УДК 517.928 + 517.929

Уточнение периода решения уравнения импульсного нейрона при постоянном внешнем электрическом воздействии

Корнилов К.В.

Ярославский государственный университет им. П.Г. Демидова

e-mail: 2ec@inbox.ru

получена 5 октября 2009

Ключевые слова: дифференциальные уравнения с запаздыванием, импульсный нейрон, период

Рассмотрена задача вычисления периода решения уравнения, описывающего модель импульсного нейрона при постоянном внешнем электрическом воздействии. Получена более точная оценка периода.

1. Введение

В главе 2 книги [1] рассмотрена модель электрического воздействия на импульсный нейрон и проведены вычисления периода решения уравнения, описывающего модель, для различных видов внешнего воздействия с точностью до o(1). В данной работе будет проведено вычисление периода решения для постоянного внешнего воздействия с точностью до $O(\ln \lambda/\lambda)$, где λ — большой параметр.

2. Описание модели

Приведём описание модели электрического воздействия на импульсный нейрон, предложенное в работе [1].

Поведение импульсного нейрона описывается уравнением

$$\dot{u} = \lambda [-1 - f_{Na}(u) + f_K(u(t-1))]u + g(v(t) - u). \tag{1}$$

Здесь параметр $\lambda\gg 1$, параметр g>0, функция $v(t)\geq 0$ определяет внешнее электрическое воздействие, $f_{Na}(u)$ и $f_K(u)$ — положительные и достаточно гладкие функции, монотонно стремятся к 0 при $u\to\infty$ и

$$f_{Na}(u) \le Cu^{-(1+\varepsilon)}, \ f_K(u) \le Cu^{-(1+\varepsilon)}$$
 (2)

при некотором $\varepsilon > 0$.

Также введём обозначения:

$$\alpha = f_K(0) - f_{Na}(0) - 1 > 0,$$

$$\alpha_1 = f_K(0) - 1 > 0,$$

$$\alpha_2 = f_{Na}(0) + 1 > 0.$$

В качестве начальных условий для уравнения (1) введём класс S_{λ} начальных функций $\varphi(s)$, которые непрерывны на отрезке $s \in [-1,0]$ и удовлетворяют условию:

$$\lambda^{-1} \exp(2\lambda \alpha s) \le \varphi(s) \le \lambda^{-1} \exp(\lambda \alpha s/2). \tag{3}$$

Заметим, что введённые нами начальные условия более сильные, чем начальные условия для уравнения (1) в книге [1].

3. Уточнение периода

В работе [1] показано, что при $v(t) = exp(-\lambda\sigma)$, где $\sigma < \alpha_2$, период решения уравнения (1) равен $\alpha_1 + \sigma/\alpha + 2 + o(1)$. Мы проведём уточнение этого результата с точностью до $O(\ln \lambda/\lambda)$.

Теорема 1. При $v(t) = exp(-\lambda \sigma)$, где $\sigma < \alpha_2$, период решения уравнения (1) равен

$$T = \alpha_1 + \sigma/\alpha + 2 + O(\ln \lambda/\lambda).$$

Доказательство. Исследование уравнения мы будем проводить методом пошагового асимптотического интегрирования. Для этого построим схематический график решения уравнения (1) (рис. 1).

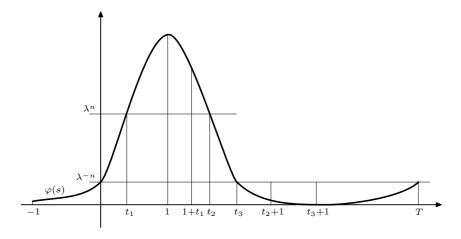


Рис. 1. Схематический график периодического решения уравнения нейрона и разбиение периода на подынтервалы

Здесь t_1 и t_2 ($t_1 < t_2$) обозначают моменты времени, когда $u(t) = \lambda$, а $t_3 > t_2$ — момент времени, когда $u(t) = \lambda^{-1}$. T — период решения уравнения, который мы будем искать.

Для начала докажем вспомогательное утверждение.

Утверждение 1. Для функций $f_{Na}(u)$ и $f_K(u)$ имеют место оценки:

$$f_{Na}(u) = f_K(u) = O(\lambda^{-1})$$
 $npu \ u \ge \lambda,$
 $f_{Na}(u) = f_{Na}(0) + O(\lambda^{-1})$ $npu \ u \le \lambda^{-1},$
 $f_K(u) = f_K(0) + O(\lambda^{-1})$ $npu \ u \le \lambda^{-1}.$

Доказательство. Будем рассматривать только функцию $f_K(u)$, поскольку для $f_{Na}(u)$ все вычисления аналогичны.

Возьмём $u \ge \lambda$. Из оценки (2) получаем

$$f_K(u) \le Cu^{-(1+\varepsilon)} \le C\lambda^{-(1+\varepsilon)} \Rightarrow f_K(u) = O(\lambda^{-1}).$$

Теперь рассмотрим $u \leq \lambda^{-1}$. Воспользуемся разложением Тейлора для $f_K(u)$:

$$f_K(u) = f_K(0) + \dot{f}_K(0)u + O(u^2).$$

Поскольку $u \leq \lambda^{-1}$, и $f_K(u)$ — гладкая функция, получаем $f_K(u) = f_K(0) + O(\lambda^{-1})$.

Утверждение доказано.

Теперь перейдём к пошаговому асимптотическому интегрированию. Список интервалов, которые мы будем рассматривать, приведён в таблице 1.

Номер	Интервал	Нужно найти	Известно
1	$[0, t_1]$	t_1	$u(0) = \lambda^{-1}, \ u(t_1) = \lambda, \ \lambda^{-1} \le u(t) \le \lambda,$
			$u(t-1) = \varphi(t-1)$
2	$[t_1, 1]$	u(1)	$u(t_1) = \lambda, \ u(t) \ge \lambda, \ u(t-1) = \varphi(t-1)$
3	$[1, t_1 + 1]$	$u(t_1+1)$	$u(t) \ge \lambda, \ \lambda^{-1} \le u(t-1) \le \lambda$
4	$[t_1+1,t_2]$	$\mid t_2 \mid$	$u(t_2) = \lambda, \ u(t) \ge \lambda, \ u(t-1) \ge \lambda$
5	$[t_2, t_3]$	t_3	$u(t_2) = \lambda, \ u(t_3) = \lambda^{-1}, \ \lambda^{-1} \le u(t) \le \lambda,$
			$u(t-1) \ge \lambda$
6	$[t_3, t_2 + 1]$	$u(t_2+1)$	$u(t_3) = \lambda^{-1}, \ u(t) \le \lambda^{-1}, \ u(t-1) \ge \lambda$
7	$[t_2+1,t_3+1]$	$u(t_3+1)$	$u(t) \le \lambda^{-1}, \lambda^{-1} \le u(t-1) \le \lambda$
8	$[t_3+1,T]$	T	$u(T) = \lambda^{-1}, \ u(t) \le \lambda^{-1}, \ u(t-1) \le \lambda^{-1}$

Таблица 1. Список интервалов пошагового интегрирования

1. Рассмотрим интервал $[0, t_1]$. На этом интервале нам необходимо найти t_1 с точностью до $O(\ln \lambda/\lambda)$.

На данном промежутке мы имеем

$$\lambda^{-1} \le u(t) \le \lambda,$$

$$u(t-1) = \varphi(t-1) < \lambda^{-1}.$$

Согласно утверждению 1:

$$f_K(u(t-1)) = f_K(0) + O(\lambda^{-1}).$$

Перепишем уравнение (1)

$$\dot{u} = \lambda \left[-1 - f_{Na}(u) + f_K(0) - g/\lambda + \frac{g \exp(-\lambda \sigma)}{\lambda u} + O(\lambda^{-1}) \right] u.$$

Поскольку на данном промежутке $u(t) \ge \lambda^{-1}$, слагаемое $g \exp(-\lambda \sigma)/\lambda u$ мы можем включить в $O(\lambda^{-1})$.

В итоге получаем уравнение

$$\dot{u} = \lambda [\alpha_1 - f_{Na}(u) + O(\lambda^{-1})]u.$$

Поскольку $u(0) = \lambda^{-1}$ и $u(t_1) = \lambda$, мы можем вычислить t_1 :

$$t_1 = \frac{1}{\lambda} \int_{\lambda^{-1}}^{\lambda} \left[\frac{1}{\alpha_1 - f_{Na}(u) + O(\lambda^{-1})} \right] \frac{du}{u}.$$

Теперь вынесем $O(\lambda^{-1})$ из-под интеграла. Для этого преобразуем выражение в квадратных скобках

$$\frac{1}{\alpha_1 - f_{Na}(u) + O(\lambda^{-1})} = \frac{1}{\alpha_1 - f_{Na}(u)} + \frac{O(\lambda^{-1})}{(\alpha_1 - f_{Na}(u))(\alpha_1 - f_{Na}(u) + O(\lambda^{-1}))}.$$

Оценим второе слагаемое. Поскольку $f_{Na}(u)$ монотонно убывает, то $f_{Na}(u) \le f_{Na}(0)$, а значит, $\alpha_1 - f_{Na}(u) \ge \alpha$. Таким образом,

$$\frac{O(\lambda^{-1})}{(\alpha_1 - f_{Na}(u))(\alpha_1 - f_{Na}(u) + O(\lambda^{-1}))} = O(\lambda^{-1}).$$

Теперь уравнение для t_1 можно переписать в виде

$$t_1 = \frac{1}{\lambda} \int_{\lambda^{-1}}^{\lambda} \left[\frac{1}{\alpha_1 - f_{Na}(u)} \right] \frac{du}{u} + O(\lambda^{-2}) \int_{\lambda^{-1}}^{\lambda} \frac{du}{u} =$$

$$= \frac{1}{\lambda} \int_{\lambda^{-1}}^{\lambda} \left[\frac{1}{\alpha_1 - f_{Na}(u)} \right] \frac{du}{u} + O(\lambda^{-1}).$$

Разобьём интеграл на два и посчитаем их по отдельности

$$\frac{1}{\lambda} \int_{\lambda^{-1}}^{\lambda} \left[\frac{1}{\alpha_1 - f_{Na}(u)} \right] \frac{du}{u} =$$

$$= \frac{1}{\lambda} \int_{\lambda^{-1}}^{1} \left[\frac{1}{\alpha_1 - f_{Na}(u)} \right] \frac{du}{u} + \frac{1}{\lambda} \int_{1}^{\lambda} \left[\frac{1}{\alpha_1 - f_{Na}(u)} \right] \frac{du}{u}.$$

Преобразуем первый интеграл:

$$\frac{1}{\lambda} \int_{\lambda^{-1}}^{1} \left[\frac{1}{\alpha_1 - f_{Na}(u)} \right] \frac{du}{u} =$$

$$= \frac{1}{\lambda} \left[\frac{\ln \lambda}{\alpha} + \int_{\lambda^{-1}}^{1} \left[\frac{1}{\alpha_1 - f_{Na}(u)} - \frac{1}{\alpha} \right] \frac{du}{u} \right] =$$

$$= \frac{1}{\lambda \alpha} \int_{\lambda^{-1}}^{1} \left[\frac{f_{Na}(u) - f_{Na}(0)}{\alpha_1 - f_{Na}(u)} \right] \frac{du}{u} + O(\ln \lambda / \lambda).$$

Поскольку подынтегральная функция ограничена при $u \in (0, \lambda^{-1}]$ и имеет предел при $u \to 0$, справедлив переход к несобственному интегралу:

$$\int_{\lambda^{-1}}^{1} \left[\frac{f_{Na}(u) - f_{Na}(0)}{\alpha_1 - f_{Na}(u)} \right] \frac{du}{u} = \int_{0}^{1} \left[\frac{f_{Na}(u) - f_{Na}(0)}{\alpha_1 - f_{Na}(u)} \right] \frac{du}{u} + O(\lambda^{-1}).$$

В итоге получаем

$$\frac{1}{\lambda} \int_{\lambda^{-1}}^{1} \left[\frac{1}{\alpha_1 - f_{Na}(u)} \right] \frac{du}{u} =$$

$$= \frac{1}{\lambda \alpha} \int_{0}^{1} \left[\frac{f_{Na}(u) - f_{Na}(0)}{\alpha_1 - f_{Na}(u)} \right] \frac{du}{u} + O(\ln \lambda / \lambda) = O(\ln \lambda / \lambda). \quad (4)$$

Теперь рассмотрим второй интеграл:

$$\frac{1}{\lambda} \int_{1}^{\lambda} \left[\frac{1}{\alpha_{1} - f_{Na}(u)} \right] \frac{du}{u} =$$

$$= \frac{1}{\lambda} \left[\frac{\ln \lambda}{\alpha_{1}} + \int_{1}^{\lambda} \left[\frac{1}{\alpha_{1} - f_{Na}(u)} - \frac{1}{\alpha_{1}} \right] \frac{du}{u} \right] =$$

$$= \frac{1}{\lambda \alpha_{1}} \int_{1}^{\lambda} \left[\frac{f_{Na}(u)}{\alpha_{1} - f_{Na}(u)} \right] \frac{du}{u} + O(\ln \lambda/\lambda).$$

Исходя из оценки (2), получаем, что подынтегральное выражение при $u \to \infty$ будет порядка $u^{-(2+\varepsilon)}$. Из этого следует, что

$$\int_{1}^{\infty} \left[\frac{f_{Na}(u)}{\alpha_{1} - f_{Na}(u)} \right] \frac{du}{u} < \infty,$$

$$\int_{\lambda}^{\infty} \left[\frac{f_{Na}(u)}{\alpha_{1} - f_{Na}(u)} \right] \frac{du}{u} = O(\lambda^{-1}).$$

Таким образом, получаем

$$\frac{1}{\lambda} \int_{1}^{\lambda} \left[\frac{1}{\alpha_{1} - f_{Na}(u)} \right] \frac{du}{u} =$$

$$= \frac{1}{\lambda \alpha_{1}} \int_{1}^{\infty} \left[\frac{f_{Na}(u)}{\alpha_{1} - f_{Na}(u)} \right] \frac{du}{u} + O(\ln \lambda/\lambda) = O(\ln \lambda/\lambda). \quad (5)$$

Из формул (4) и (5) мы получаем оценку для t_1 :

$$t_1 = O(\ln \lambda/\lambda). \tag{6}$$

2. Рассмотрим интервал $[t_1,1]$. Поскольку $t_1=O(\ln \lambda/\lambda)$, мы можем считать $t_1<1$. Здесь нам необходимо найти u(1).

На этом промежутке имеем

$$u(t) \geq \lambda$$
,

$$u(t-1) = \varphi(t-1) \le \lambda^{-1},$$

$$u(t_1) = \lambda.$$

Из утверждения 1 получаем

$$f_{Na}(u) = O(\lambda^{-1}),$$

$$f_K(u(t-1)) = f_K(0) + O(\lambda^{-1}).$$

Поскольку $u \ge \lambda$, слагаемое $g \exp(-\lambda \sigma)/\lambda u$ можно включить в $O(\lambda^{-1})$. В итоге уравнение (1) имеет вид

$$\dot{u} = \lambda [\alpha_1 + O(\lambda^{-1})] u.$$

Теперь найдём u(1):

$$u(1) = u(t_1) \exp[\lambda(\alpha_1 + O(\lambda^{-1}))(1 - t_1)]$$

Воспользуемся оценкой (6) и после преобразования получаем

$$u(1) = \lambda \exp[\lambda(\alpha_1 + O(\ln \lambda/\lambda))]. \tag{7}$$

3. Рассмотрим интервал $[1, 1+t_1]$. Здесь нам необходимо найти $u(1+t_1)$. На данном промежутке мы имеем

$$u(t) \ge \lambda$$
,

$$\lambda^{-1} \le u(t-1) \le \lambda.$$

Из утверждения 1 получаем, что $f_{Na}(u) = O(\lambda^{-1})$. Поскольку $u \ge \lambda$, слагаемое $g \exp(-\lambda \sigma)/\lambda u$ можно включить в $O(\lambda^{-1})$. Таким образом, уравнение (1) на данном интервале имеет вид

$$\dot{u} = \lambda[-1 + f_K(u(t-1)) + O(\lambda^{-1})]u.$$

Решение данного уравнения имеет вид

$$u(t) = u(1) \exp\left[-\lambda(t-1) + \lambda \int_1^t f_K(u(s-1))ds + \lambda \int_1^t O(\lambda^{-1})ds\right].$$

Теперь найдем $u(t_1+1)$. Воспользуемся формулой (7)

$$u(t_1+1) = \lambda \exp \left[\lambda(\alpha_1 + O(\ln \lambda/\lambda)) + \lambda \int_1^{1+t_1} f_K(u(s-1)) ds \right].$$

Преобразуем входящий в формулу интеграл

$$\begin{split} \int_{1}^{1+t_{1}} f_{K}(u(s-1))ds &= \int_{0}^{t_{1}} f_{K}(u(s))ds = \\ &= \lambda^{-1} \int_{0}^{t_{1}} \frac{f_{K}(u(s))ds}{[-1 - f_{Na}(u)) + f_{K}(u(s-1)) - g/\lambda + g \exp(-\lambda \sigma)/\lambda u]u} \dot{u} \, ds. \end{split}$$

Нам известно, что $u(0)=\lambda^{-1}$ и $u(t_1)=\lambda$. Также на интервале $[0,t_1]$ имеют место оценки

$$f_K(u(s-1)) = f_K(0) + O(\lambda^{-1}),$$

$$-g/\lambda + g \exp(-\lambda \sigma)/\lambda u = O(\lambda^{-1}).$$

Перепишем интеграл

$$\int_{1}^{1+t_{1}} f_{K}(u(s-1))ds = \lambda^{-1} \int_{\lambda^{-1}}^{\lambda} \left[\frac{f_{K}(u)}{\alpha_{1} - f_{Na}(u) + O(\lambda^{-1})} \right] \frac{du}{u}.$$

Поскольку $f_{Na}(u) \leq f_{Na}(0)$ и $f_K(u) \leq f_K(0)$, мы можем вынести $O(\lambda^{-1})$ из знаменателя подынтегральной дроби

$$\frac{f_K(u)}{\alpha_1 - f_{Na}(u) + O(\lambda^{-1})} = \frac{f_K(u)}{\alpha_1 - f_{Na}(u)} + O(\lambda^{-1}).$$

Таким образом, формула для интеграла приобретает вид

$$\int_{1}^{1+t_1} f_K(u(s-1))ds = \lambda^{-1} \int_{\lambda^{-1}}^{\lambda} \left[\frac{f_K(u)}{\alpha_1 - f_{Na}(u)} \right] \frac{du}{u} + O(\lambda^{-1}).$$

Теперь разобьём интеграл на два промежутка и посчитаем их по отдельности. Действуя, как на первом шаге, перейдём к несобственным интегралам и в итоге получим

$$\lambda^{-1} \int_{\lambda^{-1}}^{1} \left[\frac{f_K(u)}{\alpha_1 - f_{Na}(u)} \right] \frac{du}{u} = \frac{f_K(0) \ln \lambda}{\lambda \alpha} + \frac{1}{\lambda^{-1}} \int_{0}^{1} \left[\frac{f_K(u)}{\alpha_1 - f_{Na}(u)} - \frac{f_K(0)}{\alpha} \right] \frac{du}{u} + O(\lambda^{-1}) = O(\ln \lambda/\lambda),$$

$$\lambda^{-1} \int_{\lambda^{-1}}^{1} \left[\frac{f_K(u)}{\alpha_1 - f_{Na}(u)} \right] \frac{du}{u} = \lambda^{-1} \int_{1}^{\infty} \left[\frac{f_K(u)}{\alpha_1 - f_{Na}(u)} \right] \frac{du}{u} + O(\lambda^{-1}) = O(\lambda^{-1}).$$

Теперь подставим полученный результат в уравнение для $u(1+t_1)$

$$u(1+t_1) = \lambda \exp\left[\lambda(\alpha_1 + O(\ln \lambda/\lambda))\right]. \tag{8}$$

4. Рассмотрим интервал $[1+t_1,t_2]$. Здесь нам необходимо найти значение t_2 с точностью $O(\ln \lambda/\lambda)$. Отметим, что, согласно последующим вычислениям, $t_2=1+\alpha_1+O(\ln \lambda/\lambda)$, а значит, $t_2>1+t_1$.

На данном промежутке мы имеем

$$u(t) \ge \lambda,$$

 $u(t-1) \ge \lambda,$
 $u(t_2) = \lambda.$

Из утверждения 1 получаем, что $f_{Na}(u) = f_K(u(t-1)) = O(\lambda^{-1})$. Поскольку $u \ge \lambda$, слагаемое $g \exp(-\lambda \sigma)/\lambda u$ можно включить в $O(\lambda^{-1})$. Таким образом, уравнение (1) на данном интервале имеет вид

$$\dot{u} = \lambda [-1 + O(\lambda^{-1})]u.$$

Из уравнения мы можем вычислить $u(t_2)$

$$u(t_2) = u(1 + t_1) \exp \left[-\lambda (t_2 - 1 - t_1 + O(\lambda^{-1})) \right].$$

Теперь подставим значение $u(1+t_1)$ из формулы (8) и после преобразования получаем

$$u(t_2) = \lambda \exp \left[\lambda(\alpha_1 - (t_2 - 1) + O(\ln \lambda/\lambda))\right].$$

Поскольку нам известно, что $u(t_2) = \lambda$, мы можем найти значение t_2

$$t_2 = 1 + \alpha_1 + O(\ln \lambda/\lambda). \tag{9}$$

5. Рассмотрим интервал $[t_2, t_3]$. Здесь нам необходимо найти значение t_3 с точностью $O(\lambda^{-1})$.

На данном промежутке мы имеем

$$\lambda^{-1} \le u(t) \le \lambda,$$

$$u(t-1) \ge \lambda,$$

$$u(t_2) = \lambda,$$

$$u(t_3) = \lambda^{-1}.$$

Из утверждения 1 получаем, что $f_K(u(t-1)) = O(\lambda^{-1})$. Поскольку $u \ge \lambda^{-1}$, слагаемое $g \exp(-\lambda \sigma)/\lambda u$ можно включить в $O(\lambda^{-1})$. Таким образом, уравнение (1) на данном интервале имеет вид

$$\dot{u} = -\lambda [1 + f_{Na}(u) + O(\lambda^{-1})]u.$$

Поскольку $u(t_2) = \lambda$ и $u(t_3) = \lambda^{-1}$, мы можем получить уравнение для t_3

$$t_3 = t_2 + \frac{1}{\lambda} \int_{\lambda^{-1}}^{\lambda} \left[\frac{1}{1 + f_{Na}(u) + O(\lambda^{-1})} \right] \frac{du}{u}.$$

Поскольку $f_{Na}(u) \geq 0$, мы можем вынести $O(\lambda^{-1})$ из знаменателя дроби. В итоге получаем

$$t_3 = t_2 + \frac{1}{\lambda} \int_{\lambda^{-1}}^{\lambda} \left[\frac{1}{1 + f_{Na}(u)} \right] \frac{du}{u} + O(\lambda^{-1}).$$

Как и на предыдущих шагах, разобьём интеграл на два промежутка. После преобразований получаем

$$\frac{1}{\lambda} \int_{\lambda^{-1}}^{1} \left[\frac{1}{1 + f_{Na}(u)} \right] \frac{du}{u} = \frac{\ln \lambda}{\lambda \alpha_2} + \frac{1}{\lambda} \int_{0}^{1} \left[\frac{1}{1 + f_{Na}(u)} - \frac{1}{\alpha_2} \right] \frac{du}{u} + O(\lambda^{-1}) = O(\ln \lambda/\lambda),$$

$$\frac{1}{\lambda} \int_{1}^{\lambda} \left[\frac{1}{1 + f_{Na}(u)} \right] \frac{du}{u} = \frac{\ln \lambda}{\lambda} + \frac{1}{\lambda} \int_{1}^{\infty} \left[\frac{1}{1 + f_{Na}(u)} - 1 \right] \frac{du}{u} + O(\lambda^{-1}) = O(\ln \lambda/\lambda).$$

Таким образом, для t_3 получаем уравнение

$$t_3 = t_2 + O(\ln \lambda/\lambda).$$

Воспользовавшись формулой (9), получаем

$$t_3 = 1 + \alpha_1 + O(\ln \lambda/\lambda). \tag{10}$$

6. Рассмотрим интервал $[t_3, t_2+1]$. Здесь нам необходимо найти значение $u(t_2+1)$. Поскольку мы получили, что $t_3-t_2=O(\ln \lambda/\lambda)$, можно считать $t_2+1>t_3$.

На данном промежутке мы имеем

$$u(t) \le \lambda^{-1},$$

$$u(t-1) \ge \lambda,$$

$$u(t_3) = \lambda^{-1}.$$

Из утверждения 1 получаем, что $f_K(u(t-1))=O(\lambda^{-1})$ и $f_{Na}(u)=f_{Na}(0)+O(\lambda^{-1})$. Уравнение (1) на данном интервале имеет вид

$$\dot{u} = -\lambda \left[\alpha_2 + O(\lambda^{-1})\right] u + g \exp(-\lambda \sigma).$$

Общее и частное решения уравнения имеют вид

$$u_{\rm O}(t) = C \exp\left[-\lambda(\alpha_2 + O(\lambda^{-1}))(t - t_3)\right],$$
$$u_{\rm T}(t) = \frac{ge^{-\lambda\sigma}}{\lambda(\alpha_2 + O(\lambda^{-1}))}.$$

Из условия $u(t_3) = \lambda^{-1}$ получаем решение уравнения

$$u(t) = \left[\lambda^{-1} - \frac{ge^{-\lambda\sigma}}{\lambda(\alpha_2 + O(\lambda^{-1}))}\right] \exp\left[-\lambda(\alpha_2 + O(\lambda^{-1}))(t - t_3)\right] + \frac{ge^{-\lambda\sigma}}{\lambda(\alpha_2 + O(\lambda^{-1}))}.$$

Теперь найдём $u(t_2+1)$. Поскольку $\sigma < \alpha_2$ и $t_2+1-t_3=1-O(\ln \lambda/\lambda)$, наибольшая степень будет у экспоненты $e^{-\lambda\sigma}$. Таким образом, мы можем записать уравнение

$$u(t_2+1) = \frac{ge^{-\lambda\sigma}}{\lambda(\alpha_2 + O(\lambda^{-1}))} \left[1 + O(e^{-\lambda(\alpha_2 - \sigma)}) \right] = \frac{ge^{-\lambda\sigma}}{\lambda\alpha_2} \left[1 + O(\lambda^{-1}) \right]$$
(11)

7. Рассмотрим интервал $[t_2+1,t_3+1]$. Здесь нам необходимо найти значение $u(t_3+1)$.

На данном промежутке мы имеем

$$u(t) \le \lambda^{-1}$$

$$\lambda^{-1} \le u(t-1) \le \lambda$$
.

Из утверждения 1 получаем, что $f_{Na}(u) = f_{Na}(0) + O(\lambda^{-1})$. Уравнение (1) на данном интервале имеет вид

$$\dot{u} = \lambda \left[-\alpha_2 + f_K(u(t-1)) + O(\lambda^{-1}) \right] u + g \exp(-\lambda \sigma).$$

Поскольку f_K является монотонно убывающей функцией, мы можем оценить $\dot{u}(t)$ на данном интервале, как

$$\dot{u} \le \lambda \alpha u + g e^{-\lambda \sigma}.$$

Решение исходного уравнения на данном интервале мы можем оценить следующим образом:

$$u(t) \le \left[u(t_2+1) + \frac{ge^{-\lambda\sigma}}{\lambda\alpha} \right] \exp(\lambda\alpha(t-t_2-1)) - \frac{ge^{-\lambda\sigma}}{\lambda\alpha}.$$

Рассмотрим эту оценку при $t = t_3 + 1$. Воспользуемся уравнениями (10) и (11):

$$u(t_3+1) \leq \left[\frac{ge^{-\lambda\sigma}}{\lambda\alpha_2}(1+c_1\lambda^{-1}) + \frac{ge^{-\lambda\sigma}}{\lambda\alpha}\right]e^{c_2\ln\lambda} - \frac{ge^{-\lambda\sigma}}{\lambda\alpha} =$$

$$= \frac{g}{\lambda}\exp\left[-\lambda\sigma + c_2\ln\lambda\right]\left(\frac{1}{\alpha_2} + \frac{1}{\alpha} + c_1\lambda^{-1} + e^{-c_2\ln\lambda}\right) \leq c_3e^{-\lambda\sigma}\lambda^{c_2-1}.$$

Таким образом, мы получили оценку

$$u(t_3+1) = O(e^{-\lambda\sigma}\lambda^a), \tag{12}$$

где $a \in \mathbb{R}$ — произвольная константа.

8. Рассмотрим интервал $[t_3+1,T]$. Здесь нам необходимо найти T с точностью до $O(\ln \lambda/\lambda)$.

На данном промежутке мы имеем

$$u(t) \le \lambda^{-1},$$

$$u(t-1) \le \lambda^{-1},$$

$$u(T) = \lambda^{-1}.$$

Из утверждения 1 получаем, что $f_{Na}(u)=f_{Na}(0)+O(\lambda^{-1})$ и $f_K(u(t-1))=f_K(0)+O(\lambda^{-1})$. Уравнение (1) на данном интервале можно записать в виде

$$\dot{u} = \lambda \left[\alpha + O(\lambda^{-1}) \right] u + g \exp(-\lambda \sigma).$$

Решение этого уравнения имеет вид

$$u(t) = \left[u(t_3 + 1) + \frac{ge^{-\lambda\sigma}}{\lambda(\alpha + O(\lambda^{-1}))} \right] \exp\left[\lambda(\alpha + O(\lambda^{-1}))(t - t_3 - 1) \right] - \frac{ge^{-\lambda\sigma}}{\lambda(\alpha + O(\lambda^{-1}))}.$$

Воспользуемся оценкой (12):

$$u(t) = \left[O(e^{-\lambda \sigma} \lambda^a) + \frac{g e^{-\lambda \sigma}}{\lambda(\alpha + O(\lambda^{-1}))} \right] \exp\left[\lambda \alpha (t - t_3 - 1 + O(\lambda^{-1})) \right] - \frac{g e^{-\lambda \sigma}}{\lambda(\alpha + O(\lambda^{-1}))} = \exp\left[-\lambda \sigma + \lambda \alpha (t - t_3 - 1 + O(\lambda^{-1})) \right] O(\lambda^b), \quad (13)$$

где $b = \max\{-1, a\}$.

Поскольку $u(T) = \lambda^{-1}$, мы можем вычислить Т

$$-\lambda \sigma + \lambda \alpha (T - t_3 - 1 + O(\lambda^{-1})) + O(\ln \lambda) = -\ln \lambda.$$

Воспользуемся формулой (10) и получаем

$$T = \alpha_1 + 2 + \sigma/\alpha + O(\ln \lambda/\lambda).$$

На этом мы закончили пошаговое асимптотическое интегрирование. Теперь покажем, что при $s \in [-1,0]$ функция u(T+s) удовлетворяет условию (3).

Функция u(t) при $t \in [T-1,T]$ определяется уравнением (13). Найдём u(T+s)

$$u(T+s) = \exp\left[-\lambda\sigma + \lambda\alpha(T+s-t_3-1+O(\lambda^{-1}))\right]O(\lambda^b) =$$

$$= \exp\left[-\lambda\sigma + \lambda\alpha(T-t_3-1+O(\lambda^{-1}))\right]O(\lambda^b)\exp(\lambda\alpha s).$$

По построению T, сомножитель $\exp\left[-\lambda\sigma+\lambda\alpha(T-t_3-1+O(\lambda^{-1}))\right]O(\lambda^b)$ равен λ^{-1} . Таким образом, мы получаем, что $u(T+s)=\lambda^{-1}\exp(\lambda\alpha s)$ и

$$\lambda^{-1} \exp(2\lambda \alpha s) \le u(T+s) \le \lambda^{-1} \exp(\lambda \alpha s/2).$$

Это значит, что условие (3) выполняется. Теорема доказана.

Список литературы

1. Кащенко С.А., Майоров В.В. Модели волновой памяти. М.: Книжный дом ЛИБРОКОМ, 2009.

Correction for the oscilation period of the spiking neuron equation with constant external electric stimulus

Kornilov K.V.

Keywords: delay differential equation, impulse neuron, period

In this paper we calculate the oscilation period for the spiking neuron equation with constant external electric stimulus. We obtain a more precise estimation for the oscilation period.

Сведения об авторе: Корнилов Константин Вячеславович, Ярославский государственный университет им. П.Г. Демидова, аспирант