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Abstract. Hypergraphic automata are automata with state sets and input symbol sets being
hypergraphs which are invariant under actions of transition and output functions. Universally attracting
objects of a category of hypergraphic automata are automata Atm(H1,H2). Here, H1 is a state
hypergraph, H2 is classified as an output symbol hypergraph, and S = EndH1 × Hom(H1,H2) is an
input symbol semigroup. Such automata are called universal hypergraphic automata. The input symbol
semigroup S of such an automaton Atm(H1,H2) is an algebra of mappings for such an automaton.
Semigroup properties are interconnected with properties of the algebraic structure of the automaton.
Thus, we can study universal hypergraphic automata with the help of their input symbol semigroups. In
this paper, we investigated a representation problem of universal hypergraphic automata in their input
symbol semigroup. The main result of the current study describes a universal hypergraphic automaton as
a multiple-set algebraic structure canonically constructed from autonomous input automaton symbols.
Such a structure is one of the major tools for proving relatively elementary definability of considered
universal hypergraphic automata in a class of semigroups in order to analyze interrelation of elementary
characteristics of universal hypergraphic automata and their input symbol semigroups. The main result
of the paper is the solution of this problem for universal hypergraphic automata for effective hypergraphs
with p-definable edges. It is an important class of automata because such an algebraic structure variety
includes automata with state sets and output symbol sets represented by projective or affine planes,
along with automata with state sets and output symbol sets divided into equivalence classes. The article
is published in the authors’ wording.
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Introduction
Automata theory is among major computer science branches studying data conversion
devices. Such devices arise in control theory tasks, communication theory problems,
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economic logistics tasks, and others. A mathematical model of data conversion device is
automaton A = (X,S, Y, δ, λ). It is a multiple-set algebra consisting of three sets X,S, Y
and two binary operations δ : X × S → X, λ : X × S → Y. Here X is called a state
set, S is classified as an input symbol set, Y is an output symbol set, δ is a transition
function, and λ is an output function. The transition function δ for each input symbol
s ∈ S defines the state δ(x, s), in which the automaton moves from the state x ∈ X
depending on the symbol s. Similarly, the output function λ for each input symbol s ∈ S
determines the output symbol λ(x, s). The symbol λ(x, s) is generated by the automaton
in the state x ∈ X depending on the symbol s. Thus, for each fixed input symbol s ∈ S
the automaton A determines the transition function δs : X → X and an output function
λs : X → Y by the formulas: δs(x) = δ(x, s) and λs(x) = λ(x, s). For the elements
s, t ∈ S, sequential action of transition functions δs, δt defines associative composition of
input symbols s · t so that δs·t = δsδt.

Therefore, it is often presumed that the input symbol set S is a semigroup interrelated
with the transition function and output function of the automaton A by the following
formulas: δ(x, s · t) = δ (δ(x, s), t) , λ(x, s · t) = λ (δ(x, s), t) for any x ∈ X, s, t ∈ S. We
also denote the semigroup S as Inp(A).

Depending on the specifics of the computer science tasks, we can model data
conversion device as structured automaton. Its state set X and output symbols set Y are
algebraic structures which are invariant under actions of transition and output functions
of such automaton. Examples of such structures include a probability space structure,
a linear space structure, a topological space structure, an ordered set structure, etc.
(see e.g. [1]). Thus, well-known specific computer science tasks lead to the notions of
a probability automaton, a linear automaton, a topological automaton, and an ordered
automaton. Many authors studied such automata (e.g., [1], [2], [3], [4]). In this approach
structured automaton is a focus of scientific interest and current studies of algebraic
automata theory, which is an important universal algebra branch. Also, it has a variety
of applications to combinatorial automata investigations connected with automaton
behavior, analysis and synthesis of automata, as well as to formal language theory,
algorithm theory, and many other computer science branches [1], [5].

In the paper we continued to study this field. We investigated algebraic properties
of hypergraph automata, i.e. automata with state sets and input symbol sets being
hypergraphs [6]. Automata under our study form a wide and important class of automata
because a hypergraph is a generalization of such concepts as graph, set partition, plane
[7] and others. Thus, such algebraic structure variety includes automata with state sets
and output symbol sets represented by planes, along with automata with state sets and
output symbol sets divided into equivalence classes.

The main focus of our research is universal hypergraphic automata. Their
subautomata cover all homomorphic images of hypergraphic automata (Theorem
1). Such universal automaton for any hypergraphs H1 and H2 is the automaton
Atm(H1, H2) = (H1, S,H2, δ

◦, λ◦), where S is the input symbol semigroup consisting
of all pairs s = (φ, ψ) of endomorphisms φ of the hypergraph H1 and homomorphisms ψ
from the hypergraph H1 to the hypergraph H2, δ◦(x, s) = φ(x) is the transition function
and λ◦(x, s) = ψ(x) is the output function (where x is a vertex of H1 and s = (φ, ψ) is
an element of S).

According to our previous study, the universal hypergraphic automata are defined
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up to isomorphism by their input symbol semigroups [8]. Additionally, we solved the
problem of concrete characterization of universal automata [9]. The main result of our
current study is Theorem 2. It shows the important property of input symbol semigroup
of universal hypergraphic automaton which allows to construct an isomorphic copy of
the original automaton using input symbol semigroup. Such structure is one of the
major tools for proving relatively elementary definability [10] of considered universal
hypergraphic automata in a class of semigroups in order to analyze interrelation of
elementary characteristics of universal hypergraphic automata and their input symbol
semigroups.

The main result of the paper was announced at X International Conference "Dicsrete
Models in Control Systems Theory".

The authors would like to thank the reviewer for his constructive comments on the
paper.

1. Hypergraphic automata

According to A.Bretto [6], a hypergraph is an algebraic system H = (X,L), where X is
a nonempty vertex set and L is a family of subsets of the set X called hypergraph edges
(or hyperedges). A subset Y ⊆ X is said to be bounded if Y ⊆ l for some l ∈ L, and
Y is said to be unbounded otherwise. If hypergraph vertices are incident to some edge,
they are called adjacent vertices. The hypergraph is said to be an effective hypergraph
if any vertex is incident to some edge of such hypergraph.

Let p be some natural number. The hypergraph H is a hypergraph with p-definable
edges if every edge of such hypergraph contains at least p+1 vertices and, any p vertices
of such hypergraph are incident to no more than one edge.

For example, if we consider planes [7] as hypergraphs with plane points as vertices
and plane lines as edges, then any projective plane and any affine plane containing
more than 4 points are effective hypergraps with 2-definable edges. Additionally, weak
hypergraps studied by A.Molchanov [11] are effective hypergraphs with p-definable edges.
Besides, hypergraphs with edges which form partitions of vertex set into equivalence
classes containing at least p + 1 vertices are also effective hypergraphs with p-definable
edges.

In additon to such known examples, there are a lot of non-trivial effective hypergraps
with p-definable edges for any natural p.

Example 1. The hypergraph H = (X,L) with the vertex set X = {1, 2, 3, 4, 5, 6, 7, 8}
and the edges set L = {{1, 2, 3, 4}, {1, 5, 6, 7}, {1, 2, 5, 8}} is an effective hypergraph with
3-definable edges(Fig. 1).

Let H1 = (X,LX), H2 = (Y, LY ) be any hypergraphs. A homomorphism from H1 to
H2 is a mapping φ of the set X to the set Y such that adjacent vertices of the hypergraph
H1 are mapped to adjacent vertices of the hypergraph H2, i.e. the following condition is
satisfied

(∀l ∈ LX)(∃l′ ∈ LY )(φ(l) ⊆ l′).

Besides, for any l ∈ LY any mapping φ : X −→ l is a homomorphism from H1 to H2.
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Fig. 1. The effective hypergraph with 3− definable edges H

The set of all homomorphisms from a hypergraph H1 to a hypergraph H2 is denoted
by Hom(H1, H2). A homomorphism from H = (X,L) to itself is called an endomorphism
ofH. The set of all endomorphisms of any hypergraphH under the composition operation
forms the semigroup EndH. For hypergraphs H1 = (X,LY ), H2 = (Y, LY ) by S(H1, H2)
denote the semigroup EndH1 ×Hom(H1, H2) with binary operation defined by the rule
[1]: (φ, ψ)(φ1, ψ1) = (φφ1, φψ1) for pairs (φ, ψ), (φ1, ψ1) ∈ EndH1 × Hom(H1, H2).

From the algebraic point of view an effective hypergraph with p-definable edges H =
(X,L) is an algebraic system H = (X,L, ρ) consisting of two sets X,L and a binary
relation ρ ⊂ X × L, which is defined by the formula (x, l) ∈ ρ ⇐⇒ x ∈ l (where
x ∈ X, l ∈ L) and fulfills the conditions:

(Γ1) (∀x ∈ X) (∃l ∈ L) ((x, l) ∈ ρ),

(Γ2) (∀l ∈ L) (∃x1, x2, ..., xp+1 ∈ X)(
∧

1≤i ̸=j≤p+1

xi ̸= xj ∧
∧

1≤i≤p+1

(xi, l) ∈ ρ),

(Γ3)(∀x1, x2, ..., xp ∈ X)(
∧

1≤i ̸=j≤p

xi ̸= xj ⇒ (∀l, r)(
∧

1≤i≤p

((xi, l) ∈ ρ ∧ (xi, r) ∈ ρ)) ⇒

⇒ r = l)).

An isomorphism of such system H1 = (X,LX , ρ), H2 = (Y, LY , ρ
′) is an ordered pair

π = (φ, ψ) of bijections φ : X → Y, ψ : LX → LY preserving system relations, i.e. for
any x ∈ X, l ∈ LX the condition (x, l) ∈ ρ ⇐⇒ (φ(x), ψ(l)) ∈ ρ′ holds.
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An automaton A = (X,S, Y, δ, λ) is a hypergraphic automaton if state set X and
output symbol set Y are such hypergraphs H1 = (X,LX) and H2 = (Y, LY ) respectively
that for every fixed input symbol s ∈ S the transformation δs : X −→ X is an
endomorphism of H1 and the mapping λs : X −→ Y is a homomorphism from H1

to H2. Such automata is also denoted as A = (H1, S,H2, δ, λ).
An input symbol a ∈ S of automata A = (X,S, Y, δ, λ) is called autonomous if its

action is independent of the automaton state, i.e. there is such automaton state, denoted
by a1, and such output automaton symbol, denoted by a2, that δ(x, a) = a1, λ(x, a) = a2
for all automaton states x ∈ X.

Let H1 = (X,LX), H2, H
′
1, H

′
2 be arbitrary hypergraphs, A = (H1, S,H2, δ, λ),

A′ = (H ′
1, S

′, H ′
2, δ

′, λ′) be hypergraphic automata. A homomorphism from A to A′ is an
ordered triple θ = (π1, γ, π2) of hypergraph homomorphisms π1 = (φ1, ψ1) : H1 → H ′

1,
π2 = (φ2, ψ2) : H2 → H ′

2 and a semigroup homomorphism γ : S → S ′, preserving
transition functions and output functions of the automata, i.e. the formulas

φ1 (δ(x, s)) = δ′ (φ1(x), γ(s)) , φ2 (λ(x, s)) = λ′ (φ1(x), γ(s))

hold for any x ∈ X, s ∈ S. If π1, π2, γ are isomorphisms, then θ is called an
isomorphism of hypergraphic automata A and A′.

The important example of hypergraphic automaton is an algebraic system
Atm(H1, H2) = (H1, S(H1, H2), H2, δ

◦, λ◦), where H1 = (X,LX), H2 = (Y, LY ) are
some hypergraphs and for any x ∈ X, (φ, ψ) ∈ S(H1, H2) the conditions hold:
δ◦(x, (φ, ψ)) = φ(x), λ◦(x, (φ, ψ)) = ψ(x).

For a set X, let ∆X denote the identity transformation of X.

Theorem 1. For any hypergraphic automaton A = (H1, S,H2, δ, λ) with state hypergraph
H1 = (X,LX) and output symbol hypergraph H2 = (Y, LY ) there is such homomorphism
π : S −→ S(H1, H2) that ordered triple γ = (∆X , π,∆Y ) is a homomorphism from the
automaton A to the automaton Atm(H1, H2).

Proof. By definition of hypergraphic automaton A = (H1, S,H2, δ, λ), for any s ∈ S
the transformation δs : X −→ X is an endomorphism of the hypergraph H1 and the
mapping λs : X −→ Y is a homomorphism from the hypergraph H1 to the hypergraph
H2. Thus, (δs, λs) ∈ S(H1, H2) and we can define a mapping π : S −→ S(H1, H2) by
the following rule: π(s) = (δs, λs) for every s ∈ S. In accordance with the conditions of
interrelation between the input symbol semigroup S and the transition function δ and
the output function λ of the automaton A, for every s, t ∈ S the equalities hold:

π(s · t) = (δs·t, λs·t) = (δsδt, δsλt) = (δs, λs)(δt, λt) = π(s)π(t).

Hence, the mapping π is a homomorphism from the semigroup S to the semigroup
S(H1, H2). We prove that ordered triple γ = (∆X , π,∆Y ) is a homomorphism from the
automaton A to the automaton Atm(H1, H2). It is easy to show that for any state x ∈ X
of the automaton A and any input symbol s ∈ S of the automaton the equalities hold:

∆X(δ(x, s)) = δ(x, s) = δs(x) = δ◦(x, π(s)) = δ◦(∆X(x), π(s)),

∆Y (λ(x, s)) = λ(x, s) = λs(x) = λ◦(x, π(s)) = λ◦(∆X(x), π(s)).

Thus, γ is a homomorphism from A to Atm(H1, H2).
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Hence, the automaton Atm(H1, H2) is a universally attracting object [1] of a
category of hypergraphic automata with the state hypergraph H1 and the output symbol
hypergraph H2. Therefore, Atm(H1, H2) is called a universal hypergraphic automaton
for the hypergraphs H1, H2.

2. Preliminaries
Now we consider the universal hypergraphic automaton A = Atm(H1, H2) for some
effective hypergraphs with p-definable edges H1 = (X1, L1) and H2 = (X2, L2). Let C be
the set of all autonomous input symbols of the automaton A. Define canonical relations
for such automaton:

1) the binary relation ε1 on C, consisting of such ordered pairs (a, b) of autonomous
input symbols a, b ∈ C, which transform states of the automaton A identically, i.e.
(a, b) ∈ ε1 ⇐⇒ a1 = b1;

2) the binary relation ε2 on C, consisting of such ordered pairs (a, b) of autonomous
input symbols a, b ∈ C, which generate the same output symbols of the automaton
A, i.e. (a, b) ∈ ε2 ⇐⇒ a2 = b2;

3) the binary relation ηi on Cp, consisting of such ordered pairs (α, β) of elements
α = (a1, a2, ..., ap) and β = (b1, b2, ..., bp), a1, a2, ..., ap, b1, b2, ..., bp ∈ C, that for
every i = 1, 2 they map states of A to the bounded set {a1i , a2i , ..., a

p
i , b

1
i , b

2
i , ..., b

p
i }

of Hi, i.e.

(α, β) ∈ ηi ⇐⇒ {a1i , a2i , ..., a
p
i , b

1
i , b

2
i , ..., b

p
i } is a bounded set of

Hi (i = 1, 2).

Let Di, i = 1, 2 denote the set consisting of ordered p-tuples of autonomous input
symbols x1, x2, ..., xp such that: xki ̸= xji for all 1 ≤ k < j ≤ p and the set {x1i , x2i , ..., x

p
i }

is a bounded set of Hi.

Lemma 1. Let H1 = (X1, L1), H2 = (X2, L2) be effective hypergraps with p-definable
edges. Then the canonical relations of the universal hypergraphic automaton A =
Atm(H1, H2) satisfy the conditions:

1) for any state (output symbol, respectively) x of the automaton A there is such
autonomous input symbol of the automaton denoted by x̃ that the automaton A
jumps from any state to the state x (outputs symbol x for any state, respectively)
due to x̃, i.e. the condition x̃1 = x holds (x̃2 = x, respectively);

2) for each i = 1, 2 the relation εi is an equivalence relation on the set C and the
mapping φi : Xi → C/εi defined for x ∈ Xi by the formula φi(x) = εi(x̃) is a
bijection from Xi to the factor set C/εi;

3) for each i = 1, 2 the restriction of ηi to the set Di is a equivalence relation such
that the mapping ψi : Li → Di/ηi defined for l ∈ Li by the formula ψi(l) =

ηi(x̃1, x̃2, ..., x̃p) for arbitrary pairwise distinct vertices x1, x2, ..., xp ∈ l is a bijection
from Li to the factor set Di/ηi.
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Proof. Because the hypergraphs H1, H2 are effective, i.e. they satisfy the condition Γ1,
for any state x and any output symbol y of A constant mappings φ : X1 → {x} and
ψ : X1 → {y} are the endomorphism of H1 and the homomorphism from H1 to H2,
respectively. Then the pair of mappings a = (φ, ψ) is autonomous input symbol of A
satisfying the conditions: a1 = x, a2 = y. Thus, the statement 1) of the lemma is correct.

The statement 2) of the lemma is obviously true.
Consider the restriction of the relation η1 to the set D1. Let α = (a1, a2, ..., ap) be

an arbitrary element of D1. According to the definition of the set D1, α ∈ Cp and
{a11, a21, ..., a

p
1} is a bounded set of H1. Thus, by definition of η1, the pair (α, α) ∈ η1.

Hence, η1 is a reflexive relation.
For any α, β ∈ D1, where α = (a1, a2, ..., ap), β = (b1, b2, ..., bp) for some

a1, a2, ..., ap, b1, b2, ..., bp ∈ C, the condition (α, β) ∈ η1 means that
{a11, a21, ..., a

p
1, b

1
1, b

2
1, ..., b

p
1} is a bounded set of H1. Thus, {b11, b21, ..., b

p
1, a

1
1, a

2
1, ..., a

p
1}

is also a bounded set of H1, i.e. (β, α) ∈ η1. Hence, η1 is a symmetric relation.
To prove transitivity of the relation we consider any α, β, γ ∈ D1

where α = (a1, a2, ..., ap), β = (b1, b2, ..., bp), γ = (c1, c2, ..., cp) for some
a1, a2, ..., ap, b1, b2, ..., bp, c1, c2, ..., cp ∈ C satisfying the conditions (α, β), (β, γ) ∈ η1.
Thus, the sets {a11, a21, ..., a

p
1, b

1
1, b

2
1, ..., b

p
1}, {b11, b21, ..., b

p
1, c

1
1, c

2
1, ..., c

p
1} are bounded sets

of H1, i.e. there are such edges l1, l2 ∈ L1 that {a11, a21, ..., a
p
1, b

1
1, b

2
1, ..., b

p
1} ⊆ l1,

{b11, b21, ..., b
p
1, c

1
1, c

2
1, ..., c

p
1} ⊆ l2. According to the definition of the set D1, ak1 ̸= aj1,

bk1 ̸= bj1, c
k
1 ̸= cj1 for all 1 ≤ k < j ≤ p. By definition of a hypergraph with p-

definable edges, any edge of such hypergraph is uniquely determined by any its distinct
p vertices b11, b21, ..., b

p
1, i.e. it satisfies the condition Γ3. Hence, l1 = l2 = l. Thus, the set

{a11, a21, ..., a
p
1, c

1
1, c

2
1, ..., c

p
1} ⊆ l is a bounded set of the hypergraph H1. According to the

definition of the relation η1, we have (α, γ) ∈ η1. Hence, the relation η1 is a transitive
relation. Therefore, η1 is an equivalence relation on D1, which defines the factor set
D1/η1.

By definition of a hypergraph with p-definable edges, for each edge l ∈ L1 there are p
distinct vertices x1, x2, ..., xp ∈ X1 such that x1, x2, ..., xp ∈ l, i.e. the set {x1, x2, ..., xp}
is a bounded set of H1. As shown above, there are such input symbols x̃1, x̃2, ..., x̃p of the
automaton A that x̃11 = x1, x̃21 = x2, ..., x̃p1 = xp. As xk ̸= xj, 1 ≤ k < j ≤ p, the tuple
α =

(
x̃1, x̃2, ..., x̃p

)
is contained in the set D1 and defines an equivalence class η1(α).

Denote ψ1(l) = η1(x̃1, x̃2, ..., x̃p). As for any p distinct vertices y1, y2, ..., yp ∈
l, autonomous input symbols x̃1, x̃2, ..., x̃p, ỹ1, ỹ2, ..., ỹp define adjacent vertices x̃11 =

x1, x̃21 = x2, ..., x̃p1 = xp, ỹ11 = y1, ỹ21 = y2, ..., ỹp1 = yp of H1 (the set
{x1, x2, ..., xp, y1, y2, ..., yp} is a bounded set of H1), the condition

(
x̃1, x̃2, ..., x̃p

)
≡(

ỹ1, ỹ2, ..., ỹp
)
(η1) holds. Thus, the definition of ψ1(l) is correct.

Prove that ψ1 is a bijection from L1 to the factor set D1/η1. For any equivalence class
η1(a

1, a2, ..., ap) defined by an ordered set (a1, a2, ..., ap) ∈ D1, we have a1, a2, ..., ap ∈ C,
ak1 ̸= aj1 for all 1 ≤ k < j ≤ p, and the set {a11, a21, ...., a

p
1} is a bounded set of H1.

Thus, in H1 there is such edge l ∈ L1 that {a11, a21, ...., a
p
1} ⊆ l. Hence, by definition

ψ1(l) = η1(a
1, a2, ..., ap), i.e. the mapping ψ1 is a surjection from L1 to the factor set

D1/η1.
On the other hand, according to the definition of the hypergraph with p-definable
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edges H1, for any edges l, r ∈ L1 satisfying l ̸= r, there are such vertices
x1, x2, ..., xp, y1, y2, ..., yp ∈ X1 that xk ̸= xj, yk ̸= yj, 1 ≤ k < j ≤ p, x1, x2, ..., xp ∈ l,
y1, y2, ..., yp ∈ r, and at least one of vertices y1, y2, ..., yp is not contained in l. Then
the ordered sets of autonomous input symbols α =

(
x̃1, x̃2, ..., x̃p

)
, β =

(
ỹ1, ỹ2, ..., ỹp

)
satisfy the conditions α, β ∈ D1 and α ̸≡ β(η1) because vertices x̃11 = x1, x̃21 = x2, ..., x̃p1 =

xp, ỹ11 = y1, ỹ21 = y2, ..., ỹp1 = yp can not belong to the same edge by definiton of the
hypergraph with p-definable edges H1 (the property Γ3). Hence, the conditions hold:
ψ1(l) = η1

(
x̃1, x̃2, ..., x̃p

)
= η1(α), ψ1(r) = η1

(
ỹ1, ỹ2, ..., ỹp

)
= η1(β), ψ1(l) ̸= ψ1(r).

Therefore, ψ1 is one-to-one mapping. Thus, ψ1 is a bijection from the set L1 to the factor
set D1/η1.

It is easy to prove in a similar way that the mapping ψ2 is a bijection from the set
L2 to the factor set D2/η2. Henceforth, the statement 3) of the lemma is true.

3. Main result
Let A = Atm(H1, H2) be a universal hypergraphic automaton for some effective
hypergraphs with p-definable edges H1 = (X1, L1) and H2 = (X2, L2). We introduce
the following concepts using the automaton canonical relations:

1) for every i = 1, 2 define an algebraic system H i =
(
X i, Li, ρi

)
with two carrier

sets X i = C/εi, Li = Di/ηi and a binary relation ρi ⊂ X i × Li, which is defined
for elements a, a1, a2, ..., ap ∈ C, ak ̸≡ aj(εi), 1 ≤ k < j ≤ p by the formula:

(εi(a), ηi(a
1, a2, ..., ap)) ∈ ρi ⇐⇒ {ai, a1i , a2i , ..., a

p
i } is a bounded set of Hi;

2) define two mappings δ : X1 × S → X1, λ : X1 × S → X2 by the formulas for
a ∈ C, s ∈ S:

δ (ε1(a), s) = ε1(a · s), λ (ε1(a), s) = ε2(a · s).

Theorem 2. Let A = Atm(H1, H2) be a universal hypergraphic automaton for some
effective hypergraphs with p-definable edges H1 = (X1, L1) and H2 = (X2, L2). Then the
following statements are true:

1) for every i = 1, 2 the hypergraph Hi is isomorphic to the algebraic system H i =(
X i, Li, ρi

)
;

2) the automaton A = Atm(H1, H2) is isomorphic to a hypergraphic automaton A =(
H1, S,H2, δ, λ

)
with the state hypergraph H1, the input symbol semigroup S =

Inp(A), the output symbol hypergraph H2, the transition function δ : X1×S → X1,
and the output function λ : X1 × S → X2.

Proof. Consider an algebraic system H1 =
(
X1, L1, ρ1

)
with two basic sets X1 =

C/ε1, L1 = D1/η1 and the binary relation ρ1 ⊂ X1 × L1, which is defined for elements
a, a1, a2, ..., ap ∈ C, ak ̸≡ aj(εi), 1 ≤ k < j ≤ p by the formula :

(ε1(a), η1(a
1, a2, ..., ap)) ∈ ρ1 ⇐⇒ {a1, a11, a21, ..., a

p
1} is a bounded set of H1.

According to the statement 2) of Lemma 1, the mapping φi : X1 → X1 defined for
x ∈ X1 by the formula φ1(x) = ε1(x̃) is a bijection from the set X1 to the set X1.
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In accordance with the statement 3) of Lemma 1, the mapping ψ1 : L1 → L1 defined
for element l ∈ L1 by the formula ψ1(l) = η1(x̃1, x̃2, ..., x̃p) for any distinct vertices
x1, x2, ..., xp ∈ l is a bijection from the set L1 to the set L1.

Let a vertex x ∈ X1 is incident to an edge l ∈ L1. Then for the hypergraph with p-
definable edges H1 by the property Γ2, there are at least p distinct vertices x1, x2, ..., xp ∈
X1 such that x1, x2, ..., xp ∈ l. It was already proved that in the automaton A there are
such autonomous input symbols x̃1, x̃2, ..., x̃p, x̃ that x̃11 = x1, x̃21 = x2, ..., x̃p1 = xp, x̃1 = x.

Then φ1(x) = ε1(x̃), ψ1(l) = η1

(
x̃1, x̃2, ..., x̃p

)
, and {x̃11, x̃21, ..., x̃

p
1, x̃1} ⊆ l. Thus, by

definition of ρ1, the condition (φ1(x), ψ1(l)) ∈ ρ1 holds.
On the other hand, let (φ1(x), ψ1(l)) ∈ ρ1 for some elements x ∈ X1, l ∈ L1.

Then φ1(x) = ε1(x̃), ψ1(l) = η1(x̃1, x̃2, ..., x̃p) for some distinct vertices x1, x2, ..., xp ∈ l

and
(
ε1(x̃), η1(x̃1, x̃2, ..., x̃p)

)
∈ ρ1. According to the definition of the relation ρ1, this

condition means that vertices x̃11 = x1, x̃21 = x2, ..., x̃p1 = xp,x̃1 = x belongs to the same
edge r of the hypergraph H1. In accordance with definition of an effective hypergraph
with p-definable edges, any edge is uniquely determined by any p vertices x1, x2, ..., xp
(the condition Γ3). Thus, l = r. Therefore, x ∈ l. Hence, π1 = (φ1, ψ1) is an isomorphism
from the hypergraph H1 to the algebraic system H1.

It is easy to prove in a similar way that the ordered pair of mappings π2 = (φ2, ψ2) is
an isomorphism from the hypergraphH2 to the algebraic systemH2. Thus, the statement
1) of the theorem is true.

It follows from 1), that the algebraic systems H1 =
(
X1, L1, ρ1

)
, H2 =

(
X2, L2, ρ2

)
are effective hypergraphs with p-definable edges and the algebraic system A =(
H1, S,H2, δ, λ

)
is a hypergraphic automaton for the hypergraphs H1, H2. We denote the

ordered triple (π1,∆S, π2) by θ and prove that θ is an isomorphism from the universal
hypergraphic automaton A = Atm(H1, H2) to the hypergraphic automaton A. It remains
to prove that the triple θ preserves transiton functions and output functions of the
automata, i.e. for any x ∈ X1, s ∈ S the conditions hold:

φ1 (δ
◦(x, s)) = δ (φ1(x), s) , φ2 (λ

◦(x, s)) = λ (φ1(x), s) .

For any automaton state x ∈ X1 the value x̃ is an autonomous input symbol such
that the automaton jumps to the state x, i.e. the condition x̃1 = x holds. It is easy to see
that for any input symbol s ∈ S the composition x̃ · s is an autonomous input symbol of
the automaton A and the automaton jumps to the state δ◦(x, s) as well as generates the
symbol λ◦(x, s) depending on x̃ · s, i.e. the conditions hold: (x̃ · s)1 = δ◦(x, s), (x̃ · s)2 =
λ◦(x, s). Thus, by definition of δ◦, ˜δ◦(x, s) = x̃ · s and the equalities hold:

φ1 (δ
◦(x, s)) = ε1

(
˜δ◦(x, s)

)
= ε1 (x̃ · s) = δ (ε1 (x̃) , s) = δ (φ1(x), s) .

Similarly, by definition of λ◦, λ̃◦(x, s) = x̃ · s and the equalities hold:

φ2 (λ
◦(x, s)) = ε2

(
λ̃◦(x, s)

)
= ε2 (x̃ · s) = λ (ε1 (x̃) , s) = λ (φ1(x), s) .

Hence, θ = (π1,∆S, π2) is an isomorphism from the universal hypergraphic automaton
A = Atm(H1, H2) to the hypergraphic automaton A.
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4. Conclusions
The main result of the paper allows us to represent a universal hypergraphic automaton
for effective hypergraphs with p-definable edges as an algebraic structure canonically
constructed in the input symbol semigroup of the automaton. This representation gives us
an effective tool for studying a correlation between of properties of universal hypergraphic
automata and their input symbol semigroups. The major tools of the representation of
a universal hypergraphic automaton in his input symbol semigroup are the canonical
relations of the automaton. We plan to prove that these relations are defined by formulas
of the first order logic in the input symbols semigroups of the automata.

Based on our approach, we will prove the relatively elementary definability [10] of the
class of considered universal hypergraphic automata in the class of all semigroups. It will
allow us to investigate the abstract representation problem for universal hypergraphic
automata, the elementary definability problem of universal hypergraphic automata by
their input symbol semigroup, the algorithmic solvability problem of elementary theories
of universal hypergraphic automata, and others.
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Аннотация. Гиперграфическими автоматами называются автоматы, у которых множества со-
стояний и выходных символов наделены структурами гиперграфов, сохраняющимися функциями
переходов и выходными функциями. Универсальные притягивающие объекты в категории таких
автоматов представляются автоматами Atm(H1,H2) с гиперграфом состояний H1, гиперграфом
выходных символов H2 и полугруппой входных символов S = EndH1 × Hom(H1,H2), которые
называются универсальными гиперграфическими автоматами. Для такого автомата Atm(H1,H2)
полугруппа входных символов S является производной алгеброй отображений, свойства которой
взаимосвязаны со свойствами алгебраической структуры данного автомата. Это позволяет изу-
чать универсальные гиперграфические автоматы с помощью исследования их полугрупп входных
символов. В настоящей работе рассматривается проблема представления универсальных гипер-
графических автоматов в их полугруппах входных сигналов: описывается представление универ-
сального гиперграфического автомата в виде многосортной алгебраической системы, канониче-
ски построенной из автономных входных сигналов этого автомата. Эта конструкция является
одним из инструментов доказательства относительно элементарной определимости рассматрива-
емых автоматов в классе полугрупп, которая позволяет проанализировать взаимосвязь элемен-
тарных свойств этих автоматов и их полугрупп входных сигналов. Основной результат работы
дает решение этой задачи для универсальных гиперграфических автоматов над эффективными
гиперграфами с p-определимыми ребрами. Это достаточно широкий и весьма важный класс авто-
матов, так как он содержит, в частности, автоматы, у которых гиперграфы состояний и выходных
символов являются плоскостями (например, проективными или аффинными) или разбиениями на
классы нетривиальных эквивалентностей. Статья публикуется в авторской редакции.
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