
Моделирование и анализ информационных систем. Т. 25, №6 (2018), с. 623–636
Modeling and Analysis of Information Systems. Vol. 25, No 6 (2018), pp. 623–636

c©Reznikova S., Rivera V., Lee J.Y., Mazzara M., 2018

DOI: 10.18255/1818-1015-2018-6-623-636

UDC 519.987

Translation from Event-B into Eiffel

Reznikova S., Rivera V., Lee J. Y., Mazzara M.

Received September 10, 2018
Revised October 10, 2018
Accepted November 1, 2018

Abstract. Formal modelling languages play a key role in the development of software: they enable
users to specify functional requirements that serve as documentation as well; they enable users to prove
the correctness of system properties, especially for critical systems. However, there is still an open ques-
tion on how to map formal models to a specific programming language. In order to propose a solution,
this paper presents a source-to-source mapping between Event-B models, a formal modelling language
for reactive systems, and Eiffel programs, an Object Oriented (O-O) programming language. The map-
ping not only generates an actual Eiffel code of the Event-B model, but also translates model properties
as contracts. The contracts follow the Design by Contract principle and are natively supported by the
programming language. The mapping is implemented in the freely available Rodin plug-in EB2Eiffel.
Thus, users can develop systems (i) starting with the modelling of functional requirements (properties)
in Event-B, then (ii) formally proving the correctness of such properties in Rodin and finally (iii) by
using EB2Eiffel to translate the model into Eiffel. In Eiffel, users can extend/customise the implemen-
tation of the model and formally prove it against the initial model. This paper also presents different
Event-B models from the literature to test EB2Eiffel and its limitations. The article is published in the
authors’ wording.

Keywords: stepwise refinement, Design-by-Contract, formal modelling, reactive systems, Event-B,
Eiffel
For citation: Reznikova S., Rivera V., Lee J.Y., Mazzara M., “Translation from Event-B into Eiffel”, Modeling and
Analysis of Information Systems, 25:6 (2018), 623–636.

On the authors:
Sofia Reznikova, orcid.org/0000-0003-4616-2729, undergraduate student
Innopolis University,
1 Universitetskaya St., Innopolis 420500, Russia, e-mail: s.reznikova@innopolis.ru

Victor Rivera, orcid.org/0000-0002-1946-8979, Assistant Professor,
Innopolis University,
1 Universitetskaya St., Innopolis 420500, Russia, e-mail: v.rivera@innopolis.ru

JooYoung Lee, orcid.org/0000-0001-5421-730X, Assistant Professor,
Innopolis University,
1 Universitetskaya St., Innopolis 420500, Russia, e-mail: j.lee@innopolis.ru

Manuel Mazzara, orcid.org/0000-0002-3860-4948, Associate Professor,
Innopolis University,
1 Universitetskaya St., Innopolis 420500, Russia, e-mail: m.mazzara@innopolis.ru

623



624
Моделирование и анализ информационных систем. Т. 25, №6 (2018)

Modeling and Analysis of Information Systems. Vol. 25, No 6 (2018)

Introduction

Modelling methodologies are used in software development to foresee how the resulting
system will behave prior to building it. This stage might reveal hidden errors that can be
handled at a smaller cost. This is of paramount importance since final users of systems
are not aware of the consequences that malfunctioning systems might carry. There are
different approaches to use these modelling methodologies (some are described in [6]),
e.g. top-down and bottom-up approaches: using a top-down approach, one could think
to start developing the system from a very abstract view point towards more concrete
ones; in a bottom-up approach, on the other hand, one might think to start from a more
concrete state of the system then add more functionality to it. The key point on both
approaches is to always prove that properties of the systems hold.

Event-B is a formal modelling language for reactive systems, introduced by Abrial
[1], which allows the modelling of complete systems. It follows the top-down approach by
means of refinements. Event-B allows the creation of abstract systems and the expression
of their properties. One can prove that the system indeed meets the properties then
create a refinement of the system: same system with more details. It has been applied
with success in both research and industrial projects, and in integrated EU projects
aiming at putting together the two dimensions.

On the other side of the spectrum, following a bottom-up approach, one can work
with the Eiffel programming language [8]. In Eiffel, one can create classes that implement
any system. The behaviour of such classes is specified in Eiffel using contracts: pre- and
post-conditions and class invariants. These mechanisms are natively supported by the
language (as opposed to other programming languages). Having contracts, one can then
verify that the implementation is indeed the intended (this can done statically by using
a static verifier like Autoproof), and also one can track the specifications against the
implementation [10]. This paper presents a series of rules to produce Eiffel programs
from Event-B models, bridging both top-down and bottom-up approaches. An excerpt
of the rules was presented elsewhere [15]. We also present a plug-in for Rodin, an IDE
for Event-B, that implements the rules presented, the plug-in receives an Event-B model
as input and produces the corresponding Eiffel classes equipped with contracts.

Several translations have been proposed and implemented that go in the same di-
rection as the work presented on this paper. In [7], Mèry and Singh present the EB2ALL
tool-set that includes a translation from Event-B models to C, C++ and Java. Unlike
our translation, EB2ALL provides support for a small part of Event-B’s syntax, and users
are required to write a final Event-B implementation refinement in the syntax supported
by the tool. The Code Generation tool [4] generates concurrent Java and Ada programs
for a tasking extension of Event-B. Unlike these tools, the work presented here does not
require user’s intervention, while it works on the proper syntax of the Event-B model.
In addition, these tools do not take full advantage of the elements present in the source
language, e.g. invariants. The work presented in this paper, in addition to generating
source code, it generates contracts from the source language, making use of the Design-
by-Contract approach. In [14, 13, 2], authors present a translation from Event-B to Java,
annotating the code with JML (Java Modelling Language) specifications, and [12] shows
its application. The main difference with the work presented here is the target language.
We are translating to Eiffel which natively supports Design-by-Contract. In addition, Eif-



Reznikova S., Rivera V., Lee J.Y., Mazzara M.
Translation from Event-B into Eiffel 625

fel comes with different tools to prove Eiffel code statically (e.g. Autoproof [16]) that fully
supports the language. Another difference is the translation of carrier sets. EventB2Java
translates them as set of integers, hence it does not capture the essence of carrier sets.
We translate carrier sets as user defined datatype.

The paper is structured as follows. Section 1. presents the needed background. Sec-
tion 2. defines the translation rules whilst Section 3. describes their implementation as
a Rodin plug-in. Section 4. shows some evaluations of the plug-in. Finally, Section 5. is
devoted for conclusions, outlining potential improvements and directions for future work.

1. Preliminaries

1.1. Event-B

Event-B is a formal modelling language for reactive systems, introduced by Abrial [1],
which allows the modelling of complete systems. Figure 1 shows the general view of
an Event-B machine and context. Event-B models are composed of contexts and ma-
chines. Contexts define constants (written after constant in context C), uninterpreted
sets (written after set in context C) and their properties (written after axioms in context
C). Machines define variables (written after variables in machineM) and their properties
(expressed as invariants after invariant in machine M), and state transitions expressed
as events (written between events and the last end). The initialisation event gives initial
values to variables.

machine M sees C
variables v
invariants label_inv : I(s, c, v)
events

event initialisation
then A(s, c, v) end

event evt
any x

where
label_guard : G(s, c, v, x)

then
label_action : A(s, c, v, x)

end
end

Context C
constant c
set S
axioms X(s, c)
end

Figure 1. General view of an Event-B machine and its context

An event is composed of guards and actions. The guard (written between keywords
where and then) represents conditions that must hold for the event to be triggered. The
action (written between keywords then and end) gives new values to variables

In Event-B, systems are modelled via a sequence of refinements. First, an abstract
machine is developed and verified to satisfy whatever correctness and safety properties are
desired. Refinement machines are used to add more detail to the abstract machine until



626
Моделирование и анализ информационных систем. Т. 25, №6 (2018)

Modeling and Analysis of Information Systems. Vol. 25, No 6 (2018)

the model is sufficiently concrete for hand or automated translation to code. Refinement
proof obligations are discharged to ensure that each refinement is a faithful model of the
previous machine, so that all machines satisfy the correctness properties of the original.

1.2. Eiffel

Eiffel is an Object-Oriented programming language that natively supports the Design-
by-Contract methodology. The behaviour of classes is specified by equipping them with
contracts. Each routine of the class contains a pre- and post-condition: a client of a rou-
tine needs to guarantee the pre-condition on routine call. In return, the post-condition
of the procedure, on routine exit, holds. The class is also equipped with class invari-
ants. Invariants maintain the consistency of objects. Contracts in Eiffel follow a similar
semantics of Hoare Triples.

Figure 2 depicts an Eiffel class that implements part of a Bank Account. The name of
the class is ACCOUNT and it appears right after the keyword class. In Eiffel, implementers
need to list creation procedures after the keyword create.

class ACCOUNT create make
feature −− Initalisation
make −− Initialise an empty account.
do
balance := 0

ensure
balance_set: balance = 0

end
feature −− Access
balance: INTEGER −− Balance of this account.

feature −− Element change
withdraw (amount: INTEGER) −− Withdraw ‘amount’ from this account.
require
amount_not_negative: amount >= 0
amount_available: amount <= balance

do
balance := balance - amount

ensure
balance_set: balance = old balance - amount

end
invariant balance_not_negative: balance >= 0
end

Figure 2. Eiffel class

In Figure 2, make is a procedure of the class that can be used as a creation proce-
dure. Class ACCOUNT structures its procedures in Initialisation, Access and Element
change, by using the keyword feature. This structure can be use for information hiding
(not discussed here). balance is a class attribute that contains the actual balance of



Reznikova S., Rivera V., Lee J.Y., Mazzara M.
Translation from Event-B into Eiffel 627

the account. It is defined as an integer. Procedures in Eiffel are defined by given them
a name (e.g. withdraw) and its respective arguments. It is followed by a head comment
(which is optional). Procedures are equipped with pre- and post-conditions predicates. In
Eiffel, a predicate is composed of a tag (optional) and a boolean expression. For instance,
the pre-condition for withdraw (after the key work require) imposes the restriction on
callers to provide and argument that is greater than or equal zero and less than or equal
the balance of the account (amount_not_negative and amount_available are tags, iden-
tifiers, and are optionals). If the pre-condition of the procedure is met, the post-condition
(after the key work ensure) holds on procedure exit. In a post-condition, the aid old
refers to the value of an expression on procedure entry. The actions of the procedure are
listed in between the key words do and ensure. The only action of withdraw procedure
is to increase the value of balance by amount. Finally, The invariant is restricting the
possible values for variables.

2. Translation
The translation is done by the aid δ : Event-B → Eiffel. δ takes an Event-B model
and produces Eiffel classes. It is defined as a total function (i.e. →) since any Event-B
model can be translated to Eiffel. It uses two helpers: ξ translates Event-B Expressions
or Predicates to Eiffel, and τ translates the type of Event-B variable to the corresponding
type in Eiffel.

τ(v) = Type ξ(I(s, c, v)) = Inv δ(events e) = E
δ(event initialisation then A(s, c, v) end) = Init

(machine)
δ(machine M sees C

variables v
invariants label_inv : I(s, c, v)
event initialisation then A(s, c, v) end
events e

end) =
class M create initialisation
feature −− Initialisation

Init
feature −− Events

E
feature −− Access

ctx : CONSTANTS
v : Type

invariant
label_inv: Inv

end

Figure 3. machine rule



628
Моделирование и анализ информационных систем. Т. 25, №6 (2018)

Modeling and Analysis of Information Systems. Vol. 25, No 6 (2018)

Rule machine in Figure 3 is a high level translation. It takes an Event-B machine M
and produces an Eiffel class M.

Variables are translated as class attributes in class M. Event-B invariants are trans-
lated to Eiffel invariants. Both, Event-B and Eiffel, have similar semantics for invariants.
Rule context generate an Eiffel class CONSTANT that contains the translation of Event-B
constants and carrier sets defined by the user. Axioms, which restrict the possible values
for constants are translated to invariants of this class. Constants in Event-B are entities
that cannot change their values. They are naturally translated to Eiffel as once variables.

δ(axioms X(s, c)) = X
τ(c) = Type

(context)
δ(Context C

constant c
set S
Axioms X(s, c)

end) =
class CONSTANTS
feature −− Constants

c : Type
−− ‘c’ comment

once
create Type Result

end
invariant

X
end

Carrier sets represent a new type defined by the user. Each carrier set is translated
as an afresh Eiffel class so users are able to use them as types. Rule cset shows the
translation. Parts of the class are omitted due to space. Class EBSET [T] gives an im-
plementation to sets of type T. Class S inherits EBSET [T] due to the nature of carrier
sets in Event-B.

τ(s) = Type
(cset)

δ(Context C
constant c
set S
Axioms X(s, c)

end) =
class S
inherit

EBSET [Type]
. . .
end



Reznikova S., Rivera V., Lee J.Y., Mazzara M.
Translation from Event-B into Eiffel 629

Rule event produces an Eiffel feature given an Event-B event. Parameters of the
event are translated as arguments of the respective feature in Eiffel with its respective
type. In Event-B, an event might be executed only if the guard is true. In Eiffel, the
guard is translated as the precondition of the feature. Hence, the client is now in charge
of meeting the specification before calling the feature. The semantics of the execution
is handle now by the client who wants to execute the feature rather than the system
deciding. The actual execution of the actions still preserve its semantics: execution of
the actions is only possible if the guard is true. In Eiffel, for a client to execute a feature he
needs to meet the guard otherwise a runtime exception will be raised: Contract violation.

Event-B event actions are translated directly to Eiffel statements. In Event-B, the
before-after predicate contains primed and unprimed variables representing the before
and after value of the variables. We translated the primed variable with the Eiffel key
word old. Representing old value of the variable. For simplicity. the rule only takes into
account a single parameter, a single guard and a single action. However, this can be
easily extended.

ξ(G(s, c, v, x)) = G ξ(A(s, c, v, x)) = A
τ(x) = Type

(event)
δ(event evt any x

where label_guard : G(s, c, v, x)
then label_action : A(s, c, v, x)
end) =

evt(x : Type)
−− ’evt’ comment

require
label_guard: G

do
v.assigns(A)

ensure
label_action: v.equals(old A)

end

Rule init below shows the translation of Event-B event initialisation to a creation
procedure in Eiffel. The creation procedure initialises the object containing the constants
definition. It also assigns initial values to variables taken from the initialisation in the
initialisation event. In Eiffel, creation procedures are listed under the keyword create,
as shown in rule machine. The ensure clause shows the translation of the before-after
predicate of the assignment in Event-B.



630
Моделирование и анализ информационных систем. Т. 25, №6 (2018)

Modeling and Analysis of Information Systems. Vol. 25, No 6 (2018)

ξ(A(s, c, v)) = A
(init)

δ(event initialisation
then
label : A(s, c, v)

end) =

initialisation
−− evt comment

do
create ctx
v.assigns(A)

ensure
label: v.is_equal(old A)

end

3. Implementation

Rules presented in previous sections are implemented as a Rodin plug-in. Machines are
translated to Eiffel classes. Event-B Events and variables are features and variables of
the translated class, respectively. Guards and actions are translated as preconditions and
body of the features. Contexts are being translated as class constants. The translation
takes advantage of the embedded Design-by-Contract mechanism defined in Eiffel, for
instance, Machine invariants are naturally translated to class invariants.

Another part of the implementation required translation of the mathematical lan-
guage of Event-B. There are in total 90 symbols denoting different mathematical formu-
las. Some of them exist natively in Eiffel while others had to be implemented.

The implementation was done in several steps: first the structure for the Rodin IDE
plug-in was set-up, then the information about the model was retrieved from the database
and, finally, the resulting elements were translated into Eiffel.

3.1. Event-B and Rodin Structure

The plug-in’s functionality is realized based on extensions and extension points that
define the point of contact between different programs. The package responsible for Rodin
extensions is org.rodinp.core. It provides an interface via which different extensions
can communicate and provide extension points.

Event-B package – org.eventb.core.ast – provides an Abstract Syntax Tree (AST)
of the system modeled in Rodin. This is a tree representation of the syntactic structure
of an Event-B model. A visitor has been implemented to traverse it. It translates the
mathematical notation into Eiffel code step by step.



Reznikova S., Rivera V., Lee J.Y., Mazzara M.
Translation from Event-B into Eiffel 631

3.2. The General Structure of the Tool

The packages included in the tool are plug-in and rodinDB (implementation of the
tool can be found in [11]). The plug-in package contains GenCodeEiffel.java that
is the entry point (defines the order of the translation), and Translator.java that
implements a Visitor (ISimpleVisitor2) that parses the formulas and traverses the
AST. The rodinDB package contains RodinDBElements.java that deals with retrieving
information from the Rodin Database.

Each Rodin project has a set of children of class IRodinElement which also have
IInternalElements in them. Depending on what type the internal elements is, it is pos-
sible to retrieve the information regarding machines and contexts from Rodin database.
The package includes 14 methods that handle this task.

3.3. Traversing the Abstract Syntax Tree

Rodin provides the Abstract Syntax Tree (AST) of an Event-B model. It is then necessary
to implement a Visitor to traverse the AST to translate the model parts into Eiffel.

The next step after retrieving information from the Rodin database is to parse the
received formulas and to organize them in a way suitable for Eiffel translation. The wrap-
per methods dealing with parsing are created for almost each method from the rodinDB
package. The visitor implements parsePredicate(), that parses an Event-B predicate,
parseExpression() that parses an Event-B expression and parseAssignment() that parses
assignments.

As parameters they take a String-representation of a formula and launch the pass
through the AST. The methods in ISimpleVisitor2 are overridden to handle visits
of different branches of the tree such as Atomic Expressions (covers standalone inte-
gers, natural numbers, empty sets, booleans and others), Binary Predicates (implication
and equality), Becomes Equal To (assignment to a variable or a parameter), Associa-
tive Expressions (unions, intersections, backward and forward compositions, addition,
multiplication) and many others. The full set of types is described in [1].

3.4. Translating into Eiffel

As each AST branch for a specific formula is visited, Eiffel code is generated and added
to the eiffelCode Array List that aggregates the translation and then returns it to the
code generator (GenCodeEiffel.java).

An excerpt of the visitor is shown in Figure 4. A free identifier is any variable from a
machine or an event. First the method checks whether the translation is done to retrieve
types or to translate event or machine parameters. Depending on the result, code is
added to different places.



632
Моделирование и анализ информационных систем. Т. 25, №6 (2018)

Modeling and Analysis of Information Systems. Vol. 25, No 6 (2018)

Override
public void visitFreeIdentifier (FreeIdentifier identifierExpression){
if (eiffelType != null){
eiffelType.add (identifierExpression.getName());

}
eiffelCode.add (identifierExpression.getName());

}
}

Figure 4. Free Identifier Translation

4. Evaluation
Several Event-B models were used in the testing phase of the plug-in. This phase also
captures how much and accurate (as without compilation errors in Eiffel) of the Event-
B mathematical language gets translated. Table 1 shows the results for all the tested
models: first column is the Event-B model taken from the literature; the second column
indicates how much code is translated in terms of the language syntax. For instance,
94% of the MIO model is being translated, meaning the model is using Event-B syntax
(6%) that cannot be translated due to the limitations of the tool (discussed later); and
the third column is how much code results in compilation errors in Eiffel.

Table 1. Summary of the results

Model Translated Compiled
Social Event Planner 100% 98%

MIO 94% 88%
Binary Search 100% 92%
Linear Search 100% 100%

Reversing the Array 78% 78%
Sorting the Array 100% 96%
Finding a minimum 94% 94%

Square root 100% 100%

Social Event Planner: This model was used for testing during the implementation
stage. This model is described in more detail in [14]. It is a model for planing social
events. The functionality includes creating events, inviting people to them and setting
up permissions for inviting other people. This model defines its own sets (PERSON and
CONTENTS). They are translated as Eiffel user-defined classes.

An example Event-B event create_account is shown on Figure 5. ANY declares
parameters of the event, WHERE denotes guards (necessaries conditions to hold for the



Reznikova S., Rivera V., Lee J.Y., Mazzara M.
Translation from Event-B into Eiffel 633

event to be triggered) of the event, THEN are the actions of the event. Figure 6 depicts
the output of the plug-in. The output is a translation of Event-B event (in Figure 5) into
Eiffel. There are two require statements corresponding to two guards (from Event-B)
that ensure that the variables belong to the sets they are supposed to. The do statements
assign translated expressions to the variables contents, persons, owner and pages,
initializing them with an appropriate type. In Eiffel, create s a keyword used to create
instances a classes, similar to new in Java or C++.

Class EBSET is a class created specifically for the translation of sets from Event-
B. It inherits most of Eiffel set’s functionality but allows more flexibility. It is part of
eb_math_lang package that also includes natural numbers (EBNAT), integers, ranges
and relations.

ANY
c1
p1

WHERE
grd1 : p1 ∈ PERSON\persons
grd2 : c1 ∈ CONTENTS\contents

THEN
act1 : contents := contents ∪ {c1}
act2 : persons := persons ∪ {p1}
act3 : owner := owner ∪ {c1 7→ p1}
act4 : pages := pages ∪ {c1 7→ p1}

END

Figure 5. create_account event

create_account (p1: PERSON; c1: CONTENTS)
require

grd1: PERSON.difference (persons).has (p1)
grd2: CONTENTS.difference (contents).has (c1)

do
contents.assigns ((contents).union (create {EBSET[CONTENTS]}.singleton

(c1)))
persons.assigns ((persons).union (create { EBSET[PERSON]}.singleton

(p1)))
owner.assigns ((owner).union (create {EBREL[CONTENTS,PERSON]}.vals

(<<(create { EBPAIR[CONTENTS,PERSON]}. make (c1, p1))>>))
pages.assigns ((pages).union (create {EBREL[CONTENTS,PERSON]}.vals

(<<(create {EBPAIR[CONTENTS,PERSON]}. make(c1, p1))>>))
end

Figure 6. Eiffel Code for create_account event



634
Моделирование и анализ информационных систем. Т. 25, №6 (2018)

Modeling and Analysis of Information Systems. Vol. 25, No 6 (2018)

MIO – Bus Transportation System: This model includes several entities: buses,
bus stations, people, doors and sensors. It regulates bus transportation and is described
in [3]. There are six refinements with each adding new entities and concepts. It is an
extensive model with 21 actions in the initialisation event and 15 invariants for the last
refinement.

Binary and Linear Search: These two models represented binary and linear search
algorithms. The former one looks for a number, dividing each subsection into two, and
the latter goes through a set of numbers in a linear way.

The binary search included three events apart from the initialisation (inc[rement],
dec[rement] and found). The model for linear search included a similar found event as
well as progress event that continued to search for the number if the correct one is not
found.

In general, the tool is able to translate 86% of the 90 symbols that can be used with
Event-B. Although the remaining 14% is not implemented yet, it is noted that they occur
rarely in the models.

A common problem for most models (e.g. Social Event Planner, MIO, Binary Search
and Sorting the Array) that results in compilation errors is due to the type translation of
variables. For instance, the Event-B assignment owner := owner ∪ {cmt 7→ owner(rc)}
with a set extension ({}) including more than two expressions poses a problem as the
types of the sets should be included into the Eiffel code before visiting the variable
in the tree. Therefore, instead of a type, Java’s null keyword is returned (as the tool
is written in Java and for Eiffel this is an undefined keyword). This problem occurs
for set extensions (declaring a set between two curly brackets), backward and forward
composition of functions.

If the correct types are included into the Eiffel code manually, the compilation returns
no errors. As Table 1 shows, these types of errors are not very common, e.g. for Social
Event Planner there are only three cases of such statements, for MIO, Binary Search
and Sorting the Array there is only one.

Other models (namely, reversing an array and finding a minimum) require those parts
of the mathematical language that have not been implemented (Bound Declarations and
Bound Identifiers that are used as variables in Quantified Predicates – ∀ and ∃). This is
where most of their errors occur.

The list of Event-B models used in this phase and their translation to Eiffel using
the plug-in can be found in [11].

5. Conclusion

We presented a series of rules to transform an Event-B model to an Eiffel program. The
translation takes full advantage of all elements in the source by translating them as con-
tracts in the target language. Thus, no information on the behaviour of the system is lost.
These rules shows a methodology for software construction that makes use of two differ-
ent approaches. We also presented a Rodin plug-in that implements the translation. The
plug-in enables users to take advantages of Event-B (e.g. refinement) to then translation
to Eiffel, which provides an actual implementation of the model, to take advantages of



Reznikova S., Rivera V., Lee J.Y., Mazzara M.
Translation from Event-B into Eiffel 635

the language (e.g. Design by Contract). The main limitation of the plug-in is that no
proof of soundness has been carried out. This paper shows a proof-of-concept and opens
up a direction to carry out with the proof.

In order to be able to fully automate the translation, type retrieval for variables that
are further down the AST need to be implemented. This corresponds to 14% of the
Event-B mathematical language. One of the challenges is to translate choice from set
(x :∈ S) that arbitrarily chooses a value from the set S and choice by predicate (z :| P )
that arbitrarily chooses values for the variable in z that satisfy the predicate P . For
this, we plan to make use of ProB or Constraint Programming to assign values that
satisfy a predicate. Another direction is related to the translation of Proof Obligations
(POs), mathematical formulas, automatically generated by Rodin, to Eiffel. POs need
to be proven in order to ensure that a machine is correct [5]. They can be proved either
automatically or interactively. By translating Proof Obligations into Specification Drivers
[9] it will be possible to formally verify the translated Eiffel code against its contracts.

Formal modelling belongs to the technical domain to specify functional requirements.
In order to prove correctness of system properties users need to be properly trained and
understand technical aspects of formal models or, at least, of programming languages.
In order to bridge the gap between business perspective and technical perspective, it
would be necessary to provide a more comprehensive modelling framework that is left
for future investigation [17].

References
[1] Abrial J.-R., Modeling in Event-B: System and Software Engineering, Cambridge Univer-

sity Press, New York, 2010.
[2] Cataño N., Rivera V., “EventB2Java: A Code Generator for Event-B”, NASA Formal

Methods. NFM 2016, Lecture Notes in Computer Science, 9690, Springer, Cham, 2016,
166–171.

[3] Cataño N., Rueda C., “Teaching formal methods for the unconquered territory”, Teaching
Formal Methods. TFM 2009, Lecture Notes in Computer Science, 5846, Springer, Berlin,
Heidelberg, 2009, 2–19.

[4] Edmunds A., Butler M., “Tool support for Event-B code generation”, Workshop on Tool
Building in Formal Methods, Wiley and Sons, Quebec, Canada, 2010.

[5] Hallerstede S., “On the purpose of Event-B proof obligations”, Abstract State Machines,
B and Z, Lecture Notes in Computer Science, 5238, Springer, Berlin, Heidelberg, 2008,
125–138.

[6] Mazzara M., “Deriving specifications of dependable systems: toward a method”, 12th Eu-
ropean Workshop on Dependable Computing (EWDC), 2009.

[7] Méry D., Singh N.K., “Automatic code generation from Event-B models”, Proceedings of
the Second Symposium on Information and Communication Technology, SoICT ’11, ACM,
New York, 2011, 179–188.

[8] Meyer B., “Applying "design by contract"”, Computer, 25:10 (1992), 40–51.
[9] Naumchev A., Meyer B., “Complete contracts through specification drivers”, CoRR, 2016,

abs/1602.04007.
[10] Naumchev A., Meyer B., Rivera V., “Unifying requirements and code: An example”, Per-

spectives of System Informatics – 10th International Andrei Ershov Informatics Confer-
ence, PSI 2015, Revised Selected Papers, Kazan and Innopolis, Russia, 2015, 233–244.

[11] Reznikova S., Innopolis thesis, 2018, https://github.com/sonyareznikova/
InnopolisThesis.

https://github.com/sonyareznikova/InnopolisThesis
https://github.com/sonyareznikova/InnopolisThesis


636
Моделирование и анализ информационных систем. Т. 25, №6 (2018)

Modeling and Analysis of Information Systems. Vol. 25, No 6 (2018)

[12] Rivera V., Bhattacharya S., Cataño N., “Undertaking the tokeneer challenge in Event-B”,
2016 IEEE/ACM 4th FME Workshop on Formal Methods in Software Engineering, 2016,
8–14.

[13] Rivera V., Cataño N., “Translating Event-B to JML-specified Java programs”, Proceedings
of the 29th Annual ACM Symposium on Applied Computing, SAC’14, ACM, New York,
2014, 1264–1271.

[14] Rivera V., Cataño N., Wahls T., Rueda C., “Code generation for Event-B”, Int. J. Softw.
Tools Technol. Transf., 19:1 (2017), 31–52.

[15] Rivera V., Lee J.Y., Mazzara M., “Mapping Event-B machines into Eiffel programming
language”, Proceedings of 6th International Conference in Software Engineering for Defence
Applications – SEDA 2018, Rome, Italy, 2018.

[16] Tschannen J. et al., “AutoProof: Autoactive functional verification of object-oriented pro-
grams”, Tools and Algorithms for the Construction and Analysis of Systems. TACAS 2015,
Lecture Notes in Computer Science, 9035, Springer, Berlin, Heidelberg, 2015, 566–580.

[17] Yan Z. et al., “BPMO: semantic business process modeling and WSMO extension”, IEEE
International Conference on Web Services (ICWS 2007), 2007, 1185–1186.

Резникова С., Ривера В., Ли Д.Й., Маццара М., "Перевод моделей Event-B
в Eiffel", Моделирование и анализ информационных систем, 25:6 (2018), 623–636.

DOI: 10.18255/1818-1015-2018-6-623-636

Аннотация. Формальные языки моделирования играют важную роль в разработке про-
граммного обеспечения, так как позволяют пользователям, во-первых, определять функциональ-
ные требования, которые также служат документацией для проекта, а во-вторых, доказывать
корректность свойств систем, что особенно важно для критических систем. Однако не существует
четкого понимания того, как сопоставить формальную модель и определенный язык программиро-
вания. В качестве решения данной проблемы авторы статьи предлагают использовать возможность
source-to-source соответствия между моделями, описанными на языке Event-B (языке моделирова-
ния для реактивных приложений и систем), и программами на объектно-ориентированном языке
программирования Eiffel. Предложенное решение не только автоматически генерирует соответ-
ствующий модели на Event-B код на Eiffel, но также переводит свойства модели в виде контрак-
тов. Контракты соответствуют принципу Design-by-Contract и нативно поддерживаются в Eiffel.
Реализация решения доступна как плагин EB2Eiffel в Rodin (среде разработки для Event-B). Та-
ким образом, пользователи могут разрабатывать различные системы, начиная с моделирования
функциональных требований (свойств) в Event-B, затем формально доказывая корректность этих
свойств в Rodin и, наконец, используя EB2Eiffel для перевода модели на язык программирования.
Используя Eiffel, пользователи могут расширять и модифицировать реализацию модели и дока-
зывать корректность измененной модели относительно ее оригинальной, изначально переведенной
версии. Также в статье описан процесс тестирования EB2Eiffel разными моделями, написанными
на Event-B, и представлены ограничения плагина. Статья публикуется в авторской редакции.

Ключевые слова: пошаговое улучшение систем, Design-by-Contract, формальное моделирова-
ние, реактивные приложения, Event-B, Eiffel
Об авторах:
Резникова Софья, orcid.org/0000-0003-4616-2729, студент-бакалавр, Университет Иннополис,
ул. Университетская, 1, Иннополис 420500, Россия, email: s.reznikova@innopolis.ru

Ривера Виктор, orcid.org/0000-0002-1946-8979, доцент, Университет Иннополис,
ул. Университетская, 1, Иннополис 420500, Россия, email: v.rivera@innopolis.ru

Ли Джу Йонг, orcid.org/0000-0001-5421-730X, доцент, Университет Иннополис,
ул. Университетская, 1, Иннополис 420500, Россия, email: j.lee@innopolis.ru

Маццара Мануэль, orcid.org/0000-0002-3860-4948, профессор, Университет Иннополис,
ул. Университетская, 1, Иннополис 420500, Россия, email: m.mazzara@innopolis.ru


	Preliminaries
	Event-B

	Preliminaries
	Eiffel

	Translation
	Implementation
	Event-B and Rodin Structure

	Implementation
	The General Structure of the Tool
	Traversing the Abstract Syntax Tree
	Translating into Eiffel

	Evaluation
	Conclusion
	References

