − (last − 1)), because the first phone can break after the last its
dropping.

Hence we have:

H =
= m1 + m2 + . . . mlast ≤ m + (m− 1) + . . . (m− (last− 1)) ≤

∑k=m
k=1 k ≤
≤
∑k=n

k=1 k;

at the same time (according to choice of n)

n = argminn :
n× (n+ 1)

2
≥ H;

it implies that m = n. — Contradiction with the assumption m < n.
Thus we prove the following proposition.

Proposition 3. Procedure Stregth implements an optimal (in sense of number of dropp-
ings) method to define mechanical strength of bricks using 2 bricks: for any given H ∈ N
it defines mechanical strength dropping bricks

argminn :
n× (n+ 1)

2
≥ H

times at most (and this upper bound is exact).

According to proposition 1, functional equation (3) has unique solution in NN that
computes the optimal number of droppings that is sufficient to define the strength. Due
to this uniqueness and according to proposition 3, this solution is defined by equality
(2.) and G = Giter.

558
Моделирование и анализ информационных систем. Т. 25, №5 (2018)

Modeling and Analysis of Information Systems. Vol. 25, No 5 (2018)

3. Conclusion: Towards Formal Verification

Let us start with a summary of a contribution of this paper.

• The paper discusses a so-called Hull Strength Puzzle (see subsection 1.2.) and how
to eliminate recursion and build an iterative algorithm to solve the problem.

• The problem under study is an instance of so-called learning problem to determine
the function in some family that has certain properties by testing (querying) the
function several times.

• The recursive solution of the problem is a particular instance of dynamic prog-
ramming and matches descending dynamic programming template (see subsection
1.3.).

• Unfortunately, the descending dynamic programming template is not equivalent
to any fixed standard program scheme (see subsection 1.3.) and hence iterative
solution for the problem can not result from a general one by program specialization
[8, 10].

• Also, the recursive solution matches neither tail-recursion nor recurrent pattern
that can be converted into iterative algorithms by well-known techniques [11].

• We derived a candidate for iterative solution for Hull Strength Puzzle by some
program manipulations (basically, loop unfolding) and (not-very sound) semantic
analysis of the unfolded loop (see subsection 2.1.).

• Finally we give (see subsection 2.2.a round-about (and very much) human-oriented
proof of correctness of the iterative algorithm for Hull Strength Puzzle (using an
optimal method to define mechanical strength of the bricks).

Some topics for further studies are presented below (from the nearest to that which
require more time).

• To prove using a proof-assistance (ACL2 most probably) that iterative and recur-
sive definitions for the function G (see subsection 1.2.) are equivalent.

• To investigate how to generalize the pattern of the recursive function and very
particular manipulations used/presented in this paper for recursion elimination in
more general cases.

• Investigate methods to find recursive patterns admitting recursion elimination.
Maybe, machine learning can help to advance in this direction.

• To design and implement a plugin for some IDE (Integrated Development Environ-
ment) that analyses program code to find recursive patterns admitting recursion
elimination and eliminates these cases of recursion at object code level.

Shilov N.V.

Etude on Recursion Elimination 559

We would like to conclude with some references to related research. Transformation
approach to efficient programs is under study for high-level functional programming
languages [7]. Use of integer arrays for efficient recursion elimination for functions of
integer argument was suggested first (up to our knowledge) in [3] and use of auxiliary
(associative) arrays for more general recursion elimination was studied later in [13], and
more broadly in [14].

References
[1] Olver P. J., Applications of Lie groups to differential equations, Springer-Verlag, New York,

1993.

[2] Bellman R., “The theory of dynamic programming”, Bulletin of the American
Mathematical Society, 60 (1954), 503–516.

[3] Berry G., “Bottom-up computation of recursive programs”, RAIRO — Informatique
Théorique et Applications (Theoretical Informatics and Applications), 10:3 (1976), 47–
82.

[4] Cowles J., Computer-Aided reasoning: ACL2 case studies, Kluwer Academic Publishers,
2000.

[5] Cowles J., Gamboa R., “Contributions to the Theory of Tail Recursive Functions”,
2004, http://www.cs.uwyo.edu/~ruben/static/pdf/tailrec.pdf, accessed September
26, 2018.

[6] Cormen T.H. et al., Introduction to Algorithms (3rd ed.), The MIT Press, 2009.

[7] De Moor O., Sittampalam G., “Generic Program Transformation”, Lecture Notes in
Computer Science, 1608, 1999, 116–149.

[8] Ershov A.P., “Mixed computation: potential applications and problems for study”, Theor.
Comp. Sci., 18:1 (1982), 41–67.

[9] Greibach S.A., Theory of Program Structures: Schemes, Semantics, Verification, Lecture
Notes in Computer Science, 36, Springer, 1975.

[10] Jones N.D. et al., Partial Evaluation and Automatic Program Generation, Prentice Hall
International, 1993.

[11] Knuth D.E., Textbook Examples of Recursion, 1991, arXiv:cs/9301113[cs.CC], accessed
September 26, 2018.

[12] Kotov V.E., Sabelfeld V.K., Theoriya Schem Programm, Nauka, 1991.

[13] Liu Y.A., Stoller S.D., “Program optimization using indexed and recursive data
structures”, Proceedings of the 2002 ACM SIGPLAN workshop on Partial evaluation and
semantics-based program manipulation, 2002, 108–118.

[14] Liu Y.A., Systematic Program Design: From Clarity to Efficiency, Cambridge University
Press, 2013.

[15] Manna Z., Pnueli A., “Formalization of Properties of Functional Programs”, Journal of
the ACM, 17:3 (1970), 555–569.

[16] Manna Z., McCarthy J., “Properties of programs and partial function logic”, Machine
Intelligence, 5 (1970), 79–98.

[17] Paterson M. S., Hewitt C.T., “Comperative Schematology”, Proc. of the ACM Conf. on
Concurrent Systems and Parallel Computation, 1970, 119–127.

[18] Shilov N.V., “Unifying Dynamic Programming Design Patterns”, Bulletin of the
Novosibirsk Computing Center (Series: Computer Science), 34 (2012), 135–156.

[19] Shilov N.V., “Algorithm Design Patterns: Program Theory Perspective”, Proc. of Fifth
Int. Valentin Turchin Workshop on Metacomputation (META-2016), 2016, 170–181.

[20] WandM., “Continuation-Based Program Transformation Strategies”, Journal of the ACM,
27:1 (1980), 164–180.

http://www.cs.uwyo.edu/~ruben/static/pdf/tailrec.pdf
arXiv:cs/9301113

560
Моделирование и анализ информационных систем. Т. 25, №5 (2018)

Modeling and Analysis of Information Systems. Vol. 25, No 5 (2018)

[21] “McCarthy 91 function”, https://en.wikipedia.org/wiki/McCarthy_91_function,
accessed September 26, 2018.

Шилов Н.В., "Этюд об устранении рекурсии", Моделирование и анализ информа-
ционных систем, 25:5 (2018), 549–560.

DOI: 10.18255/1818-1015-2018-5-549-560

Аннотация. Трансформационный подход к верификации программ был очень популярной
темой исследований в первые десятилетия теории программирования. Многие выдающиеся пионе-
ры теории программирования внесли свой вклад в разработку данного направления исследований:
Джон Маккарти, Амир Пнуели, Дональд Кнут ... Много интересных примеров трансформацион-
ного подхода было тщательно изучено, что привело к методам устранения рекурсии, известным
как хвостовая рекурсия и как ко-рекурсия. В данной работе мы подробно исследуем (мы надеем-
ся, новый) пример устранения рекурсии, основанный на трансформациях программы и анализе
задачи, решаемой этой программой. Наш пример является частным случаем нисходящего дина-
мического программирования, но не является ни примером хвостовой рекурсии, ни кo-рекурсии.
Этот пример можно рассмотреть с разных точек зрения: как пример преобразования нисходящего
динамического программирования к восходящему (с использованием только статической памяти
фиксированного размера), или как доказательство функциональной эквивалентности между ре-
курсивной и итеративной программами (которое в дальнейшем может послужить примером для
автоматического доказательства), или как захватывающую алгоритмическую головоломку либо
задачу дизайна, анализа и верификации алгоритмов. Статья публикуется в авторской редакции.

Ключевые слова: рекурсивные и стандартные схемы программ, рекурсивные и итеративные
программы, функциональная эквивалентность программ и схем программ, восходящее и нисходя-
щее динамическое программирование, устранение рекурсии, ассоциативные и стандартные масси-
вы, статическая и динамическая память
Об авторах:
Шилов Николай Вячеславович, orcid.org/0000-0001-7515-9647, канд. физ.-мат. наук, доцент,
Автономная некоммерческая организация высшего образования “Университет Иннополис”,
ул. Университетская, 1, г. Иннополис, Республика Татарстан, 420500, Россия, e-mail: shiloviis@mail.ru

https://en.wikipedia.org/wiki/McCarthy_91_function

	Introduction
	McCarthy 91 function
	Hull Strength Puzzle
	A Special Case of Dynamic Programming

	Iterative Algorithm for HSP
	Toward Iterative Algorithm
	An Optimal Procedure for Mechanical Strength

	Conclusion: Towards Formal Verification
	References

