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Abstract. Hypergraphic automata are automata with state sets and input symbol sets being
hypergraphs which are invariant under actions of transition and output functions. Universally attracting
objects of a category of hypergraphic automata are automata Atm(H;, Hs). Here, H; is a state
hypergraph, Hs is classified as an output symbol hypergraph, and S = End H; x Hom(H;, Hs) is an
input symbol semigroup. Such automata are called universal hypergraphic automata. The input symbol
semigroup S of such an automaton Atm(H;, Hy) is an algebra of mappings for such an automaton.
Semigroup properties are interconnected with properties of the algebraic structure of the automaton.
Thus, we can study universal hypergraphic automata with the help of their input symbol semigroups. In
this paper, we investigated a representation problem of universal hypergraphic automata in their input
symbol semigroup. The main result of the current study describes a universal hypergraphic automaton as
a multiple-set algebraic structure canonically constructed from autonomous input automaton symbols.
Such a structure is one of the major tools for proving relatively elementary definability of considered
universal hypergraphic automata in a class of semigroups in order to analyze interrelation of elementary
characteristics of universal hypergraphic automata and their input symbol semigroups. The main result
of the paper is the solution of this problem for universal hypergraphic automata for effective hypergraphs
with p-definable edges. It is an important class of automata because such an algebraic structure variety
includes automata with state sets and output symbol sets represented by projective or affine planes,
along with automata with state sets and output symbol sets divided into equivalence classes. The article
is published in the authors’ wording.
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Introduction

Automata theory is among major computer science branches studying data conversion
devices. Such devices arise in control theory tasks, communication theory problems,

261



Modeauposanue u anaausd ungopmavyuornoz cucmem. T.25 Ne5 (2018)
562 Modeling and Analysis of Information Systems. Vol. 25, No5 (2018)

economic logistics tasks, and others. A mathematical model of data conversion device is
automaton A = (X, 5,Y, 4, \). It is a multiple-set algebra consisting of three sets X, S, Y
and two binary operations 6 : X xS — X, A: X xS — Y. Here X is called a state
set, S is classified as an input symbol set, Y is an output symbol set, J is a transition
function, and A is an output function. The transition function ¢ for each input symbol
s € S defines the state d(z,s), in which the automaton moves from the state x € X
depending on the symbol s. Similarly, the output function A for each input symbol s € S
determines the output symbol A(z, s). The symbol A(z, s) is generated by the automaton
in the state € X depending on the symbol s. Thus, for each fixed input symbol s € §
the automaton A determines the transition function d, : X — X and an output function
As + X — Y by the formulas: §5(z) = d(z,s) and A\s(x) = A(x,s). For the elements
s,t € S, sequential action of transition functions J,, d; defines associative composition of
input symbols s -t so that d,; = d46;.

Therefore, it is often presumed that the input symbol set S is a semigroup interrelated
with the transition function and output function of the automaton A by the following
formulas: §(z,s-t) =6 (0(x,s),t), AMz,s-t) = A (0(x,s),t) for any z € X, s,t € S. We
also denote the semigroup S as Inp(A).

Depending on the specifics of the computer science tasks, we can model data
conversion device as structured automaton. Its state set X and output symbols set Y are
algebraic structures which are invariant under actions of transition and output functions
of such automaton. Examples of such structures include a probability space structure,
a linear space structure, a topological space structure, an ordered set structure, etc.
(see e.g. |1]). Thus, well-known specific computer science tasks lead to the notions of
a probability automaton, a linear automaton, a topological automaton, and an ordered
automaton. Many authors studied such automata (e.g., [1], [2], [3], [4]). In this approach
structured automaton is a focus of scientific interest and current studies of algebraic
automata theory, which is an important universal algebra branch. Also, it has a variety
of applications to combinatorial automata investigations connected with automaton
behavior, analysis and synthesis of automata, as well as to formal language theory,
algorithm theory, and many other computer science branches [1], [5].

In the paper we continued to study this field. We investigated algebraic properties
of hypergraph automata, i.e. automata with state sets and input symbol sets being
hypergraphs [6]. Automata under our study form a wide and important class of automata
because a hypergraph is a generalization of such concepts as graph, set partition, plane
[7] and others. Thus, such algebraic structure variety includes automata with state sets
and output symbol sets represented by planes, along with automata with state sets and
output symbol sets divided into equivalence classes.

The main focus of our research is universal hypergraphic automata. Their
subautomata cover all homomorphic images of hypergraphic automata (Theorem
1). Such universal automaton for any hypergraphs H; and Hs is the automaton
Atm(Hy, Hy) = (Hy, S, Hy,0°, )\°), where S is the input symbol semigroup consisting
of all pairs s = (¢, ) of endomorphisms ¢ of the hypergraph H; and homomorphisms
from the hypergraph H; to the hypergraph Hs, 6°(z, s) = ¢(z) is the transition function
and \°(z,s) = 1(z) is the output function (where z is a vertex of H; and s = (¢, 1) is
an element of S).

According to our previous study, the universal hypergraphic automata are defined
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up to isomorphism by their input symbol semigroups [8]. Additionally, we solved the
problem of concrete characterization of universal automata [9]. The main result of our
current study is Theorem 2. It shows the important property of input symbol semigroup
of universal hypergraphic automaton which allows to construct an isomorphic copy of
the original automaton using input symbol semigroup. Such structure is one of the
major tools for proving relatively elementary definability [10] of considered universal
hypergraphic automata in a class of semigroups in order to analyze interrelation of
elementary characteristics of universal hypergraphic automata and their input symbol
semigroups.

The main result of the paper was announced at X International Conference "Dicsrete
Models in Control Systems Theory".

The authors would like to thank the reviewer for his constructive comments on the

paper.

1. Hypergraphic automata

According to A.Bretto [6], a hypergraph is an algebraic system H = (X, L), where X is
a nonempty vertex set and L is a family of subsets of the set X called hypergraph edges
(or hyperedges). A subset Y C X is said to be bounded if Y C [ for some [ € L, and
Y is said to be unbounded otherwise. If hypergraph vertices are incident to some edge,
they are called adjacent vertices. The hypergraph is said to be an effective hypergraph
if any vertex is incident to some edge of such hypergraph.

Let p be some natural number. The hypergraph H is a hypergraph with p-definable
edges if every edge of such hypergraph contains at least p+ 1 vertices and, any p vertices
of such hypergraph are incident to no more than one edge.

For example, if we consider planes [7| as hypergraphs with plane points as vertices
and plane lines as edges, then any projective plane and any affine plane containing
more than 4 points are effective hypergraps with 2-definable edges. Additionally, weak
hypergraps studied by A.Molchanov [11] are effective hypergraphs with p-definable edges.
Besides, hypergraphs with edges which form partitions of vertex set into equivalence
classes containing at least p + 1 vertices are also effective hypergraphs with p-definable
edges.

In additon to such known examples, there are a lot of non-trivial effective hypergraps
with p-definable edges for any natural p.

Example 1. The hypergraph H = (X, L) with the vertex set X = {1,2,3,4,5,6,7,8}
and the edges set L = {{1,2,3,4},{1,5,6,7},{1,2,5,8}} is an effective hypergraph with
3-definable edges(Fig. 1).

Let Hy = (X, Lx), Hy = (Y, Ly) be any hypergraphs. A homomorphism from H; to
H, is a mapping ¢ of the set X to the set Y such that adjacent vertices of the hypergraph
H, are mapped to adjacent vertices of the hypergraph Hs, i.e. the following condition is
satisfied

(VI € Lx)3l' € Ly)(p(l) C 1),

Besides, for any [ € Ly any mapping ¢ : X — [ is a homomorphism from H; to H.
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Fig. 1. The effective hypergraph with 3— definable edges H

The set of all homomorphisms from a hypergraph H; to a hypergraph H, is denoted
by Hom(H;, Hs). A homomorphism from H = (X, L) to itself is called an endomorphism
of H. The set of all endomorphisms of any hypergraph H under the composition operation
forms the semigroup End H. For hypergraphs Hy = (X, Ly ), Hy = (Y, Ly) by S(H;, Hs)
denote the semigroup End H; x Hom(H;, Hy) with binary operation defined by the rule
[1]: (0, ) (@1, ¥1) = (1, i) for pairs (¢, ), (¢1,¢1) € End Hy x Hom(H;, H).

From the algebraic point of view an effective hypergraph with p-definable edges H =
(X, L) is an algebraic system H = (X, L, p) consisting of two sets X, L and a binary
relation p C X x L, which is defined by the formula (z,l) € p <= 1z € | (where
z € X,l € L) and fulfills the conditions:

) (Vee X))@ el)((x)enp),
(T2) (M eL)(@ey, 2 apn € X)( N\ w#tzn N (1) €p),

1<izj<p+1 1<i<p+1

(T3)(Vay, 29, ..oy 7 € X)( /\ z; #x; = (Vi,r)( /\ ((xi, 1) € pA (z4,7) € p)) =
1<i#j<p 1<i<p
=r=1)).

An isomorphism of such system Hy, = (X, Lx, p), Ho = (Y, Ly, p') is an ordered pair
m = (p, 1) of bijections ¢ : X — Y, ¢ : Lx — Ly preserving system relations, i.e. for
any € X, € Lx the condition (z,1) € p <= (¢(x),¥(l)) € p’ holds.
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An automaton A = (X, S,Y,d,\) is a hypergraphic automaton if state set X and
output symbol set Y are such hypergraphs Hy = (X, Lx) and Hy = (Y, Ly ) respectively
that for every fixed input symbol s € S the transformation 6, : X — X is an
endomorphism of H; and the mapping A; : X — Y is a homomorphism from H;
to Hs. Such automata is also denoted as A = (Hy, S, Hs, 0, \).

An input symbol a € S of automata A = (X, S,Y,d,\) is called autonomous if its
action is independent of the automaton state, i.e. there is such automaton state, denoted
by a1, and such output automaton symbol, denoted by as, that d(z,a) = a1, A(z,a) = ay
for all automaton states x € X.

Let Hy = (X, Lx), Hs, H}, H) be arbitrary hypergraphs, A = (Hy,S, Hs,0,\),
A" = (Hy, S, H, ', N) be hypergraphic automata. A homomorphism from A to A’ is an
ordered triple § = (m,7,m2) of hypergraph homomorphisms 7 = (p1,v1) : H1 — Hj,
T = (p2,%9) : Hy — H} and a semigroup homomorphism v : S — S’ preserving
transition functions and output functions of the automata, i.e. the formulas

p1(0(x,5)) = 0" (1(2),7(5)) 02 (A, 5)) = X (¢1(),7(5))

hold for any x € X,s € S. If m,m,y are isomorphisms, then 6 is called an
isomorphism of hypergraphic automata A and A’.

The important example of hypergraphic automaton is an algebraic system
Atm(Hl,Hg) = (Hl,S(Hl,H2)7H2,507A0>, where H1 = (X,Lx)7 H2 = (Y,Ly) are
some hypergraphs and for any =z € X, (p,v) € S(Hy, Hy) the conditions hold:
0°(x, (¢, ) = @(x), X(z, (p,9)) = ().

For a set X, let Ax denote the identity transformation of X.

Theorem 1. For any hypergraphic automaton A = (Hy, S, Hs, 0, \) with state hypergraph
H, = (X, Lx) and output symbol hypergraph Hy = (Y, Ly) there is such homomorphism
7w S — S(Hy, Hy) that ordered triple v = (Ax, 7, Ay) is a homomorphism from the
automaton A to the automaton Atm(H,, Hy).

Proof. By definition of hypergraphic automaton A = (Hy, S, Hy,d,\), for any s € S
the transformation §, : X — X is an endomorphism of the hypergraph H; and the
mapping A; : X — Y is a homomorphism from the hypergraph H; to the hypergraph
H,. Thus, (05, As) € S(Hy, Hs) and we can define a mapping 7 : S — S(H;, Hy) by
the following rule: 7(s) = (ds, As) for every s € S. In accordance with the conditions of
interrelation between the input symbol semigroup S and the transition function § and
the output function A of the automaton A, for every s,t € S the equalities hold:

T(5 1) = 8oty Aot) = (8500, GN) = (84, As) (G2, Ne) = () (2).

Hence, the mapping 7 is a homomorphism from the semigroup S to the semigroup
S(Hy, Hs). We prove that ordered triple v = (Ax, 7, Ay) is a homomorphism from the
automaton A to the automaton Atm(H;, Hy). It is easy to show that for any state x € X
of the automaton A and any input symbol s € S of the automaton the equalities hold:

Ax(0(x,s)) =d(x,s) = ds(x) = 0°(x,7(s)) = 6°(Ax(z),7(s)),

Ay(\(z,5)) = A, 5) = Aylw) = A°(, 7(5)) = X(Axc(z), 7(5))
Thus, « is a homomorphism from A to Atm(Hy, Hs). ]
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Hence, the automaton Atm(Hj, Hs) is a universally attracting object [1] of a
category of hypergraphic automata with the state hypergraph H; and the output symbol
hypergraph H,. Therefore, Atm(H;, Hs) is called a universal hypergraphic automaton
for the hypergraphs Hy, H,.

2. Preliminaries

Now we consider the universal hypergraphic automaton A = Atm(H;, Hy) for some
effective hypergraphs with p-definable edges Hy = (X7, L1) and Hy = (X5, Ls). Let C be
the set of all autonomous input symbols of the automaton A. Define canonical relations
for such automaton:

1) the binary relation £, on C, consisting of such ordered pairs (a, b) of autonomous
input symbols a, b € C, which transform states of the automaton A identically, i.e.
(a,b) €1 <= a; = by;

2) the binary relation €5 on C| consisting of such ordered pairs (a,b) of autonomous
input symbols a,b € C, which generate the same output symbols of the automaton
A, ie. (Cl,b) € ey < ay = by;

3) the binary relation n; on CP, consisting of such ordered pairs (o, 5) of elements
a = (a',a? ...,a) and B = (b4, 0?,...,0P), a',d?,...,a?,b b, ..., 0P € C, that for
every 1 = 1,2 they map states of A to the bounded set {a;,a?,...,al b}, 0?, ..., b}
of Hi7 i.e.

(o, 8) € = {aj,a,...,a? b;, bz, ..., b} is a bounded set of

H; (i=1,2).

Let D;,i = 1,2 denote the set consisting of ordered p-tuples of autonomous input
symbols zt, 22, ..., 2P such that: z¥ # 2} for all 1 <k < j < p and the set {z}, 27, ..., 27}
is a bounded set of H;.

Lemma 1. Let H; = (X1, L), Hy = (Xa, Lo) be effective hypergraps with p-definable
edges. Then the canonical relations of the universal hypergraphic automaton A =
Atm(Hy, Hs) satisfy the conditions:

1) for any state (output symbol, respectively) x of the automaton A there is such
autonomous input symbol of the automaton denoted by x that the automaton A
Jgumps from any state to the state x (outputs symbol x for any state, respectively)
due to T, i.e. the condition Ty = x holds (To = x, respectively);

2)  for each i = 1,2 the relation e; is an equivalence relation on the set C' and the
mapping p; : X; — C/e; defined for x € X; by the formula ¢;(x) = £;(Z) is a
bijection from X; to the factor set C/e;;

3) for each i = 1,2 the restriction of n; to the set D; is a equivalence relation such
that the mapping ; : L; — D;/n; defined for | € L; by the formula ¥;(l) =
m(:;l, a;é, - pr) for arbitrary pairwise distinct vertices x', x2, ..., xP €l is a bijection
from L; to the factor set D;/n;.
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Proof. Because the hypergraphs Hy, H, are effective, i.e. they satisfy the condition I'y,
for any state x and any output symbol y of A constant mappings ¢ : X; — {z} and
¥ : Xy — {y} are the endomorphism of H; and the homomorphism from H; to Ha,
respectively. Then the pair of mappings a = (¢, %) is autonomous input symbol of A
satisfying the conditions: a; = x, as = y. Thus, the statement 1) of the lemma is correct.

The statement 2) of the lemma is obviously true.

Consider the restriction of the relation 7, to the set D;. Let a = (a',d?, ..., aP) be
an arbitrary element of D;. According to the definition of the set D, o € C? and
{ai,a?,...,al'} is a bounded set of H;. Thus, by definition of 7y, the pair (a,a) € n;.
Hence, 1, is a reflexive relation.

For any a,8 € D;, where a = (a',d? ....,a?), B = (b',b% ...,b") for some
a,a?, ....aP b, 62 L0 € C, the condition (a,8) € 7 means that
{ai,a%,...,al,b . ,b]f} is a bounded set of Hj. Thus, {b},b% ....,0% al,a?, ....d}}

is also a bounded set of Hy, i.e. (B,a) € ny. Hence, 1y is a symmetric relation.

To prove transitivity of the relation we consider any «o,8,7v € D,
where a = (da',d?, ...,aP), ﬂ = (bL0%,..,0°), v = (', ...,c’) for some
at,a?, ... aP, bt 0%, . 0P, et 2 € C satisfying the conditions (o, 3),(8,7) € n1.
Thus, the sets {a%,a%,...,al, b%,. SO0, {02, b el 3., f} are bounded sets
of Hy, i.e. there are such edges li,ls € Ly that {al,a?,..,a},b1,0%, ..., 1} C ll,
{b1,0%, ..., 1,0%,01,. &} C Iy, According to the definition of the set Dy, a% # a’,
W #£ b, b # ¢ forall 1 < k < j < p. By definition of a hypergraph with p-
deﬁnable edges any edge of such hypergraph is uniquely determined by any its distinct
p vertices bl, b2, . ,bff, i.e. it satisfies the condition I's. Hence, l; = Iy = [. Thus, the set
{ai,a?, ..., al, cl, 2, ...,&} Clis a bounded set of the hypergraph H;. According to the
definition of the relation 7;, we have («,v) € n;. Hence, the relation 7, is a transitive
relation. Therefore, 7, is an equivalence relation on D;, which defines the factor set
Dy /m.

By definition of a hypergraph with p-definable edges, for each edge [ € L, there are p
distinct vertices z!, 2, ...,2P € X; such that 2!, 22, ..., 2P € [, i.e. the set {z' 2% ..., 2P}
is a bounded set of Hy. As shown above, there are such input symbols 9;1, 9;2, ..., P of the
automaton A that z} = o', 22 = 22, .. 20 = 2P. As 2% # 29,1 < k < j < p, the tuple

o= (:;1, 52, - :gp) is contained in the set D; and defines an equivalence class 7;(«).

Denote 1(l) = 771(;1 22, .. zP). As for any p distinct vertices yhy?, .y €
[, autonomous mput symbols xl x? xP,y y2, ..., yP define adjacent vertices =
xl,x% = mz,...,xl = :1619,y1 = yl,y% = 3., = 9P of H; (the set

{z', 2%, ... 2Pyt y? ..., yP} is a bounded set of H;), the condition (ﬁ,aﬁ,...,ﬁ’) =
(le,yNQ, s gﬁ’) (m1) holds. Thus, the definition of ¥4 () is correct.

Prove that v is a bijection from L to the factor set D;/n;. For any equivalence class
m(at,a?, ...,aP) defined by an ordered set (a',a?, ...,aP) € Dy, we have a',a?,...,aP € C,
ab # a] for all 1 < k < j < p, and the set {al,a?,....,a’} is a bounded set of H;.
Thus, in H; there is such edge | € L; that {a},a?,....,a}} C [. Hence, by definition
P1(1) = mi(al,a?, ..., aP), i.e. the mapping v is a surjection from L; to the factor set
D1/771-

On the other hand, according to the definition of the hypergraph with p-definable
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edges Hp, for any edges [,r € L; satisfying [ # r, there are such vertices
ol w? L aP oyt 2, yP € Xy that o £ 2l yF £y 1< k< <p xt2? . aP €l
vyt %, ..., yP € r, and at least one of vertices y',9?, ...,y? is not contained in /. Then

the ordered sets of autonomous input symbols o = (x!, 22, ..., :c~1’> , B = (le,yN?, ceey y~1’>
satisfy the conditions o, f € Dy and a #Z [(n;) because vertices ;} =l :;% =22 ..., :;’1’ =
P, yi =yl y? = 9% ...,y = yP can not belong to the same edge by definiton of the
hypergraph with p-definable edges H; (the property I's). Hence, the conditions hold:

i) = m (212 @) = (@), a(r) = mi (5197 ?) = m(B), erl) # ).

Therefore, 17 is one-to-one mapping. Thus, 97 is a bijection from the set L; to the factor

set D1/771 .
It is easy to prove in a similar way that the mapping ¢, is a bijection from the set
Ly to the factor set Dy /n9. Henceforth, the statement 3) of the lemma is true. O]

3. Main result

Let A = Atm(H;, Hs) be a universal hypergraphic automaton for some effective
hypergraphs with p-definable edges H; = (Xi,L1) and Hy = (Xs, Ly). We introduce
the following concepts using the automaton canonical relations:

1) for every i = 1,2 define an algebraic system H; = (Yi,fi,ﬁi) with two carrier
sets X; = C'/e;, Li = D;/n; and a binary relation p; C X; x L;, which is defined
for elements a,at, a?, ...,a? € C, a* # a/(g;),1 < k < j < p by the formula:

(gi(a),mi(a',a?,...;aP)) € p; <= {ai,a},a?,...,al} is a bounded set of H;;

g9 Wiy ooy Uy

2) define two mappings 0:X1x8 = X1, A: Xy xS — X, by the formulas for
ae(C,seSs:

0(e1(a),s) =¢e1(a-s), A(ei(a),s) =es(a-s).

Theorem 2. Let A = Atm(H,, Hy) be a universal hypergraphic automaton for some
effective hypergraphs with p-definable edges Hy = (X1, L1) and Hy = (Xo, Ly). Then the
following statements are true:

1) for every i = 1,2 the hypergraph H; is isomorphic to the algebraic system H; =
(X, Li, p;) ;

2) the automaton A = Atm(Hy, Hy) is isomorphic to a hypergraphic automaton A =
(Hl,S, H,,9, X) with the state hypergraph Hy, the input symbol semigroup S =
Inp(A), the output symbol hypergraph H, the transition function 6 : X x S — X,
and the output function X : X1 x S — Xs.

Proof. Consider an algebraic system H; = (Yl,fl,pl) with two basic sets X; =
Cley, L, =D /m and the binary relation p; C X, x Ly, which is defined for elements
a,a*,a?,...,a? € C, a* # d(g;), 1 < k < j < p by the formula :
(e1(a),m(a',a?,...;aP)) € p, <= {ai,aj,a},...,al} is a bounded set of H.
According to the statement 2) of Lemma 1, the mapping ¢; : X; — X defined for
r € X, by the formula o;(z) = £(Z) is a bijection from the set X; to the set X.
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In accordance with the statement 3) of Lemma 1, the mapping ¢, : L, — L; defined
for element | € Ly by the formula i (l) = 771(;1,@, ...,xP) for any distinct vertices
x', 22, ..., 2P € | is a bijection from the set L; to the set L.

Let a vertex x € X is incident to an edge [ € L;. Then for the hypergraph with p-
definable edges H; by the property I's, there are at least p distinct vertices ', 22, ..., 2P €
X, such that z',2?, ..., 2% € . It was already proved that in the automaton A there are
such autonomous input symbols 1, 22, ..., 77, 7 that vl =l 2?2 =22 .. af
Then () = e1(Z), ¥1(l) = m (171,3;2,...,95?’), and {zi,2%, ...,2%, 27} C [. Thus, by
definition of 5, the condition (y1(z), (1)) € p; holds.

On the other hand, let (¢1(x),1:1(l)) € p, for some elements x € X, [ € L.

Then ¢y (x) = 1(T), ¢1(1) = (a1, 22, ..., 2P) for some distinct vertices z!, 22, ..., 2P € |

=aP 1 = x.

and (51@),771(;,9;2, ...,xP)) € p;. According to the definition of the relation 7,, this

condition means that vertices z} = x',2? = 22, ..., 2} = 27,7, = x belongs to the same

edge r of the hypergraph H;. In accordance with definition of an effective hypergraph
with p-definable edges, any edge is uniquely determined by any p vertices !, 22, ..., 2P
(the condition I'3). Thus, [ = r. Therefore, = € [. Hence, m; = (¢1,%1) is an isomorphism
from the hypergraph H; to the algebraic system H;.

It is easy to prove in a similar way that the ordered pair of mappings mo = (g, 15) is
an isomorphism from the hypergraph Hs to the algebraic system H,. Thus, the statement
1) of the theorem is true.

It follows from 1), that the algebraic systems H; = (Yl,fl,ﬁl) ,Hy = (72,32,@)
are effective hypergraphs with p-definable edges and the algebraic system A =
(Fl, S, H,, 9, X) is a hypergraphic automaton for the hypergraphs H;, H,. We denote the
ordered triple (7, Ag,m) by 6 and prove that # is an isomorphism from the universal
hypergraphic automaton A = Atm(H;, H,) to the hypergraphic automaton A. It remains
to prove that the triple 6 preserves transiton functions and output functions of the
automata, i.e. for any x € X, s € S the conditions hold:

Y1 (50{1‘7 S)) = 3(901(17)’ S) P2 ()‘O(xa S)) = X(Spl(x)’ 3) .

For any automaton state z € X; the value z is an autonomous input symbol such
that the automaton jumps to the state x, i.e. the condition z; = z holds. It is easy to see
that for any input symbol s € S the composition 7 - s is an autonomous input symbol of
the automaton A and the automaton jumps to the state §°(z, s) as well as generates the
symbol A\°(z, s) depending on 7 - s, i.e. the conditions hold: (Z - 5), = 6°(z,s), (- 5), =

A°(z, s). Thus, by definition of §°, §°(z,s) = ¥ - s and the equalities hold:

—_—

o1 (°(2,5) = 21 (°(2,5) ) = &1 (F-5) =3 (21 (7)) = 8 (21 (x), ).

Similarly, by definition of A°, A°(z,s) = Z - s and the equalities hold:

2 (N (2,5)) = &3 (W(2,5)) = &3 (7 8) = X1 (3),5) = X g (), 9).

Hence, 0 = (71, Ag, m2) is an isomorphism from the universal hypergraphic automaton
A = Atm(Hy, Hs) to the hypergraphic automaton A. O
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4. Conclusions

The main result of the paper allows us to represent a universal hypergraphic automaton
for effective hypergraphs with p-definable edges as an algebraic structure canonically
constructed in the input symbol semigroup of the automaton. This representation gives us
an effective tool for studying a correlation between of properties of universal hypergraphic
automata and their input symbol semigroups. The major tools of the representation of
a universal hypergraphic automaton in his input symbol semigroup are the canonical
relations of the automaton. We plan to prove that these relations are defined by formulas
of the first order logic in the input symbols semigroups of the automata.

Based on our approach, we will prove the relatively elementary definability [10] of the
class of considered universal hypergraphic automata in the class of all semigroups. It will
allow us to investigate the abstract representation problem for universal hypergraphic
automata, the elementary definability problem of universal hypergraphic automata by
their input symbol semigroup, the algorithmic solvability problem of elementary theories
of universal hypergraphic automata, and others.
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Awnunoranusg. ['uneprpaduaeckuMn aBToMaTaMIi Ha3bIBAIOTCS aBTOMATHI, Y KOTOPBIX MHOYKECTBA CO-
CTOSIHU M BBIXOJAHBIX CUMBOJIOB HAJIEJIEHBI CTPYKTYypPaAMU THIEPIPAdOB, COXPAHATONIAMUC (DYHKITHAMI
TIEPEX0/IOB U BBIXOAHBIMUA (DYHKIMAMU. Y HUBEPCAIbHBIE MPUTIATUBAIONINE O0BHEKTHI B KATETOPUU TaKUX
aBTOMATOB IIpeJcTaBIsiiorTest apromaramu Atm(Hy, Hy) ¢ runeprpadom cocrosiauit Hi, runeprpadom
BBIXOJIHBIX cuMBOJIOB Ho 1 mosyrpynmoit Bxogubix cumposios S = End H; x Hom(Hy, Hy), Koropble
HA3BIBAIOTCS YHUBEPCAJbHBIME Iuneprpadudeckumu apromaramu. s takoro apromara Atm(Hy, Ho)
[TOJIYyTPYIIIA BXOJIHBIX CHMBOJIOB S SIBJISETCSA IMPOU3BOIHOM ajareOpoit oToOpaXkeHuit, CBOMICTBAa KOTOPOit
B3aMMOCBSI3aHbBI CO CBOMCTBaMU ajrebpamdecKkoil CTPYKTYPbI JAaHHOIO aBTOMATa. DTO IIO3BOJISIET U3Y-
qaTh YHUBEPCAJIbHBIE THIEPIpADUIeCKre aBTOMATHI C TIOMOIIHIO UCCETOBAHUSI UX TIOJTYTPYIIT BXOTHBIX
CcUMBOJIOB. B Hacrosiimeit pabore paccMaTpuBaercsl IpobJieMa IIPeJICTaB/IeHNs] YHUBEPCAIbHBIX THIIEp-
rpaduYecKnX aBTOMATOB B UX IMOJIYI'PYIIAaX BXOJIHBIX CUTHAJIOB: OIUCHIBAETCS IIPEJICTABIEHUE YHUBED-
CaJbHOTO TUMEPTPaPUIECKOT0 aBTOMATa B BHE MHOTOCOPTHON aJredpamdecKoil CHCTEMBbI, KaHOHUIe-
CKHU IIOCTPOEHHON M3 aBTOHOMHBIX BXOJHBIX CHUTHAJIOB 3TOIO ABTOMATa. JTa KOHCTPYKIUS SBJISETCS
OJTHUM W3 WHCTPYMEHTOB J0Ka3aTeJIbCTBA OTHOCUTEIHHO IJEMEHTAPHON OMPEeIeTMMOCTH PACCMATPUBA~
€MbIX aBTOMATOB B KJIacCe IOJIyTPYII, KOTOPas MO3BOJISET MPOAHAJU3UPOBATH B3aUMOCBSI3b IJIEMEH-
TapHBIX CBOMCTB TUX AaBTOMATOB U WX IOJYTPYIIT BXOIHBIX CUTHAJOB. OCHOBHOU pe3yabTaT pabdOTHI
JaeT pelreHne 3TON 3aJadn Ui YHUBEPCATbHBIX TUIeprpadUIeCKIX aBTOMATOB HaJ, 9P (OEKTUBHBIMI
runeprpadaMu ¢ p-OupeaeTuMbIMI pedpaMu. JTO JOCTATOYHO IMUPOKMUIT U BECbMa BayKHBIN KJIACC aBTO-
MAaTOB, TaK KaK OH COJEPIKUT, B YJACTHOCTHU, aBTOMATHI, ¥ KOTOPBIX TUIEPrpadbl COCTOSTHUI U BHIXOTHBIX
CHMBOJIOB SIBJISTFOTCS TJIOCKOCTSIMUA (HAIIPUMED, TIPOEKTUBHBIME i abOUHHBIMM) WM pa3OueHusIMU Ha
KJIACCHI HETPUBHAJBHBIX IKBUBaJIeHTHOCTENH. CTaThsl IyOJIMKYeTCsl B aBTOPCKOI PeIaKInn.
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