ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)

MunucrepcTBo obpaszoBanus n Hayku Poccuiickoit @eeparun
Apocnascknit rocynapcrsennbiit yausepeutetT uM. [1. 1. Jlemumosa

MOJIEJINPOBAHUE 1 AHAJINS
NHOOPMAIIMOHHBIX CUCTEM

Tom 22 Ne6(60) 2015

Ocnosan B 1999 romy
Buixogut 6 pa3 B roj

Inasnwiti pedakmop

B.A. CokoJioB,
JIOKTOP (BU3MKO-MaTeMaTUuIecKux Hayk, mpodeccop, Poccust

Pedaxuyuonnasn xornrezus

C.M. A6pamos, 1-p ¢us.-mar. Hayk, wi.-kopp. PAH, Poccus; B.C. AdpaiimoBud, npod.-uccieno-
Baresab, Mekcuka; O.JI. Banaman, 1-p Texn. nayk, Poccusi; B.H. Benbix, 1-p ¢us.-mart. Hayk, npod.,
Poccusi; B.A. BougapeHko, j1-p ¢us.-mar. HayK, npod., Poccusi; C.A. I'mbisuH, 1-p us.-mMar. HAYK,
upod., Poccus (zam. ri. pen.); A. Hextaps, npod., CIIIA; M.I. JIMmurpues, 1-p dbus.-mar. HayK,
npod., Poccus; B.JI. JJoabHUKOB, 1-p dus.-mat. HayK, upod., Poccus; B.I'. dypHes, 1-p dus.-mar.
Hayk, nmpod., Poccus; JI.C. KazapuH, 1-p ¢us.-mat. nayk, npod., Poccus; FO.I'. KapmioB, 1-p Texw.
nayk, npod., Poccus; C.A. Kamienko, 1-p ¢dus.-mar. Hayk, npod., Poccus; A.FO. Kosecos, 1-p
dwuz.-mar. HayK, npod., Poccus; H.A. Kyapsimios, j-p dus.-mar. Hayk, npod., 3aciyKeHHbI Jesi-
tesib Hayku P®, Poccus; O. Kymrapeunko, npod., @pannus; U.A. Jlomaszosa, i1-p dhus.-mar. HayK,
npod., Poccus; I.T. Manuneukwuii, n1-p ¢pus.-mar. Hayk, npod., Poccus; B.9. MaabInikuH, J1-p TeXH.
Hayk, npod., Poccus; A.B. Muxaiisos, 1-p dus.-mar. Hayk, npod., Beaukobpuranus, B.A. Henowm-
Hammii, kang. ¢us.-mar. Hayk, Poccus; II.I. ITapdenoB, kamma. ¢dus.-MaT. HayK, JI0IeHT, Poccus;
H.X. Po3zsos, j-p dus.-mar. Hayk, nupod., 4i.-kopp. PAO, Poccusi; H. Cumoposa, 1-p nayk, Humep-
sgarger;, P.JI. CmensgHckuit, 1-p ¢us.-MatT. HayK, npod., wien-kopp. PAH, akagemuk PAEH, Poccus;
E.A. Tumodees, g-p dus.-mar. nayk, npod., Poccusa (zam. . pex.); M.B. Tpaxrtenbpor, i-p
koMIl. HayK, Uzpawis, J.B. Typaes, npod., Berukobpuranus; X. ®@aiir, 1-p Hayk, npod., AscTpust;
®. ITTuebsaen, npod., Opanrus

Omeemcmeennnti cexpemapsv E. B, Kyspmun, 1-p dus.-mar. Hayk, npod., Poccus

A npec pepgakimu: Spl'Y, yiu. Coserckas, 14, 1. fpociaasin, 150000, Poccus
Website: http://mais-journal.ru, e-mail: mais@uniyar.ac.ru; resedon (4852) 79-77-73

Hayunble crarbu B »KypHAJI IPUHAMAIOTCS 110 9JIeKTPOHHON moure. CraTbu J0JKHBI cojuepxkarh YK,
AHHOTAINN HA PYCCKOM ¥ aHTJIMICKOM sSI3bIKAX M COIIPOBOXKIATHCA HAOOPOM TeKcTa B penakTope LaTEX.
Ilnara ¢ acnupaHTOB 3a MyOJUKAIINIO PYKOIUCEH HE B3UMAETCSI.

12+ (©4pocnaBckuit TocymapcTBEHHBIN
yuusepcurer um. [L.I. Temumona, 2015

COEPYKAHUE

Modeauposarue u anarud urgopmayuornvr cucmem. 1. 22, Ne6. 2015

Mogensb 6e30macHOCTH THGMOPMAITMOHHBIX TTOTOKOB JIJTsT TTPOTPAMMHO-KOHMUTYPUPYEMBIX ceTeit

Yanwvdi . FO., Hukumun E. C., Anvmowuna E. IO., Coxonros B. A. 735

OcobeHHOCTH TTPUMEHEHUS MOJE/IbHO-OPUEHTHPOBAHHOTO TTO/IXOA
pu pa3paboTKe MPOMBINLIEHHBIX TPUIOXKEHUN

AHpobunuyes I1. /., Komaspos B.11., Bounos H.B., Hukxugopos U.B. 750

D deKTUBHOE UCIOJHEHEE TTPOIPAMMHOIO KOJ& B KOHTPOJIUPYEMOM OKPY KEHUN
KaK CIoco0 yJIydIleHusl Pe3yJIbTaTOB CTATUIECKOT0 aHAJIN3a U BEPUMUKAIMYE TPOrpaMM
Beases M. A., Huwvixcon B. M. 763

DJIMMUHALAS UHBAPUAHTOB IUKJIOB Jjis (PUHUTHON UTEpPAIIu
HaJI HEU3MEHSIEMBIMU CTPYKTYpaMu JaHHbIX B CH mporpamMmmax
Mapvacos U. B., Henomnawuti B. A. 773

O npenogaBanuy GOpMaTHLHBIX MOJEJEH U aJrOPUTMOB AHAIN3A TAPAJIIETLHBIX CHCTEM

ITunoe H. B. 783

QopmaJsibHast auaroHasmsanus cxeM Jlakca—/lapOy
Muzxatinos A. B. 795

AHajm3 cucTeMHBIX HCIIOJIHEHMI ¢ IoMoInbio Process Mining

IHlepwaxos C. A., Pybun B. A. 818

JIuursocraTrCTHYECKIT aHAI3 TEPMUHOJIOTUH JTJIsI TTIOCTPOCHU A

Te3aypyca MpeaMeTHON obIacTu
Kapsaesa M. C. 834

PaspaboTka aKTUBHOIO BHEIITHEI'O MOJLYJIsI CETE€BOH TOIIOIOI N
JJIsl KOHTPOJLIepa IporpaMmMHo-KoHurypupyemoit cetu Floodlight
Hocxos A. A., Hukumunckut M. A., Asexcees U. B. 852

Caunerenbcrso o perucrparun CMU TN NedC77-49724 ot 11.05.2012 Beigano PesepasibHOi ciry K001
o HaA30PY B cepe cBsA3U, NHMOPMAIMOHHBIX TEXHOJIOIUH U MACCOBBIX KOMMYHUKAIUA. Y IpeauTesis —
QemepaabHOE TOCYIAPCTBEHHOE OI0I2KeTHOE 00pa30BATEILHOE YIPEKIEHNE BLICIIIETO TPOdheCCHOHATBHO-
ro obpasoBanus "fpociasckuii rocypapcrBennblii yausepcurer um. I1. T demumosa". TloanucHoit un-
nekc — 31907 B Karasiore poccuiickoit peccsl "IToura Poccun". Pegakrop, koppekrop A.A. Anajbesa.
Penakrop nepesona .M. Cokonosa. [loanucano B meuars 28.12.2015. /lara Beixoga B ceer 24.01. 2016.
®opmat 60x841 /5. Ve mew. 1. 15,34, Ya.-uza. 1. 14,0. O6bem 131 c. Tupask 50 sx3. CBobonas 1ena.
3akas Aipec Tunorpacun: yi. Coserckas, 14, od. 109, r. dpocaasin, 150000 Poccus.
Apec uzmarens: fpociaBckuii rocynaperennsiii yausepenrer uM. I1. I Jlemunosa, yiu. Coserckast, 14,
r. dpocmasin, 150000 Poccust.

Vasily
Text Box
24.01.

ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)

P.G. Demidov Yaroslavl State University

MODELING AND ANALYSIS
OF INFORMATION SYSTEMS

Volume 22 No 6(60) 2015

Founded in 1999
6 issues per year

Editor-in-Chief
V. A. Sokolov,

Doctor of Sciences in Mathematics, Professor, Russia

FEditorial Board

S.M. Abramov, Prof., Dr. Sci., Corr. Member of RAS, Russia; V. Afraimovich, Prof.-researcher,
Mexico; O.L. Bandman, Prof., Dr. Sci., Russia; V.N. Belykh, Prof., Dr. Sci., Russia; V.A. Bon-
darenko, Prof., Dr. Sci., Russia; S.D. Glyzin, Prof., Dr. Sci., Russia (Deputy Editor-in-Chief);
A. Dekhtyar, Prof., USA; M.G. Dmitriev, Prof., Dr. Sci., Russia; V.L. Dol’nikov, Prof., Dr. Sci.,
Russia; V.G. Durnev, Prof., Dr. Sci., Russia; L.S. Kazarin, Prof., Dr. Sci., Russia; Yu.G. Karpov,
Prof., Dr. Sci., Russia; S.A. Kashchenko, Prof., Dr. Sci., Russia; A.Yu. Kolesov, Prof., Dr. Sci.,
Russia; N.A. Kudryashov, Dr. Sci., Prof., Russia; O. Kouchnarenko, Prof., France; I.A. Loma-
zova, Prof., Dr. Sci., Russia; G.G. Malinetsky, Prof., Dr. Sci., Russia; V.E. Malyshkin, Prof.,
Dr. Sci., Russia; A.V. Mikhailov, Prof., Dr. Sci., Great Britain; V.A. Nepomniaschy, PhD,
Russia; P.G. Parfionov, PhD, Russia; N.H. Rozov, Prof., Dr. Sci., Corr. Member of RAE, Rus-
sia; Ph. Schnoebelen, Senior Researcher, France; N. Sidorova, Dr., Assistant Prof., Netherlands;
R.L. Smeliansky, Prof., Dr. Sci., Corr. Member of RAS, Russia; E.A. Timofeev, Prof., Dr. Sci.,
Russia (Deputy Editor-in-Chief); M. Trakhtenbrot, Dr., Israel; D. Turaev, Prof., Great Britain;
H. Veith, Prof., Dr. Sci., Austria

Responsible Secretary E. V. Kuzmin, Prof., Dr. Sci., Russia

Editorial Office Address: P.G. Demidov Yaroslavl State University,
Sovetskaya str., 14, Yaroslavl, 150000, Russia
Website: http://mais-journal.ru, e-mail: mais@uniyar.ac.ru

© P.G. Demidov Yaroslavl State University, 2015

Contents

Modeling and Analysis of Information Systems. Vol. 22, No 6. 2015

End-to-end Information Flow Security Model for Software-Defined Networks
Chaly D. Ju., Nikitin E.S., Antoshina E. Ju., Sokolov V. A.

Model Oriented Approach
for Industrial Software Development
Drobintsev P. D., Kotlyarov V. P., Voinov N. V., Nikiforov I. V.

Fast and Safe Concrete Code Execution for Reinforcing Static Analysis and Verification
Belyaev M., Itsykson V.

Loop Invariants Elimination for Definite Iterations
over Unchangeable Data Structures in C Programs
Maryasov 1. V., Nepomniaschy V. A.

Teaching Formal Models of Concurrency Specification and Analysis
Shilov N. V.

Formal Diagonalisation of Lax-Darboux Schemes
Mikhailov A. V.

System Runs Analysis with Process Mining
Shershakov S. A., Rubin V. A.

Linguistic and Statistical Analysis of the Terminology for Constructing
the Thesaurus of a Specified Field
Karyaeva M. S.

Development of Active External Network Topology Module for Floodlight SDN Controller

Noskov A. A., Nikitinskiy M. A., Alekseev 1. V.

735

750

763

773

783

795

818

834

852

Modeauposanue u anaausd ungopmayuorror cucmem. T.22, Ne6 (2015), c. 735-749
Modeling and Analysis of Information Systems. Vol. 22, No 6 (2015), pp. 735-749

©Chaly D. Ju., Nikitin E. S., Antoshina E. Ju., Sokolov V. A., 2015
DOI: 10.18255/1818-1015-2015-6-735-749

UDC 519.987

End-to-end Information Flow Security Model
for Software-Defined Networks

Chaly D. Ju.!, Nikitin E.S., Antoshina E. Ju., Sokolov V. A2
Received October 21, 2015

Software-defined networks (SDN) are a novel paradigm of networking which became an enabler
technology for many modern applications such as network virtualization, policy-based access control and
many others. Software can provide flexibility and fast-paced innovations in the networking; however,
it has a complex nature. In this connection there is an increasing necessity of means for assuring its
correctness and security. Abstract models for SDN can tackle these challenges. This paper addresses
to confidentiality and some integrity properties of SDNs. These are critical properties for multi-tenant
SDN environments, since the network management software must ensure that no confidential data of one
tenant are leaked to other tenants in spite of using the same physical infrastructure. We define a notion
of end-to-end security in context of software-defined networks and propose a semantic model where the
reasoning is possible about confidentiality, and we can check that confidential information flows do not
interfere with non-confidential ones. We show that the model can be extended in order to reason about
networks with secure and insecure links which can arise, for example, in wireless environments.

The article is published in the authors’ wording.

Keywords: SDN, security, formal models

For citation: Chaly D. Ju., Nikitin E. S., Antoshina E. Ju., Sokolov V. A.; "End-to-end Information Flow Security Model
for Software-Defined Networks", Modeling and Analysis of Information Systems, 22:6 (2015), 735-749.

On the authors:

Chaly Dmitriy Jurevich, orcid.org/0000-0003-0553-7387, PhD,

P.G. Demidov Yaroslavl State University,

Sovetskaya str., 14, Yaroslavl, 150000, Russia, e-mail: dmitry.chaly@gmail.com

Nikitin Evgeniy Sergeevich, orcid.org/0000-0002-2341-9950, student,
P.G. Demidov Yaroslavl State University,
Sovetskaya str., 14, Yaroslavl, 150000, Russia, e-mail: nik.zhenya@gmail.com

Antoshina Ekaterina Jurevna, orcid.org/0009-0203-2514-7755, graduate student,
P.G. Demidov Yaroslavl State University,
Sovetskaya str., 14, Yaroslavl, 150000, Russia, e-mail: kantoshina@gmai.com

Sokolov Valeriy Anatolevich, orcid.org/0000-0003-1427-4937, doctor of science,

P.G. Demidov Yaroslavl State University,

Sovetskaya str., 14, Yaroslavl, 150000, Russia, e-mail: valery-sokolov@yandex.ru

Acknowledgments:

IThis work was supported by the RFBR under the project 14-01-31539 mol-a.

2This work was supported by the Ministry of Education and Science of the Russian Federation under contract
ID RFMEFI57414X0036.

735

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
736 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

Introduction

The traditional approach to the networking assumes that a network is constructed
using vendor-specific hardware which is tightly coupled with a proprietary software
which implements distributed protocols. Protocols can provide various services including
topology discovery, routing, access control, quality of service and other features. Network
operators must install these devices and configure every protocol they intend to use.
This tight integration of forwarding and control functionality within proprietary devices
restricts innovations and slows down introduction of new network services to modern
networks. Bringing open standards and programmability to networks are key points of
introduction of software-defined networks (SDN).

Software-defined networks have drawn a lot of attention in recent years and provide
a rich set of concepts for centralized management of modern networks. The main aim
of SDNs is to provide general principles of packet forwarding and to decouple control
software from forwarding devices. This makes it possible to bring innovations to networks
without changing the underlying hardware just relying on a well-defined standard collec-
tion of packet-processing functions that forms the body of the OpenFlow standard [9].
Software controller provides a centralized management and orchestration of the whole
network inspecting network packets and installing forwarding rules to switches under
management.

However, the standard does not solve security problems which are the great challenge
in todays networking [12]. The centralized control of SDN can benefit in enforcing
security strategies, however, the lack of models makes this problem challenging [4].
We can discuss the security of SDN in three dimensions: integrity, availability and
confidentiality. The integrity assumes that no data is corrupt due to internal or external
events or misconfiguration. This problem was in the focus of study in [1| where the
authors propose a model checking-based approach to find configuration inconsistencies
that can lead to network partitioning. The availability property means that data are
available when needed. At some extent this property is achieved by load balancing in
SDN [8].

The confidentiality considers that secret data cannot be inferred by an attacker or
unintentionally. This policy can be imposed by using access control lists, encryption etc.
One of the recent attempts that introduce access control lists to SDN is [5]. However,
access control does not prevent leaks of confidential data through improperly configured
or buggy software [11]. The confidentiality property can be seen in a broad sense, so we
focuse on the end-to-end confidentiality. We assume that an attacker can observe non-
confidential entities of the network and has a limited access to the network infrastructure.
The confidentiality can be achieved at some extent when network resources are separated
from each other in slices [7], however, slices isolate flows in the network, thus, are too
restrictive. Software nature of network control in SDN is a cause for a try to apply
security methods that are developed for programming languages [11].

There is an extensive work on semantic foundations of networking programming
languages that can provide a solid basis for reasoning about networks. One of the first
attempts was Frenetic language [6] that provided abstractions for SDN programming
and means for combining these abstractions in a meaningful and consistent way. The
NetKAT project [2] defined a semantics that can help to prove reachability in networks

Chaly D. Ju., Nikitin E. S., Antoshina E. Ju., Sokolov V. A.
End-to-end Information Flow Security Model for Software-Defined Networks 737

(which is an integrity property) and address several security properties at once, however,
the decision procedure for this formalism has PSPACE complexity. Focusing only on
confidentiality may reduce complexity of verification. The confidentiality property was
investigated for programming languages [11] and implemented for model [3| and industry-
level languages [13|. This approach is based on rigorous semantic rules that impose
restrictions on information flows in programming languages.

In this paper we propose a framework for checking confidentiality on-the-fly for
modern SDNs that are conformed to the OpenFlow standard. We introduce a set of
semantic rules that help us to verify that controller application does not allow non-
confidential information flows. We assume that network consists of high and low security
nodes and latter we extend our concept to a model of network that can contain secure
and insecure links.

Consider a simple model of a software-defined network. Let us assume that the
network consists of endpoints or hosts that generate data traffic and a set of unified
intermediate nodes forwarding the traffic. These forwarding devices are OpenFlow
switches that conform to standard [9]. There is a single node representing a controller
application that manages all the switches by using secure channels. Thus, a network can
be represented as a graph where the nodes are either hosts or switches, and the edges
are links.

The OpenFlow switch contains a set of physical or logical ports which are interfaces
for passing packets between the switch and the network. According to specification [10]
the OpenFlow switch consists of an OpenFlow channel, one or more flow tables, and
a group table. The OpenFlow channel is used for managing the switch and for passing
relevant data about the traffic under management to the controller. Flow tables provide
means for forwarding and processing packets. The controller can add, update or modify
flow entries in flow tables. Such an entry consists of match fields, counters and a set of
instructions to apply to matching packets. The group table enables additional methods
of forwarding by representing a set of ports as a single entity. Thus, group tables do not
represent a fundamentally different abstraction and can be modeled via flow tables. So,
we exclude group tables out of consideration.

Each arriving packet is matched to flow table entries starting from the first one. If the
match is found, instructions associated with this flow entry are executed. If the packet is
mismatched to each table entry, the outcome depends on the table-miss flow entry. Such
a packet can be passed to the controller, dropped or handed to the next flow table. We
will assume that the packet is passed to the controller.

The match field is a predicate which partitions the set of all flows passing through
the network. Standard [10] proposes that matching field is a conjunctive predicate where
each conjunct can impose conditions on various packet headers including Ethernet, IP,
TCP, etc. Each flow has a source and a destination host. Thus, the matching field can
be modeled as mg.. A mgs, where mg,.. and mgy are conjuncts for matching the source
and destination hosts of the flow, respectively.

Counters are variables that contain statistical information about flows. Since counters
have no direct impact on forwarding, exclude them out of consideration.

Let us consider instructions that can be executed if a packet is matched to a flow
table entry. The standard proposes that instructions are lists of actions. Some of these
actions are required to be implemented by switch designers and the rest are optional.

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
738 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

The actions are executed in the order specified by the list and are applied immediately
to the packet. We consider only the following actions:

e Output(port). This action specifies the port to which the associated packet will be
forwarded.

e Drop. The packet can be discarded from the network using this action.

e Set. The optional set action allows to modify packet header fields, such as IP and
MAC addresses, various tags, etc.

e Delete. This action deletes flow entries according to a match.

We limit ourselves to considering only listed actions when trying to capture most
relevant OpenFlow processing features and not to overwhelm the model.

The packet processing model is the following. Upon receiving an incoming packet p,
the controller emits an ordered list of match fields each of which is paired with an action.
This list is installed to the switch.

The controller software implements specific network applications. There are a lot
of them. For example, the controller can implement a simple hub application where it
installs such forwarding rules to a switch, so an incoming packet is flooded to all switch
ports except for an ingress port. Other applications include a learning switch, where
the controller determines what subnets are reachable from different switch ports and
it installs forwarding rules in such a manner that the incoming packet goes to a port
from which its destination host is reachable, otherwise it is flooded. The controller can
implement various security checking policies, for example, allowing to forward a packet
from authenticated hosts and dropping packets from other hosts.

1. End-to-end Security Model for SDN

The controller application gathers all the information about the network under manage-
ment. So, we can assume that the security level of each endpoint is known. The security
level can be revealed using some kind of a protocol or can be defined ad-hoc. For the
sake of simplicity we assume that there are two security levels of endpoints: high and
low. Since a host is identified by the IP address, we can think that the controller can
map the space of IP addresses of the network under management into a set of security
levels. Denote a security level of a host h as h : low or h : high.

For further discussion we need means for reasoning about sets of hosts. The network
itself or its subnets aggregates hosts with different security levels. Define security predi-
cates exists and forall that will give us a security type for a set of hosts {hi,..., h,}
as shown in Fig. 1.

If the set of hosts is homogeneous, i.e. all hosts have the same security level, the
predicate forall can be typed with the same security type as any host in the set. On
the other hand, the exists predicate is high only if the set contains a high host. This
predicate can not be typed as low and it will be seen later that we only need to check a
possibility to reach a high security host.

One of the primary functions of the controller is routing that is essentially reasoning
about reachability in networks. Model the network as a graph, so we are forced with

Chaly D. Ju., Nikitin E. S., Antoshina E. Ju., Sokolov V. A.

End-to-end Information Flow Security Model for Software-Defined Networks 739
{hl : low,...,hn : lO’LU} () {hl : hlgh77hn : hlgh} (2)
= forall(hy, ..., hy,) : low = forall(hy, ..., hy) : high

{h1,..., hy: 3h; : high}
Fexists(hy, ..., hy) : high

(3)
Fig 1. Security types for sets of hosts

deducing reachable hosts from a given switch. Thus, we define a function reachable(s, p)
that evaluates a set of hosts reachable from a switch s if we first go to the port p. It
is not easy to calculate reachability in real networks since the network can be dynamic
because of mobility of hosts and installed forwarding rules. However, a superset of the
set of reachable hosts can be computed using breadth-first search on a network graph.
More accurate algorithms that take into account network policies can be found in [2].

The data plane of the network is represented by switches that use flow tables for
implementation of network policies. Each flow table entry contains a matching field that
is modeled as a predicate match = mg.. A mgs;. We define the functions src and dst
that map a predicate to a set of source and destination hosts, respectively, such that the
predicate is true.

The next part of the model is a packet processing context. When the OpenFlow switch
can not match the packet to any flow table entry, the model assumes that the packet
is forwarded to the controller. The controller can examine headers of the packet and
determine the host that emitted the packet. Security type of the host implies the packet
processing context so we can analyze whether the controller generates a secure response
to the packet or not.

A security-type system can help to reason about the security type of a single inter-
action between a switch and a controller. Figure 2 presents typing rules for instructions
that can be installed to a switch s by the controller in response to a packet pkt. We can
use the presented security-type system for inferring a type of the interaction. If the type
can be inferred, the interaction is secure, otherwise it allows leaks of confidential data.

Let us consider a proposed set of typing rules in more detail. Rule 4 assigns a type for
a packet processing context in such a way that the context pc agrees with the security
type of the source host of the packet pkt. The packet processing context is a virtual
action in the list formed by the controller.

For the Drop action (rule 5) we strictly isolate flows of different security levels, that
is, the source host of the flow must correspond to the context of the action. Such a type
setting prevents interference between packet processing contexts and actions of different
security levels. Violation of this can lead to a covert channel when low hosts discover
that a high host installs Drop action by observing occasional drops. Setting low type to
the Drop action ensures that under the low security packet processing context a drop
can occur only for low security flows. Non-interference property holds even if we allow a
low security packet processing context to drop high security flows since no information
about high security flows can be inferred. However, we discard this and guarantee that
integrity for high security flows can not be broken by low hosts.

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)

740 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)
= forall(src(pkt)) : pc (4) F forall(sre(match)) : pe (5)
[pc] - pkt [pc] F match x Drop

- exists(dst(match)) : high & exists(reachable(s, port)) : high
[high| F match x Output(port)

F forall(src(match)) : low
[low] F match x Output(port)

(6)

(7)

- forall(dst(match)) : high (8) - forall(sre(match)) : low)
[high] = match x Delete [low] F match x Delete

= forall(sre(match)) = low & forall(src(pattern)) : low

1
[low] F match x Set(pattern) (10)
F forall(src(match)) : high
F forall(dst(pattern)) : high [pd] - Alpd - B (12)
F forall(src(pattern)) : high [pc] = A; B

11
[high| F match x Set(pattern) (11)

Fig 2. Security-type system for SDN

The Output(port) action type depends heavily on the matching condition (rules 6-
7). If the match forwards traffic to high security hosts, there must be a high security
host reachable from the port. In this case the security context of Qutput(port) is high.
If the source of the traffic is a low security host, it can be forwarded anywhere and the
security context of this action is low. The Output(port) action can not be typed if the
match condition specifies that traffic from high security hosts must be forwarded to a
low security host. If this is the case, forall(src(match)) can not be typed as low and
exists(dst(match)) can not be typed as high implying that premises for both rules do
not hold.

Rules 8-9 for Delete action guarantee that the eviction of flows from the flow table
of the switch is done in the respective security context. So, a low packet can not be a
reason to remove high matches and vice versa.

Rule 10 guarantees that any low security flow can not become a high security flow
by changing the source address of the packet. By imposing this condition we achieve a
certain level of integrity since a low packet can not become a high packet that may later
influence other high security flows. Rule 11 assures that a high security flow stays high
providing no information leak to the low security plane. In both rules we denote as a
pattern the data that have to be written to the packet header.

The controller can respond with several actions at once, thus we must have means for
inferring a security type for a list of actions. This can be done using rule 12 that assigns
a security type for a composition. Here, A and B can be either single actions or lists of
actions.

The proposed rules constitute a security-type system which describes what security

Chaly D. Ju., Nikitin E. S., Antoshina E. Ju., Sokolov V. A.
End-to-end Information Flow Security Model for Software-Defined Networks 741

type must be assigned to a list of actions. This list of actions is formed by a controller
in response to a packet incoming from the switch. The packet specifies the first action
in the list called a packet processing context. If the whole list can be typed using the
proposed security-type system, the list ensures non-interference among flows of different
security levels and fulfills some integrity properties.

This security-type system can be further extended to SDNs with insecure links. We
can define an insecure link as a channel that can not be trusted since they are exposed to
everyone like Wi-Fi medium or may be public channels shared by various tenants. This
setting leads to a new confidentiality violation since high data traffic may be forwarded to
an insecure link. It could be noted that any link can be secured using traffic encryption.
We propose the following extension to our model. Let us assume that every link has a
security level (high for secure links and low for insecure ones) and it is known to the
controller. It is the same that we did for endpoints. Also we must provide means of
reasoning about secure paths in the network.

Let us define a function reachableg(s, port) that calculates a set of hosts that are
reachable via paths such that every link in the path is secure. Since the controller has
the information about the network graph, it can be done using breadth-first search or
taking into account current network policies [2].

Since a confidentiality flaw can occur when high traffic is forwarded to an insecure
link, we must only refine rule 6 that is used for inferring the type for Output action
considering high traffic. We propose the following change:

Fexists(dst(match)) : high & exists(reachables(s, port)) : high
[high| F match x Output(port)

(13)

Thus, we allow high traffic only to those switch ports that start with a secure link
and have the possibility to reach the destination host using a secure path.

This shows that the proposed model can be used as a basis for reasoning about various
aspects of confidentiality in software-defined networks.

2. An Example of the Model Application

10.0.0.1 10.0.2.1

10.0.2.2

10.0.1.1 10.0.1.2

@ 1igh host O low host
B OpenFlow switch

Fig 3. A sample network with high and low security hosts

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
742 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

We consider a learning switch application as an example. The switches in the network
initially have no flow entries and forward incoming packets to the controller. The controller
examines each packet and stores in the internal database the source address of the
packet along with the port from where it was received. The port and packet headers are
forwarded to the controller as an OpenFlow packet in message. Next time the switch
receives the packet destined to the address that was seen earlier, the controller can infer
the port to which the packet must be forwarded. If the port can not be determined, the
packet is flooded to all the switch ports.

Algorithm 1 Learning switch algorithm
pkt < packet arrived to the controller
port < from which port pkt received
if find(src(pkt)) is null then
push (src(pkt), port)
end if
fport « find(dst(pkt))
if fport is null then
for all switch port ¢ other than port do
emit (src(pkt),dst(pkt))x Output(z)
end for
: else
emit (src(pkt), dst(pkt))x Output(fport)
emit (dst(pkt), src(pkt))x Output(port)
: end if

e e e
ey e

A simple algorithm for the learning switch is shown as Algorithm 1. The input data
for the algorithm is an incoming packet pkt and the port port from which it has been
received. The controller maintains an internal database which can be implemented as a
hash which supports the following operations:

e push(address, port). The operation creates a mapping between the address and the
port in the internal database.

e find(address). This is a query to the database which returns port number associated
with address and null if there is no such an association.

There is an emit operator in our language which appends the action to the list of
instructions destined to the switch. The list is sent to the switch when the algorithm is
stopped. Then we can analyze the list and find if it is secure or not.

Algorithm 1 checks whether a mapping between a source address of pkt and port
exists. If there is no such mapping, it writes it in lines 3—5. Thereafter, we try to find if
we have learned the port to which we can forward the packet pkt (line 6). If no such a port
exists then we flood the packet to all ports except ingress port (lines 8-10). Otherwise,
we emit forwarding rules which set up a duplex channel between source and destination
hosts of the packet (lines 12-13). We assume that entries responsible for flooding packets
will be eventually evicted from switches and replaced by direct forwarding entries.

Recall the network from Fig. 3. Assume that the controller database is empty and
there is no forwarding rules at switches, so each switch sends a packet in message to

Chaly D. Ju., Nikitin E. S., Antoshina E. Ju., Sokolov V. A.
End-to-end Information Flow Security Model for Software-Defined Networks 743

the controller upon a packet receipt. The security flaw arises even when the first packet
travels from any high security host. For example, if the host 10.0.0.2 sends a packet pkt
to the host 10.0.2.1, the following list of rules will be emitted by the controller to the
switch 1 according to lines 8-10 of Algorithm 1:

(10.0.0.2,10.0.2.1) x Output(1)
(10.0.0.2,10.0.2.1) x Output(3)
(10.0.0.2,10.0.2.1) x Output(4)

The first instruction installs the rule which forwards all packets from high security
host 10.0.0.2 to a low security host 10.0.0.1. Let us try to discover a security type of
packet pkt processing.

First, by rule 2 we can infer that

10.0.0.2 : high
F forall({10.0.0.2}) : high

Since sre(pkt) = {10.0.0.2} using rule 4, the following holds

F forall({10.0.0.2}) : high
[high| & pkt

Next, we should discover the type of the action (10.0.0.2,10.0.2.1) x Output(1).
Let us denote as match = (10.0.0.2,10.0.2.1), src(match) = {10.0.0.2}, dst(match) =
{10.0.2.1} and the reachable(s, port) = {10.0.0.1}. Thus,

- exists(src(match)) : high

but
t/ exists(reachable(s, port)) : high

i/ forall({10.0.0.2}) : low

so the premises for rule 6 not hold.
Likewise,
I/ V(srce(match)) : low,

hence we can not infer the only premise for rule 7. Thus, the considered action can not
be typed, so the whole list can not be typed.

Algorithm 2 proposes an enhanced version of the learning switch. This version is
free from many security leaks but let us analyze it formally. The algorithms breaks into
two parts. The first one is represented by lines 8-19 where packets from low sources are
processed. If the output port can not be identified, the packet is flooded to all ports of
the switch (lines 9-11), otherwise forwarding rules are installed to the switch. These rules
include the one which redirects packet pkt to the destination host (line 13 and another
which either create a channel with the opposite direction (line 15) or sets the action to
Drop if the opposite forwarding rule forms a route from high host to low host (line 17).
The second part of the algorithm processes packets from high sources (lines 21-31). If
the destination for such a high packet is a low host, we drop the packet (line 22). If the

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
744 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

Algorithm 2 Secure learning switch algorithm

1: pkt < packet arrived to the controller

2: port < from which port pkt received

3: if find(src(pkt)) is null then

4: push(src(pkt), port)

5. end if

6: fport «find(dst(pkt))

7. if src(pkt):low then

8 if fport is null then

9 for all switch port ¢ other than port do

10: emit (src(pkt), dst(pkt))x Output(i)

11: end for

12: else

13: (sre(pkt), dst(pkt))x Output(fport)

14: if (dst(pkt):low) then

15: emit (dst(pkt), src(pkt))x Output(port)
16: else

17: emit (dst(pkt), src(pkt))xDrop

18: end if

19: end if

20: else

21: if dst(pkt):low then

22: emit (src(pkt), dst(pkt))xDrop

23: else

24: if fport is null then

25: for all switch port ¢ other than port and exists(i) : high do
26: emit (src(pkt), dst(pkt))x Output(i)
27: end for

28: else

29: emit (src(pkt), dst(pkt))x Output(fport)
30: emit (dst(pkt), src(pkt))x Output(port)
31: end if

32: end if

33: end if

Chaly D. Ju., Nikitin E. S., Antoshina E. Ju., Sokolov V. A.
End-to-end Information Flow Security Model for Software-Defined Networks 745

controller does not find the port to forward the packet, the packet is flooded but only to
high ports (lines 25-27), otherwise forwarding rules are installed (lines 29-30).

Let us show how security properties of Algorithm 2 can be proved. If the condition
in line 8 is true, the following holds for lines 8-19 by rule 1:

{src(pkt) : low}
= forall(sre(pkt)) : low

And by rule 4:
F forall(sre(pkt)) : low
[low] F pkt

Assume that fport is null, the packet must be flooded to all ports except port (lines 9—
11). So, the controller emits packet out messages which can be typed using rule 7:

F forall(src(pkt)) : low
[low] b (sre(pkt), dst(pkt)) x Output(i)
Applying rule 12, we have

[low] F pkt [low] & (src(pkt), dst(pkt)) x Output(i)
[low] = pkt; (src(pkt), dst(pkt)) x Output (i) '

Thus, the whole list of emitted actions is typed and these actions are safe.

Assume that fport is not null, then the controller emits an action in line 13 which
safety can be ensured using the same inference as in flooding case above. The second
action of the list depends on the security type of dst(pkt). If it is low, the action in line 15
is emitted. The security type of the action is the following:

match = (dst(pkt), src(pkt))
{src(match) : low}
F forall(sre(match)) : low

forall(src(match)) : low
F [low] F (sre(pkt), dst(pkt)) x Output(port)

Thus, the security type of all emitted actions agree, so the whole list can be typed
as low. If dst(pkt) is high (line 17), only the following can be inferred:

(rule 1)

(rule 7).

match = (dst(pkt), src(pkt))
{src(match) : high}
F forall(src(match)) : high
t forall(sre(match)) : high
[high| F match x Drop
This means that the security type of the Drop action from line 17 does not agree with
the security type of previous actions and the packet processing context which are low.

Thus, the Drop action can not be considered safe. Indeed, low packets must not trigger
packet drops originated from high security hosts. If we carefully examine the code, we

(rule 2)

(rule 5).

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
746 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

will see that such a drop is made in line 22 when the packet processing context is high.
Hence, we can remove line 17 from our algorithm without harming the learning switch
functionality.

If the packet pkt is originated from a high security host, Algorithm 2 proceeds to
lines 21-31. The packet processing context is now high:

{src(pkt) : high}
F forall(sre(pkt)) : high

(rule 2)

= forall(src(pkt)) : high
[high| & pkt

In this case three possibilities can occur:

(rule 4).

1. A Drop action is emitted (line 22):
match = (src(pkt), dst(pkt))

= forall(src(match)) : high
[high| F match x Drop

(rule 5).

2. The packet is flooded by using the list of Output actions (lines 25-27):
- exists(i) : high (condition in line 25)

match = (src(pkt), dst(pkt)),
since condition in line 21 does not hold

{dst(match) : high}
F exists(dst(match)) : high’

So, using rule 6 we can obtain

F exists(dst(match)) : high + exists(i) : high
[high] = match x Output(i) '

3. Bidirectional forwarding is set (lines 29-30). Since both src(pkt):high and
dst(pkt):high are fulfilled and it was determined that such packets came from
ports port and fport, respectively, we can conclude that exists(port) : high and
exists(fport) : high. Using the same as shown earlier we can obtain that both
Output actions are typed as [high].

Thus, in all three cases the emitted actions are typed as high. This agrees with the
packet processing context, and we can conclude that the whole list of emitted actions
must be typed as [high]|. That is the list is safe.

We have considered all the cases and all lists of actions the controller can install to a
switch. We found a case where a packet from a low security flow can trigger packet drops
from a high security flow. This shows that the proposed approach can find very subtle
security discrepancies. In the context of our application this can not be considered as a
security flaw, but it can lead to security leaks in more general settings.

Chaly D. Ju., Nikitin E. S., Antoshina E. Ju., Sokolov V. A.
End-to-end Information Flow Security Model for Software-Defined Networks 747

3. Conclusion

Security is challenging in networking and must be further investigated for software-
defined networks. There is a lack of formal models for making security analysis [4] and
the paper proposes the approach that is based on a formal security-type system. This
system ensures that the controller application does not violate security properties such
as confidentiality and, at some extent, integrity. We have extended the proposed system
so that can verify new confidentiality properties in case of insecure network links. The
security system can be implemented as a software module of the controller and check
whether network applications violate security properties.

There are both theoretic and practical challenges when considering SDN security.
It is interesting to explore soundness and completeness of the proposed type system.
Another fascinating problem is to introduce other security-type systems that have been
recently developed for programming languages using the proposed approach for achieving
a solid theoretical basis for static security analysis that can prove properties of an SDN
controller at the compilation stage.

References

[1] E. Al-Shaer, S. Al-Haj, “FlowChecker: configuration analysis and verification of federated
OpenFlow infrastructures”, SafeConfig 2010 : 2nd ACM Workshop on Assurable and
Usable Security Configuration (October 4, 2010, Chicago, IL, USA), 37-44.

[2] C.J. Anderson et al., “NetKAT: semantic foundations for networks”, POPL 2014: 41st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (January
22-24, 2014, San Diego, USA), 113-126.

[3] E.Ju. Antoshina et al., “A translator with a security static analysis feature of an
information flow for a simple programming language.”, Autom. Control and Comp.
Sciences, 48:7 (2014), 589-593.

[4] M. Casado, N. Foster, A. Guha, “Abstractions for software-defined networks”,
Communications of the ACM, 57:10 (2014), 86-95.

[5] M. Casado et al., “Ethane: taking control of the enterprise”, ACM SIGCOMM 2007: Data
Communications Festival (Augest 27-31, 2007, Kyoto, Japan).

[6] N. Foster et al., “Frenetic: a network programming language”, The 16th ACM SIGPLAN
International Conference on Functional Programming (September 19-21, 2011, Tokyo,
Japan), 279-291.

[7] S. Gutz et al., “Splendid isolation: a slice abstraction for software-defined networks”, ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking (HotSDN) (August
13, 2012, Helsinki, Finland), 2012, 79-84.

[8] C.-Y. Hong et al., “Achieving high utilization with software-driven WAN”, ACM
SIGCOMM 2013 (August 12 — 16, 2013, Hong Kong, China).

[9] N. McKeown et al., “OpenFlow: enabling innovation in campus networks”, ACM Comp.
Comm. Review, 38:2 (2008), 69 — 74.

[10] Open Networking Foundation, “OpenFlow switch specification v. 1.4.0”, URL:
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-
specifications/openflow/openflow-spec-v1.4.0.pdf, Last accessed: 10.05.2015.

[11] A. Sabelfeld, A.C. Myers, “Language-based information-flow security”, IEEE Journal on
Selected Areas in Communications, 21 (2003), 5-19.

[12] R. Smeliansky, “SDN for network security”, Modern Networking Technologies: SDN &
NFV — The Next Generation of Computational Infrastructure (October 28-29, 2014,
Moscow, Russia), 155-159.

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
748 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

[13] D. Zhang et al., “Jif: Java+ information flow”, URL: http://www.cs.cornell.edu/jif/, Last
accessed: 10.05.2015.

[14] D. Zhang et al., “A Hardware Design Language for Timing-Sensitive Information-Flow
Security”, ASPLOS 2015 : Architectural Support for Programming Languages and
Operating Systems (Mar 14 — 18, 2015, Istanbul, Turkey).

[15] D. Hedin et al., “JSFlow: Tracking Information Flow in JavaScript and its APIs”, The 29th
Symposium On Applied Computing (March 24 — 28, 2014, Gyeongju, Korea), 1663-1671.

[16] O. Arden et al., “Sharing Mobile Code Securely With Information Flow Control”, IEEE
Symp. on Security and Privacy (SP), 2012, 191-205.

[17] A. Cheung et al., “Using Program Analysis to Improve Database Applications”, IEEE
Data Eng. Bull., 37:1 (2014), 48-59.

Chaly D. Ju., Nikitin E. S., Antoshina E. Ju., Sokolov V. A.
End-to-end Information Flow Security Model for Software-Defined Networks 749

DOI: 10.18255/1818-1015-2015-6-735-749

Mopennb 6e3ommacHocT MH(POPMAIIMOHHBIX TOTOKOB
JJIS TIPOrPaMMHO-KOH(MUTYPUPYEMBIX CeTeil

Yauwrit /1. 10}, Hukntun E. C., Arrommna E. FO., Cokosos B. A2
noayuena 21 oxkmasaobps 2015

IIporpammuo-koudurypupyemsie ceru (IIKC, SDN; Software-defined Networks) sistorcs HOBOI
[Iapa/IMrMOi OPraHU3aIIe CeTell, KOTOPasi UCIIOIb3YEeTCsl BO MHOTUX COBPEMEHHBIX ITPUJIOKEHUSIX, TAKAX
KaK BUPTyaJU3allisi CeTU, yIIPaBJIeHNEe JOCTYIIOM Ha OCHOBE IOJIMTHK OE30MIAaCHOCTU U MHOTUX JIPYTHX.
IIporpammmoe obecrieaenue IIKC obecreunBaeT rHOKOCTD U OBICTPBIA TEMIT MHHOBAIAI B CETH, OIHAKO
OHO MMEET CJIOKHYIO MPUPOJLY, B CBSI3U C Y€M BO3ZHUKAET HEOOXOJAUMOCTH B CPEJCTBAX OOECIIEUEHUS €ro
KOppeKTHOoCcTH 1 6e3onacnoctu. Abcrpakrabie mogen s [IKC moryt permuts 91 3amaqn. Jannas pa-
0oTa HalpaBJjeHa Ha pa3spaboTKy Mojesei besonacuoro Bzanmoeiicrsus B [IKC, akiieHTUpysi BHUMaHUE
Ha TaKUX CBOMCTBaxX 6€30MMaCHOCTH, KaK KOH(MUIEHIMAILHOCTD U, YACTUYIHO, IEJIOCTHOCTD. JTO KPUTU-
JecKue CBOICTBa 0E30IaCHOCTH MHOT'OIIO/IH30BATE/ILCKIX CeTell, MOCKOJIBKY ITPOrpaMMHOe 0DecledeHue,
YIPaBJISIONIEe CETHIO, JIOJIZKHO TapaHTHPOBATh, YTO KOH(MDUIAECHIIUAIbLHBIE JAHHBIE OJHOTO MOJIb30BATE IS
He OyJLyT Hepeanbl APYIuM (HexKeJIaTe IbHBIM) II0JIb30BaTe IsiM. Mbl ollpe ie/iniim oHsTHe CKBO3HOi 6e3-
omacuoctr B KoHTeKcTe [IKC 1 mpeiioKmim ceMaHTHIeCKYI0 MO/JIEb, TO3BOJISIONIYIO ClIeIaTh 000CHO-
BaHHBII BBIBOJI, O COBJIIOJIEHUN KOH(DUIEHIINATBHOCTH, M Mbl MOXKEM [IPOBEPUTD, YTO KOH(UIEHINAIbHBIE
nH(MOPMAIMOHHBIE IOTOKHM HE CMENIUBAKTCs ¢ He KOH(MUIEHINAIbHBIME. MBI IIOKa3bIBAEM, YTO MOJE/H
MOKeT OBITH pPacIInpeHa 10 000CHOBAHUS COOJIIONEHIUST KOHMDUIEHITNATILHOCTH B CETIX ¢ OE30MacHbIMUA 1
HeGe30IACHBIMU KaHAJIAMHI CBSA3U, KOTOPBIE MOI'YT BO3HUKHYTH, HAIIPUMED, B OECIIPOBOJIHBIX CPEJIax.

Crarbsl mIpejicTaBisier cO0O paACHIMPEHHYIO0 BepcHuio jokaaga Ha VI MexaynapomHoMm ceMuHape
“Program Semantics, Specification and Verification: Theory and Applications”, Kazaub, 2015.

Crarbst myOJIMKYyeTCsi B aBTOPCKON PeJIaKInn.

Kuarouesbie caoBa: IIKC, 6e3omacHocTsb, (hopMaIbHBIE MOAETN

s nurupoBanusa: Yamawiit 1. 1O., Hukurun E. C., Aarommua E. FO., Cokonos B. A., "Mogens 6e3omnacaoctu nHdpOp-
MAI[MOHHBIX IIOTOKOB [JIs1 IPOrPaMMHO-KOHMUrypupyeMsix ceteit", Modeauposanue u anaiusd un@opmayuontsir cucmen,

22:6 (2015), 735-749.

O06 aBTOpax:

Yauetit Jmurpuit FOpresud, orcid.org/0000-0003-0553-7387, kaua. $bus.-MaT. HayK., JOIEHT,
Apocnasckuit rocyrapcTBenHblil yausepcuter um. 11T Jlemuiona,

yi. Coserckasi, 14, r. dpocnasib, 150000 Poccusi, e-mail: dmitry.chaly@gmail.com

Hukwurun Esrennit Cepreesn4, orcid.org/0000-0002-2341-9950 , crynenrt,
fApociaBckuit rocymapcrBennbiit yuusepcurer um. 1.1 Jlemumosa,
yi. Coserckas, 14, r. dpocmasiab, 150000 Poccus, e-mail: nik.zhenya@gmail.com

Anrommna Exarepuna FOpbesna, orcid.org/0000-0003-1081-1758, actmpanT,
fApocitaBckuit rocymapcrBennbiit yauusepcurer um. [1.IN Jlemuosa,
yia. Coserckas, 14, r. dpocnasib, 150000 Poccusi, e-mail: kantoshina@gmai.com

CoxkouoB Basiepuit Anaronwesud, orcid.org/0000-0003-1427-4937, nokrop dbus.-mar. HayK, npodeccop,
Apocnasckuit rocygapcrBennblii yuunsepcurer uM. 11.IN emumgosa,
ya. Coserckas, 14, r. fpociasiab, 150000 Poccus, e-mail: valery-sokolov@yandex.ru

BuaaromapuocTu:
MccnenoBanue BoimoHeHo npu bUHAHCOBOH Mo iepKke PO®DI B pamkax HaydHOro rnpoexta 14-01-31539 mour-a.
2HUccnenoBanue BHITIONHEHO Mpu (BbUHAHCOBO#H Mo iep:kke Munobprayku B pamkax kourpaxta ID RFMEFI57414X0036.

Modeauposarue u anaius ungpopmavyuorroir cucmem. T.22, Ne6 (2015), c. 750-762
Modeling and Analysis of Information Systems. Vol.22, No 6 (2015), pp. 750-762

©Drobintsev P.D., Kotlyarov V. P., Voinov N. V., Nikiforov 1. V., 2015
DOI: 10.18255/1818-1015-2015-6-750-762

UDC 004.4°2

Model Oriented Approach
for Industrial Software Development

Drobintsev P. D., Kotlyarov V. P., Voinov N. V., Nikiforov I. V.
Received October 21, 2015

The article considers the specifics of a model oriented approach to software development based on the
usage of Model Driven Architecture (MDA), Model Driven Software Development (MDSD) and Model
Driven Development (MDD) technologies. Benefits of this approach usage in the software development
industry are described. The main emphasis is put on the system design, automated code generation for
large systems, verification, proof of system properties and reduction of bug density. Drawbacks of the
approach are also considered. The approach proposed in the article is specific for industrial software
systems development. These systems are characterized by different levels of abstraction, which is used
on modeling and code development phases. The approach allows to detail the model to the level of
the system code, at the same time store the verified model semantics and provide the checking of
the whole detailed model. Steps of translating abstract data structures (including transactions, signals
and their parameters) into data structures used in detailed system implementation are presented. Also
the grammar of a language for specifying rules of abstract model data structures transformation into
real system detailed data structures is described. The results of applying the proposed method in the
industrial technology are shown.

The article is published in the authors’ wording.

Keywords: model oriented approach; multilevel software models; model specification by control flow
and data flow; model verification; substitutions saving the correctness of proved properties

For citation: Drobintsev P.D., Kotlyarov V.P., Voinov N. V., Nikiforov I. V., "Model Oriented Approach for Industrial
Software Development", Modeling and Analysis of Information Systems, 22:6 (2015), 750-762.

On the authors:

Drobintsev Pavel Dmitrievich, orcid.org/0000-0003-1116-7765, PhD,

Peter the Great St. Petersburg Polytechnic University,

Polytechnicheskaya str., 29, St.Petersburg, 195251, Russia, e-mail: drob@ics2.ecd.spbstu.ru

Kotlyarov Vsevolod Pavlovich, orcid.org/0000-0003-3973-5218, PhD,
Peter the Great St. Petersburg Polytechnic University,
Polytechnicheskaya str., 29, St.Petersburg, 195251, Russia, e-mail: vpk@spbstu.ru

Voinov Nikita Vladimirovich, orcid.org/0000-0002-0140-1178, PhD,
Peter the Great St. Petersburg Polytechnic University,
Polytechnicheskaya str., 29, St.Petersburg, 195251, Russia, e-mail: voinov@ics2.ecd.spbstu.ru

Nikiforov Igor Valerievich, orcid.org/0000-0003-0198-1886, PhD,
Peter the Great St. Petersburg Polytechnic University,
Polytechnicheskaya str., 29, St.Petersburg, 195251, Russia, e-mail: igor.nikiforovv@gmail.com

750

Drobintsev P.D., Kotlyarov V.P., Voinov N. V., Nikiforov I. V.
Model Oriented Approach for Industrial Software Development 751

1. Model based technologies

One of the most perspective approaches to modern software product creation is usage of
model oriented technologies both for software development and testing. Such technologies
are called MDA (Model Driven Architecture) [1,2], MDD (Model Driven Development)
[2] and MDSD (Model Driven Software Development) [3]. All of them are mainly aimed
to design and generation of application target code based on a formal model.

The article is devoted to specifics of model oriented approaches usage in design and
generation of large industrial software applications. These applications are characterized
by multilevel representation related to detailing application functionality to the level
where correct code is directly generated.

The idea of model oriented approach is creation of multilevel model of application
during design process. A set of possible models transformations is presented in Fig. 1.
This model is iteratively specified and detailed to the level when executable code can
be generated. On the design stage formal model specification allows using verification
together with other methods of static analysis with goal to guaranty correctness of the
model on early stages of application development.

High-Lewvel Dretail Platform Platform Cenerated
Design Model E:’ Design Model [> Independent Model E} Specific Model [} Code

Fig. 1. Designing multilevel model of application

Statistics collected in companies which are using such approaches shows [4] that
model-oriented techniques are usually used on system testing phase (up to 80% of
projects) with the main goal - functional testing (up to 96%). The reason of such
company’s behavior is complexity of system testing for big industrial projects, which is
based on huge efforts spent on quality guarantying [5]. To resolve this problem software
developing companies are trying to reduce efforts for tests creation and simplify tests
execution process. Usually reduction of testing efforts is linked to communication with
customers because only customer of software has deep knowledge about domain specifics
and model oriented approach helps to simplify such communications.

Researchers also consider that more than 80% [4] of model-oriented approaches
use graphical notations, which simplifies working with formal notations for developers.
Requirements for testers and customer representatives knowledge are reduced by this
way and process of models developing is also simplified.

The following advantages of model-oriented approaches in comparison with manual
test development methods can be found in research papers [4]:

e increasing productivity and reduction of efforts on development;

e systematic reuse of verified templates and solutions which leads to reduction of
bugs density in generated code;

e analyzing and proving formal models properties on early stages of design.

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
752 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

Among drawbacks of the approach the following can be listed:

o different levels of detailing in multilevel formal model and real generated code
which may lead to distortion of verified semantics during model detailing;

e complexity (impossibility in some cases) of aggregate proving the multilevel detailed
model properties;

e complexity of multi criteria optimization while selecting balanced architecture of
software application.

2. Drawbacks of models usage

The main drawback of formal models using in software products development is high
level of model abstraction in comprising with a real system. At the stage of model
design developers tend to specify only major behavior scenarios and data structures
which affect the behavior, ignoring the implementation details. Usage of formal models
on this stage allows to prove the correctness of system behavior in accordance with
specifications, miscellaneous system’s properties and to generate a set of test scenarios
providing complete coverage for specified criteria.

As a model of the system and its implementation in the code vary significantly, the
semantics of test scenarios generated from abstract model may differ from corresponding
behavior observed in the real system. Therefore automatic check of system functioning
correctness is impossible.

There are two ways to solve this issue.

The first one is developing of a detailed model which is as close to system program
implementation as possible. In this case it is impossible to provide check of complete
detailed model of industrial system (even of medium complexity) due to limitations of
modern verification toolsets.

The second one is creating an abstract model of such complexity which does not
prevent applying toolsets for proving behavioral properties. Further the abstract model
can be detailed to the level of real system in such a way that proved properties will be
spread on the detailed model. This method satisfies model based software development
technology when applied iteratively and guarantees storing proved system properties up
to code level.

When control flow is being detailed traditional elements of model control flow structu-
ring can be used. Model fragments which shall be detailed are relocated into separate
structural element (for example, an instance of class method). Then its analysis and
formalization of its behaviors, which include specifying fragments of alternative and
concurrent behavior, fragments of behavior limited by timer, fragments of behavior
specific for exceptions and interruptions can be performed.

When data flow is being detailed formalization of new data structures, signals and
transactions is performed. Each data structure can be represented by several nested
structures of lower level. Signals in the system can be separated into several compound
signals and actions of real system. New transactions can be added to the system to
provide data consistency. Also detailing of one system signal into complete communication

Drobintsev P.D., Kotlyarov V.P., Voinov N. V., Nikiforov I. V.
Model Oriented Approach for Industrial Software Development 753

protocols between components becomes possible. This means that a communication
protocol can be represented by only one signal on the abstract level while in the real
code this protocol can be specified by a set of incoming and outgoing signals.

3. Levels of behavioral models development

One of high level languages for system formal model specification is Use Case Maps
(UCM) 6, 8|. It provides visible and easy understandable graphical notation. Further
abstract models will be specified in UCM language to demonstrate proposed approach
in details. Also considered is VRS/TAT technology chain [7], which uses formal UCM
models for behavioral scenarios generation.

Traditional steps of formal abstract model development in UCM language are the
following:

1. Specifying main interacting agents (components) and their properties, attributes
set by agent and global variables.

2. Introducing main system behaviors to the model and developing diagrams of agent’s
interaction control flow.

3. Developing internal behaviors for each agent and specifying data flow in the system.

Undoubted benefit of UCM language is possibility to create detailed structured
behavioral diagrams. Structuring is specified both by Stub structural elements and reused
diagrams (Maps), which are modeling function calls or macro substitution. Unfortunately,
standard UCM language deals with primitive and abstract data structures, which are
not enough to check implementation of a real system. This drawback is compensated
by using metadata mechanism [8]. But metadata does not allow detailing data flow to
more detailed levels. That’s why for creating detailed behaviors it is proposed to use the
following vertical levels of abstractions during behavioral models development (Fig. 2).

Another benefit of UCM usage is possibility to execute model verification process.
UCM diagrams are used as input for VRS /TAT toolset which provides checks for specifica-
tions correctness. These checks can detect issues with unreachable states in the model,
uninitialized variables in metadata, counterexamples for definite path in UCM, etc. After
all checks are completed the user gets a verdict with a list of all findings and a set of
counterexamples which show those paths in UCM model which lead to issue situations.
If a finding is considered to be an error, the model is corrected and verification process
is launched again. As a result after all fixes a correct formal model is obtained which can
be used for further generation of test scenarios.

After formal model of a system has been specified in UCM language, behavioral
scenarios generation is performed. Note that behavioral generator is based not on concrete
values assigned to global variables and agents attributes, but on symbolic ones which
reduces significantly the number of behavioral scenarios covering the model. However
symbolic test scenarios cannot be used for applications testing as executing behavioral
scenarios on the real system requires concrete values for variables. So the problem of
different level of abstraction between model and real system still exists. In VRS/TAT
technology concretization step [9] is used to convert symbolic test scenarios. On this step

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
754 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

Structured system model in
UCM language

l

Behavioral scenarios with
symbolic values and variables
/

Concrete behavioral
scenarios

l

Behavioral scenarios with
detailed data structures

Fig. 2. Abstraction levels during developing behavioral scenarios

ranges of possible values for variables and attributes are calculated based on symbolic
formula and symbolic values are substituted with concrete ones. But concretization of
abstract model’s behavioral scenarios is not enough for their execution, because on this
stage scenarios still use abstract data structures which differ from data structures in real
system. As a result conversion of concretized behavioral scenarios of abstract UCM level
into scenarios of real system level was integrated into technology chain for behavioral
scenarios generation.

4. Data structures conversion

In behavioral scenarios data structures are mainly used in signals parameters. Consider
an example of converting signal structure of UCM level into detailed structures of real
system for the signal "CONFIGURE".

J';:I\st.art
init T

w UNE &3
Detail

ackT:ACK_MODE:ack2:ACK_MODE:
in COMFIGURE({ackl,ack2) from found;

Fig. 3. Description of the "CONFIGURE" signal
in metadata of the "init" UCM element

Drobintsev P.D., Kotlyarov V.P., Voinov N. V., Nikiforov I. V.
Model Oriented Approach for Industrial Software Development 755

In UCM model the element "init" contains metadata with the signal "CONFIGURE"
and two signal parameters of UCM level: "ackl" and "ack2". Fig. 3 contains metadata
of the UCM element "init" including description of a signal of UCM level.

There are two types of signals in UCM model: incoming to an agent and outgoing
from an agent. Incoming signals are specified with the keyword "in" and can be sent
either by an agent or from outside the system specifying with the keyword "found".
Outgoing signals are specified with the keyword "out" and can be sent either to an agent
or to outside the system specifying with the keyword "lost".

recfwdACM_CAP_IP 1

start

recACM_CAP_SL 1

w UME &2

Detail

kode:MoDCOD;
in ACM_CAP_IP_ABS(code) from g
do { out ACM_CAP_IP_ABS(reccod) to u; } then reccod:=code;

Fig. 4. Description of the "ACM_CAP IP ABS" signal in metadata
of the "recftwdACM _CAP _IP" UCM element

As an example in UCM model the element "recfwdACM CAP IP" contains metada-
ta with the outgoing signal "ACM _CAP [P ABS" and the signal parameter "reccod"
of UCM level. This signal shall be sent after the signal "ACM _CAP [P ABS" with
the parameter "code" received from the agent "g". Fig. 4 contains metadata of the UCM
element "recfwdACM _CAP_IP" including description of a signal of UCM level. The
outgoing signal can be used only inside of "do" section as reaction of the system on some
event.

Terminal#® | [catewayg Terminal | [Gatewayia

CONFIGURE CONFIGURE
ackt, ack2 FLIP, FLIP

ACM_CAP_SL ACM_CAP_SL

code code

(a) (b)

Fig. 5. Symbolic (a) and concrete (b) test scenarios
containing the signal "CONFIGURED"

Based on high level UCM model symbolic behavioral scenarios are generated containing
data structures described in metadata of UCM elements. Fig. 5(a) contains symbolic
test scenario where the agent "Terminal#t" receives the signal "CONFIGURED". In

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
756 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

symbolic scenarios actual names of UCM model agents specified in metadata are used. For
example, the agent "Gateway#g" is the source of the signal "ACM CAP_SL" and the
agent "Terminal#t" is the destination. While the source of the signal "CONFIGURE"
is outside the system.

Symbolic behavioral scenario is input data for concretization module which substitu-
tes symbolic parameters with concrete values. In current example the parameters "ackl,
ack2" are substituted with values "FLIP" and "FLIP". Fig. 5(b) contains concrete
behavioral scenario. Fig. 6 contains another example of concretization where integer
parameters are substituted together with parameters of string type. For example, the
symbolic parameter "Speed Value" in the signals "Current Speed" and "Display Speed"
(Fig. 6(a)) is concretized with value "15" (Fig. 6(b)).

SiD#sia [] [o | [&] Sneso SO (EmtStca] [ERS
MCS. Poaktion MCS Position
AUT
Driving Mode wdid
Display Driving Mode Display Driving Mode
Driving Mode AUTO
= [NO driving mode INaICation shall be shown I
[No ariving mode indication shall be shown]
Current Speed (u:réﬁl Speed
Speed Value l 15
Display Speed
Display Speed it
15, TRUE
Speed Value, QS screen ON
‘ HMI Health
HMI Health
} | VALID
‘ Health Status
Display TCMS. Butten
Display TCMS Button
TRUE
TRUE i

(a) (b)

Fig. 6. Symbolic (a) and concrete (b) test scenarios
containing string and integer parameters

Note that after concretization interacting agents are not changed in any way. To
convert concrete data structures into detailed structures a developer shall specify the
rules of structures conversion: for each signal of UCM model a corresponding conversion
condition (Lowering Condition) and detailed signal (Lowered Signal) are specified.

To keep proved system properties there are following limitations on the conversion:

e rules which allow separating constants into several independent parts (sets of
variables) are prohibited;

e separating fields of variables values is prohibited;

e converting abstract signal into a protocol if this protocol is not represented by
verified template is prohibited;

e only constant template values or values obtained at concretization step are allowed;
e violating consistent communication protocol is prohibited.

Fig. 7 contains the rule for converting the signal "CONFIGURED" into the signal
"CONFIGURED SIG_ST" for all occurrences of this signal in test scenario. This
condition is specified by the keyword "any" in the rule.

Drobintsev P.D., Kotlyarov V.P., Voinov N. V., Nikiforov I. V.
Model Oriented Approach for Industrial Software Development 757

4R Lowering Editor 52

@ Signals and Actions | %’ Lowering

Signal Types and Actions Lowering Rule : CONFIGURE
’ [a 3 any
) Sack_mpeg2=Sampeg2; Sack_multicast=Samulticast;
4 [B CONFIG_SIG_ST
& 128, Sack_mpeg2, (. (.0, 100, 1010°B.), (.0, 0, 0.}), Sack_multicast, 123456739, 5060, 128

4§ STsim

4 (5 CONFIGURE

) ampeg2
) amulticast

Fig. 7. Rule for converting the signal "CONFIGURED"
into the signal "CONFIG SIF ST"

Specification of conversion rules is based on the grammar of conversion language.
Common view of the grammar for converting signals of abstract level into detailed level
in BNF form is shown in Fig. 8.

LoweringSpec ::= UCMSignal "->" LoweringRule | LoweringSpec UCMSignal "->" LoweringRule
LoweringRule ::= LoweringCondition | LoweringRule LoweringCondition

LoweringCondition ::= <condition STRING> ConditionContent

ConditionContent ::= LoweredElement | LoweredElement ConditionContent

LowredElement ::= LoweredDo | LoweredSignal | LoweredRction

LoweredDo ::= <code STRING>

LoweringSignal ::= <signal name STRING> SignalContent

SignalContent ::= ValueNotation Instance Via

ValueNotation ::= <empty> | <value STRING> | "{." ValueNotation ".}" | ValueNotation "," ValueNotation
Instance ::= <empty> | "TAT" | "sUT"
Via := <empty> | <port STRING>

UCMSignal ::= Name UCMParam
Name ::= <name STRING>
UCMParam ::= <empty> | <param name STRING> | UCMParam "," UCMParam

Fig. 8. Grammar of the conversion rules language

Based on the specified conversion rule each abstract signal in concrete behavioral
scenario is processed and in case the signal satisfies to a conversion rule it is converted into
detailed signal. Fig. 9 contains executable scenario with the detailed signal "CONFIG -
SIG_ST" which can be used for testing. Note that on this stage system agents are joined
into two instances — TAT and SUT, which is required for testing process.

TAT sSUT

’ CONFIG_SIG_ST
128, FUIR, (. (. 0,100,1010B), (.0, 0,0).}, FLIF, 123456729, 5060, 128

ACM_CAP_SL
128,0,1,2,3,1,((0,0,0.),(0,0,0.).(.0,0,0.).), 17, 123456789, 5060, 128

Fig. 9. The detailed signal "CONFIG _SIG_ST" of the real system

To exclude limitations on conversion of signals with templates usage the following
techniques can be used. In case of some particular signal is converted into a set of

Moodenuposarue u anasus ungopmayuonnox cucmem. T.22, Ne6 (2015)
758 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

signals (protocol) which are used as parameters variables verified on previous phase
then combined conditions shall be used. In Fig. 10 (a) a signal with four parameters is

presented. Consider that based on a template the signal shall be substituted into a set
of signals.

I TJerminal#t I | Recelver#r

Terminal#t [| Recelver#r | CONFIGURE

ackl, ack2

CNI MEASUREMENT

Initialize
code
ackl, ack2, code, rsp code
CONFIGURE
code
(a) CNI CHANGE
rsp code

(b)
Fig. 10. Initial signal before (a) and after (b) conversion

Fig. 10 (b) contains a diagram with substituted signal. To verify correctness of such
substitution a special filters shall be added into target code of application and test.

Another case when signal parameter is separated into parameters of two signals as
presented in Fig. 11 (a,b).

Instancel Instance2
Instancel Instance2
Lowered Signall
»>
Abstract Signal 1
1.777
Lowered Signal2
0.777
(a)
(b)

Fig. 11. Initial signal before (a) and after (b) parameters separation

The same solution with filter in target code of application and test can be used. The
filter shall check that correctness of the model was not broken via generation of ranges
for parameters of separated signals.

Drobintsev P.D., Kotlyarov V.P., Voinov N. V., Nikiforov I. V.
Model Oriented Approach for Industrial Software Development 759

Usage of approach with filters allows to raise limitations of lowering conversion
connected to maintenance of model correctness.

5. Overall scheme of conversion

Implemented module of behavioral scenarios conversion takes the concrete behavioral
scenarios and specified rules of conversion as an input and the output is behavioral
scenarios of the real system level which can be used for testing. Overall scheme of
conversion is shown in Fig. 12.

Test scenarios Test scenarios
generated by VRS conversion rules

v v
Test scenarios
convertor

v
' A Y
Test scenarios of real
system level

Fig. 12. Test scenarios conversion scheme

Detailing stage is based on the grammar of data structures conversion rules described
in Fig. 8 and conversion algorithm. The specific feature of test automatic scenarios
detailing to the level of real system is storing of proved properties of the system obtained
in process of abstract model verification.

6. Templates

Often similar conversion rules are required for different signals. Templates can be used
to simplify this approach. A developer can define a template of detailed signal, specify
either formula or concrete values as a parameter of detailed signal and then apply this
template for all required signals. For each case of template usage a developer can specify
missed values in the template, change the template itself or modify its structure without
violating specified limitations. Templates mechanism simplifies significantly the process
of conversion rules creation.

Consider the process of templates usage. Templates are created in separate editor
(Templates Editor). In Fig. 13 the template "template 0" is shown which contains
detailed data structures inside and the dummy value "value temp" which shall be
changed to concrete values when template is used.

When a template of data structure is ready, it can be used for creation of conversion
rules. Fig. 14 represents usage of the template "template 0" with substituted concrete

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)

760 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)
'ﬁ Templates Editor &2 o = |
Templates Editor
type filter text
#4 [Templates Templates name: template_0
iE temnplate_0
B Select TDL Type or »

Template:
Edit signal parameters in text below: o
1268

value_temp,
(.
(-
0, value_temp, 1H0'B
J,
{
0.0.0
B
Je
walue_temp, 123456739, 5060, 128

Apply

Fig. 13. Example of the template "template 0"

Lowering Rule : CONFIGURE Editor
4 (3 any
Sack. 2=5 ; Sack Iticast=S It :
) % CI’SN’FFI”(;'D_:‘QG_S:mPEQL ack_multicast=3amuiticast Lowered signal name: CONFIG_SIG_ST
@ 128, Sack_mpeg2, (. (.0, 100, 1010'B), (.0, 0,0), Sack_mul | Via: STsim
‘ S5T_sim
From: v
Select TDL Type or Template: | template 0: Template -
Edit signal parameters in text below: < e
128, A
k. 2,
TAT SUT [s‘“ -mPeg

] (.
CONFIG_SIG_ST <] oo 1103

128, FLIR, (. (. 0,100, 10108), (. 0,0,0)), FLIF, 123456789, 5060, 128 E
| | 00,0
J

).
$ack_multicast, 123456789, 5060, 128

< > Apply Discard

Fig. 14. Applying the template "template 0" for the signal "CONFIG _SIG _ST"

values of signal parameters instead of the dummy value "value temp" which then will
appear in behavioral MSC scenario.

Note that in conversion rules editor complex data structures are represented with
formatted text which makes parameters and values more readable than in linear represen-
tation of MSC scenario.

Templates usage reduces efforts on creation and coding complex data structures on
25%-30% and reduces possibility of introducing extra bugs because of user inaccuracy.

7. Conclusion

Proposed approach to behavioral scenarios generation based on formal models differs
from existing approaches in using the process of automatic conversion of behavioral
scenarios with abstract data structures into behavioral scenarios with detailed data

Drobintsev P.D., Kotlyarov V.P., Voinov N. V., Nikiforov I. V.
Model Oriented Approach for Industrial Software Development 761

structures used in real applications. Proposed language and overall scheme of this process
allow automating of creation a set of covering behavioral scenarios. In the scope of this
work the analyzer/editor for conversion rules of signals from abstract UCM model level
into signals of real system level was developed and called LoweringEditor. It supports the
following functionality: automatic binding between conversion rule and signal of UCM
level, conversion rules correctness checking, templates usage, highlighting the syntax of
conversion rules applying conditions specification, variables usage, libraries and external
scripts (includes) usage, splitting UCM signal or action into several signals of real
system according to communication protocol, copy /paste/remove operations, import and
export from/to storage file. Features described in the article make process of automatic
conversion powerful and flexible for different types of telecommunication applications.
Adding LoweringEditor into technology process of telecommunication software applica-
tions test automation allowed to exclude effort-consuming manual work in the cycle of
test suite automated generation for industrial telecommunication applications, increase
productivity of test generation in 25% and spread the properties proved on abstract
models into generated code of executable test sets. Excluding of manual work allows
to reduce human factor in testing process and guaranty quality of generated test suite
based on verification results.

References

[1] “Model Driven Architecture - MDA”, http://www.omg.org/mda, 2007.

[2] Pastor O. et al., “Model-Driven Development”, Informatik Spektrum, 31:5 (2008), 394—
407.

[3] Beydeda S. , Book M., Gruhn V., “Model Driven Software Development”, Springer-Verlag
Berlin Heidelberg, 2005, 464.

[4] Binder R.V., Kramer A., Legeard B., “2014 Model-based Testing

User Survey: Results”, http://model-based-testing.info /wordpress /wp-
content/uploads/2014-MBT-User_Survey_Results.pdf, 2014.

[5] Fenton N.E., Ohlsson N., “Quantitative analysis of faults and failures in a complex software
system”, Software Engineering, IEEE Transactions on, 2000, Ne8.

[6] Buhr R. J. A., Casselman R. S., “Use Case Maps for Object-Oriented Systems”, Prentice
Hall, 1995, 302.

[7] Anureev I. et al., “Tools for supporting integrated technology of analysis and verification
of specifications for telecommunication applications”, SPIIRAN works, 1 (2013), 28.

[8] Letichevsky A.A. et al., “Insertion modeling in distributed system design”, Problems of
programming, 2008, 13-39.

[9] Kolchin A. et al., “Approach to creating concretized test scenarios within test automation
technology for industrial software projects”, Automatic Control and Computer Sciences,
Allerton Press, Inc., 47:7 (2013), 433-442.

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
762 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

DOI: 10.18255/1818-1015-2015-6-750-762

OcobeHHOCTH ITPpUMEHEHNSI MOAeJIbHO-OPUEHTUPOBAHHOTO
MMO/IX0/Ia MPHW pa3padoOTKe IMPOMBINJIEHHBIX TPUJIOXKEeHUIA

Hpoounnes II. 1., Kornspos B.11., Bounos H.B., Hukudopos I1.B.
noaydena 21 oxkmabps 2015

B crarbe paccMOTpeHBI 0COOEHHOCTH TIPUMEHEHHsT TEXHOJOTUH pazpabOTKU MPOrPAMMHBIX CHCTEM
Ha OCHOBE MOJIEJIbHO-OpueHTHpoBaHHOrO 10ax01a: Model Driven Software Development (MDSD), Model
Driven Architecture (MDA) u Model Driven Development (MDD). Onucansl IpenMyIecTBa UCIOIb30-
BaHUS [TOJIXO/I0B B IPOMBIILIEHHOCTH. OCHOBHOM aKIEHT CJIEJIAaH HA IPOEKTUPOBAHIE CUCTEM, aBTOMATH-
YeCKYIO TEeHEPAIUIO KO/ DOJIBIINX CUCTEM, BEPUMUKAIIIO, TOKA3ATEIHCTBO CBOWCTB CUCTEM U YMEHbIIIe-
HUE IJI0THOCTH ommbOK. [IpuBeIeHbl HEJOCTATKY UCIOJIB30BAHUS JAHHOTO MTOJIXO0/IA, OJJHUM U3 KOTOPBIX
SIBJISIETCST PA3JIMIHAST CTENEHb JeTaJIbHOCTH MOJIEJIA U PeabHON Pean30BAHHON CHCTEMBI Ha SI3bIKE MPO-
rpaMMupoBanus. B paboTe npeiaraeTces MOaXo, XapaKTePHbBIN JIJIst CHCTEM, UMEIOIIAX MHOTOYPOBHEBOE
[peJICTaBIeHne, CBI3aHHOE C JleTaau3almeil (OyHKIMOHAJILHOCTH TIPUJIOKEHUsI JI0 YPOBHSI, HA KOTOPOM
OCYIIIECTBJISIETCS MPsIMAast TeHepaIus KOPPEKTHOrO Kojia. 110/1xo 1 mo3BoJIsIeT JeTaan3npoBaTh MOJEb 10
YPOBHSI PEAJILHOTO KOJIa CUCTEMBI, TIPU 9TOM COXPAHUTH ITPOBEPEHHYIO CEMAHTUKY MOJIEIN U 0DECIEInTh
[IPOBEPKY BCel JIeTaIbHOI Mojieu. Jleraau3arius MpOBOIUTCS KaK 10 MOTOKY YIIPABJIEHHS, TaK U 10 10~
TOKY JIaHHBIX. IIpe/iCTaBIIeHbl MAari 110 MpeobpasoBaHmI0 a0CTPAKTHBIX CTPYKTYD JAHHBIX (B TOM UHCIIe
TPaH3aKIMil, CUI'HAJIOB U UX IIAPAMETPOB) B CTPYKTYPBI JAHHBIX, UCIOJIL3YEMbIX B DEAJU3AIUHA CUCTEM.
[IpuBeena rpaMMaTiKa A3bIKA 3aJI@HUs IPABUJI IPEOOPA30BAHUSI CTPYKTYP JAHHBIX aDCTPAKTHON MO-
JIeJI B JIeTajIbHbIe CTPYKTYPBI TAHHBIX PEAJIbHOM CUCTEMBI U 00Iast cxeMa npeobpazoBanus. [IpuBeienn
pe3yIbTaThl IPUMEHEHHUsI IPEJTIOYKEHHOI0 MEeTO/Ia B IIPOMBIIIIEHHON TEXHOJIOTUN.

Crarbs mpejcTaBiisier cOOO pacIIMpeHHy0 BEpCHio Jo0KJaga Ha VI MexayHapomHoM ceMuHape
“Program Semantics, Specification and Verification: Theory and Applications”, Kazaus, 2015.

Crarbs yOJIMKYeTCsl B ABTOPCKOM peaKIlui.

KuroueBble cjoBa: MOJI€JIbHO-OPUEHTUPOBAHHBIN TI0JIX0/T; MHOIOYPOBHEBBIE MOJEIN TPUJIOXKEHMUST;
crierupuKaImst MOJeJIell 10 yIIPaBJIeHUIO U CTPYKTypaM JaHHBIX; BEPUMUKAIMS MOJIEIel; TOICTaHOBKH,
COXPaHSAIONIYE KOPPEKTHOCTD JOKa3aHHBbIX CBOHCTB

Has npurupoBauus: pobunnes I1. /1., Kornsipos B.I1., Bounos H.B., Hukudopos N.B., "Ocobennoctu npumeneHust
MOJIE/IbHO-OPUEHTHPOBAHHOIO IIOAXO0Aa NPHU pa3paboTKe IPOMBINIIEHHBIX npuiioxkeHuit", Modeauposarnue u anaausd uh-
Ppopmavyuornnor cucmem, 22:6 (2015), 750-762.

O6 aBTOpax:

Jpobunnes IMasen Jmurpuesnd, orcid.org/0000-0003-1116-7765, KaH. TeXH. HAyK, JOLEHT,
Canxkr-Ilerepbyprekuit nosurexnnyueckuit yuusepcurer [lerpa Besukoro,

ya. Ilomurexunyeckas, 29, r. Caukr-IlerepOypr, 195251 Poccus, e-mail: drob@ics2.ecd.spbstu.ru

Kornsipos Beesoson ITasiosuy, orcid.org/0000-0003-3973-5218, kan/. TexH. HayK, npodeccop,
Canxkr-Ilerepbyprekuit mosurexunydeckuit yuusepcurer [lerpa Besukoro,
ya. Ilomurexunaeckas, 29, r. Caukr-IlerepOypr, 195251 Poccus, e-mail: vpk@spbstu.ru

Bounnos Hukura Biagumuposnu , orcid.org/0000-0002-0140-1178, kana. TexH. HayK, JOIEHT,
Canxr-Ilerepbyprekuit nosnurexunydeckuit yuusepcurer [lerpa Besukoro,
ya. Ilomurexunaeckas, 29, r. Caukr-IlerepOypr, 195251 Poccus, e-mail: voinov@ics2.ecd.spbstu.ru

Hukudopos Urops Banepresuu , orcid.org/0000-0003-0198-1886, kaH/. TeXH. HayK, JOLUEHT,
Cankr-ITerepbyprekuii nosmmrexuudeckuii yausepcurer Ilerpa Besmkoro,
ya. Ilomurexunaeckas, 29, r. Caukr-Ilerepbypr, 195251 Poccus, e-mail: igor.nikiforovv@gmail.com

Modeauposanue u anaausd ungopmayuorror cucmem. T.22, Ne6 (2015), c. 763-772
Modeling and Analysis of Information Systems. Vol. 22, No 6 (2015), pp. 763-772

(©Belyaev M., Itsykson V., 2015
DOI: 10.18255/1818-1015-2015-6-763-772

UDC 004.054+004.423

Fast and Safe Concrete Code Execution
for Reinforcing Static Analysis and Verification

Belyaev M., Itsykson V.
Received September 15, 2015

The problem of improving precision of static analysis and verification techniques for C is hard due
to simplification assumptions these techniques make about the code model. We present a novel approach
to improving precision by executing the code model in a controlled environment that captures program
errors and contract violations in a memory and time efficient way. We implemented this approach as an
executor module Tassadar as a part of bounded model checker Borealis. We tested Tassadar on two
test sets, showing that its impact on performance of Borealis is minimal.

The article is published in the authors’ wording.

Keywords: concrete interpretation, symbolic execution, static code analysis, analysis precision

For citation: Belyaev M., Itsykson V., "Fast and Safe Concrete Code Execution for Reinforcing Static Analysis and
Verification", Modeling and Analysis of Information Systems, 22:6 (2015), 763-772.

On the authors:

Belyaev Mikhail, orcid.org/0000-0003-1260-9211, assistant,
Peter the Great St. Petersburg Polytechnic University,
Polytechnicheskaya street, 21, Saint-Petersburg, 194021, Russia

e-mail: belyaev@kspt.icc.spbstu.ru

Itsykson Vladimir, orcid.org/0000-0003-0276-4517, PhD,
Peter the Great St. Petersburg Polytechnic University,
Polytechnicheskaya street, 21, Saint-Petersburg, 194021, Russia

e-mail: vlad@icc.spbstu.ru

763

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
764 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

Introduction

Static analysis and verification of programs written in an unsafe language like C is hard.
Most of the problems researchers face in these areas are either NP-hard or undecidable
due to inherent properties of a Turing-complete language and the presence of unsafe
memory operations. Another difficulty comes from the fact that the analysis that can
be used in an interprocedural environment must be aware of both internal and external
functions to provide a good approximation of program behaviour.

The goal of this work is to provide a safe and fast way to reduce the number of
false positives in results produced by static code analysis of C. We mainly focus on
logic-based analysis techniques (such as bounded model checking [5]) that allow to find
non-functional program defects (i.e. null pointer deferences, buffer overflows, division by
zero, etc.) and code contract violations. We provide a way to reduce false positives in
these cases in the form of a concrete code execution environment that borrows some
ideas from symbolic execution and is safe, robust and resource-efficient.

This technique has been implemented in a prototype executor called Tassadar as
a module of a bounded model checker Borealis [1| and was tested using Borealis
testbench.

The rest of this paper is structured as follows. The problem statement is given in
section 1. Section 2 is dedicated to describing the execution environment itself. The
implementation details are given in section 3. Section 4 includes our evaluation results.
Related work and summary of alternate approaches are given in section 5.

1. Problem Statement

Most approaches to finding program defects and/or checking source contracts have
limitations that result in lowering code model conformance as a trade-off between the
quality of analysis and resource consumption. The most basic of these limitations are as
follows.

Limiting the number of loop iterations and recursive function calls;
Simplified view on memory and pointer aliasing;
Using summaries and/or contracts to model function calls;

Ll e e

Replacing stdlib/system /external function calls with annotations or approximated
models.

For the rest of this paper we will use the term analysis (or the analysis) to refer to
the static analysis or verification technique that is being augmented by our approach
and assume that the aim of this analysis is to either detect program defects or contract
violations, referred to as errors.

There are two basic measures for analysis quality: precision and recall [6]. Precision
and recall are dual properties that cannot usually be achieved together at the same time:
any improvement to recall usually raises the number of false positives as well, lowering
precision, and any change that increases precision usually lowers the number of true
positives, having a negative impact on recall. The idea of this work is to improve
analysis precision by filtering out false positives after the analysis has finished, thus

Belyaev M., Itsykson V.
Executor for Reinforcing Static Analysis 765

having no impact on recall. Improving precision is very important for real-life usage of
defect detection tools as false positives make analysis results noisy and less usable.

We do this by using a technique that is based on directly executing all program
procedures in a checked and analysis-aware environment. The set of properties this
process must satisfy is as follows.

Avoid infinite and lengthy execution;
Minimize resource consumption to the lowest level possible;
Avoid as many of model inaccuracies imposed by the analysis as possible;

Capture all analysis-supported errors.

We must also keep notice that some values (e.g., a call to rand() that results in
a defect only for some return values) must be handled in an analysis-conformant way,
returning the same value that was inferred by the analysis if possible. This is also true
for initial function arguments and global variables for a concrete function execution.
Without this, it would be impossible to assess whether the analysis-provided result was
correct.

2. Code Execution in a Controlled Environment

This section details our approach, including dealing with standard register operations,
memory simulation and calling external libraries. We also provide some details on how
we deal with code contracts.

2.1. Modeling register operations

In this paper we assume that the code model conforms to the static single assignment
(SSA [8]) form. This is a widely used code model (e.g., used by GCC [14] and LLVM [13]
infrastructures). This provides us with ability to work on already optimized code for
everything besides memory operations. Implementing numeric operations is pretty
straightforward using biggest numeric types available. All the work with structures/unions
is done via memory.

Calling internal functions is done through modeling call stack and current instruction
pointer. As all the values in SSA form are assigned only once, we can store their values
in a flat value table. We also keep track of stack-allocated pointers for deallocation. In
order to conform to the variability of results provided by analysis techniques, some values
in the code should be treated as unknown, or symbolic. The biggest difference between
our approach and symbolic execution is that we always try to get concrete values for all
these symbols using a special facility called the arbiter.

Arbiter is a function from symbols to real values that has external information
about the code that the executor have no access to. When checking analysis-based
counterexamples, it is the arbiter that provides the connection between the executor
and the analysis. Each query for a value that cannot be directly computed results in a
mapping of the corresponding variable from the counterexample. However, the arbiter
interface is independent from the analysis itself, providing a point of extension.

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
766 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

A special case of symbolic values are pointers. All the symbolic pointers are modeled
using a special non-null value that is known both to arbiter and memory model. Dereferen-
cing this value effectively queries the arbiter instead of the memory.

Currently we do not support writing values to symbolic pointers and this presents a
problem when dealing with structures passed by pointer to top-level functions, but this
problem can be dealt with by reconstructing the storage graph from the counterexample,
which is possible but complex and not yet implemented in our prototype.

2.2. Modeling memory operations

Segment tree (ST) is a well-known data structure first introduced by [3]. It is essentially
a balanced tree with leaves representing elements and inner nodes representing ranges,
the root of the tree being the whole range and every child representing a range that is
one half of its parent’s. This data structure can be used to efficiently perform a number
of tasks, like the minimum range query or any other range query based on an associative
binary operation. Changing a leaf value and recalculating the whole tree is a O(logy(NV))
operation for a range of size N.

[0,8)
[4,8)

~
~
~

2 (4,6) "A,[6,8)
oty Il ¢ AT >
0 1 2 3 4 5 6 7

Fig. 1. Implicit segment tree

This structure is very inefficient memory-wise. This can be countered by using an
implicit version of segment tree, where tree nodes are constructed during writes only.
Figure 1 shows this difference in detail: an ST needs 15 cells for 8 elements, while an
implicit ST (shown in bold) only 7 cells for 3 writes. This change imposes no penalty on
lookup complexity. Memory consumption becomes O(Klogs(N)) where K is the number
of write queries. The difference can be dramatic for big arrays. E.g., for a range of size
231 building an ST will require 4294967294 cells, while for the implicit version it depends
on the number of writes, which is much smaller. Another optimization is to reduce height
by storing fixed size flat arrays in leaves, which reduces the height by logs(P) but adds
O(P) to the complexity of each write.

As mentioned earier, an implicit ST can be efficiently used to represent big amounts of
data without consuming too many resources. In order to provide all the desired memory
properties for our executor, like handling buffer overflows, allocations, deallocations and
so on, we need to store this cumulative information in the nodes themselves in a manner
similar to the one used when solving range queries.

Each node in the tree contains a tuple {Q, S, F, Sz, D}. Memory status) (Alloca,
Malloc or Unknown) designates whether this exact node was used as the root of an
allocated memory region with size Sz. Memory state S (Memset, Uninitialized or
Unknown) is used to represent zero-initialized, uninitialized or memset region of memory,

Belyaev M., Itsykson V.
Executor for Reinforcing Static Analysis 767

enabling shortcut reads for regions that are allocated, but never written to. The byte F
represents the byte value for memset.

Each ST leaf contains a pointer to buffer containing the memory chunk and does not
contain child pointers. The usual memory access pattern in C implies that the size of
chunks stored in leaves should be at least as big as structure padding and preferably a
multiple of it. With exception to direct memory access functions and unpadded structures,
this will ensure that every read or write accesses one chunk only.

Summing up, every node in the tree represents a memory range of size 2V K where
K is the size of leaf memory chunk. To allocate a new memory range we need to find a
node representing a big enough range and set () and S accordingly. No nodes below this
level are created until written to.

To perform a write we descend down the tree until we reach the desired chunk,
splitting the data source array and creating new nodes if needed. An important thing is
keeping track of the value of S. For each new child created, we create its sibling, copy
S and F from parent and reset S in parent to unknown. A read is the same, but does
not create new nodes and merges the data array on the way back up. If we encounter a
node with S = Memset, the returned value is set to F.

Other primitive operations are memset (different to write in that it assigns S and
F for appropriate ranges) and memchr (similar to read except that it traverses the tree
horisontally) because there is no way to do them efficiently through reads and writes.

On each tree traversal a single allocated node on the way down is searched for and
bound-checked. Any situation when this is violated is an error.

2.3. Modeling global state

Global variables and constants have a much simpler structure. All values in this space
have known size and need no additional checks for initialization [10]. In order to keep
track of global variables, we use a standard binary search tree of pointers to lazily-
allocated buffers. In the future, it might be more convenient to use a unified structure
for both local and global data. Pointers to labels and functions are stored separately in
a structure associating them with real pointers. Doing arithmetics on these pointers is
an error.

The only query needed for global data is to be able to find the base pointer for a value.
This is done using a standard binary search. Local and global memories are distinguished
by the ranges of corresponding pointers.

2.4. Handling external functions

We do support all the functions of the standard C library and the most common POSIX
functions. The system-based side effects, like networking, files, etc. are not simulated,
but the values produced are sensible for their counterparts, including error situations.
Functions without side effects (for example, the builtin math library) are implemented
directly.

Functions directly operating the memory are implemented on top of primitive reads,
writes, memset and memchr. Another function that is subject to become primitive is

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
768 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

memcpy, which is rather inefficient at the moment and making it efficient is a subject of
further research.

Another important thing is support for external libraries, which at the moment can
only be implemented as a part of the executor itself. Providing an external interface to
implement these is also a subject of future research.

2.5. Checking code contracts

Most programming tools that support contracts either specify them inside the language
(implementing these is no different from other functions) or outside, be it comments,
annotations or external data files. These definitions must be parsed separately and are
usually provided as their AST. As these contracts are (usually) not allowed to have any
side effects, thus executing them is straightforward using the AST itself.

Some systems (notably the ACSL annotation language used in Frama-C [2]|) provide
a framework for specifying contract in a more logic-oriented way, supporting quantifiers
over logic formulae, providing user-created theorems and other constructs that are more
typical for logic programming languages rather than functional or imperative ones and
cannot be in any way executed in the sense we put to this term. The reason for this
is that “executing” a quantified formula effectively means checking it for every possible
value of all bound variables, which violates our goals and is impossible in the general
case. However, in some simple cases these can be reduced to non-quantified variants by
means of skolemization (or hebrandization) of these formulae. In other cases, the set of
values for each bound variable is known at runtime and they can be checked iteratively.
At the moment, such contracts are ignored. Approximating checks with these contracts
in a reasonable way is a subject for future research.

3. Implementation details

We have implemented our approach in a module called Tassadar in a bounded model
checker tool Borealis [1| using the infrastructure borrowed from LLVM interpreter
library. Borealis is based on LLVM IR and supports several ways of specifying code
contracts. The LLVM interpreter is a simple instruction interpreter that operates on
LLVM IR instructions and in order to implement the checks needed by our tool the whole
memory model, external function calls and some parts of regular instruction handling
had to be written from scratch. We also implemented executing and checking Borealis
contract specifications.

Borealis is based on using an SMT-solver for checking desired properties. Every
found defect or contract violation provides a counterexample — a set of values that
could lead to an erroneous situation at run-time. We re-package the values from this
counterexample to a hashtable and use that as the basis for our analysis-driven arbiter.
The whole solution is implemented in C++ and packaged as a set of LLVM passes that
are run by Borealis.

Belyaev M., Itsykson V.
Executor for Reinforcing Static Analysis 769

4. FEvaluation

We evaluated our approach and Tassadar on two test case sets bundled with Borealis
which are based on NECLA [11] and SV-COMP [4] test case packs, which test both
defect detection and contract violation detection properties of the checker. This includes
84 testcases with over 40 defects/violations, about 30% of which are false positives in
the first set and 20 test cases with around 12 defects/violations with 30% false positive
ratio in the second set. The main difference is that the second set contains much more
complex programs with heavy memory usage. Tassadar was required to check every
positive detected by Borealis. In total it has identified 16 false positives in both test
sets and no false negatives.

Table 1. Test run results summary

Time+, s Time—, s Time% Mem+, | Mem-—, Mem% FPs
Set 1 19.017 18.976 0.2% 71366 70189 17% 11
Set 2 107.844 107.678 0.1% 173553 173697 0.08%)

The test runs were performed on a AMD Phenom(tm) II X4 machine with 4 cores
and 8 Gbs of RAM. The test bench was analyzed 10 times with Tassadar and without it.
The results of the runs are summarized in table 1. Time+ and Time— is time spend with
executor and without it, Mem+ and Mem— is the top memory consumption for both.
The “%” columns show the approximate percentage of corresponding resource spent by
Tassadar. The main goal of this work is to provide a result checker that has minimal
impact compared to the run time of the analysis. As one can see from the table, this
impact does never exceed 1 percent of total run time.

5. Related work

The techniques based on augmenting analysis techniques through with “simulation” of
produced counterexamples is well-known as the basis for abstraction refinement-based
approaches, e.g. for traditional model checking [7]. It was later extended by [12]| to
actually execute the code to provide information suitable for refinement. This and later
workings (for example, [9]) propose implementing abstraction refinement through code-
to-code instrumentation, compiling and running instrumented code using traditional
means.

This is quite similar to our approach, albeit for a different purpose. A similar technique
could be implemented for our problem, but using instrumented code execution limits
the ability to reason about inner state of the program. None of these papers actually
give a description of data structures used to capture, store and query memory range
information, but it is hinted at that they use a simple linear container of ranges in
addition to the memory itself, which has linear time and memory complexity over the
number of ranges. The program itself should have means of communication (through
replacing different external functions) with the checker during runtime. This approach is
also not capable of capturing some buffer overflows and illegal pointer dereference when
illegal pointers accidentally point to legal data.

[9] provide evaluation results for their approach and state the total execution overhead

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
770 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

as 1% to 12% of all runtime, which is much worse than our approach gets, but they are
not directly comparable due to different analysis techniques used.

Conclusion

This paper is focused around building an efficient executor of C code for reinforcing
results of static analysis using dynamic result checks. We build our approach around
creating an interpreter that operates on SSA-based compiler model that allows us to use
the compiler-based standard optimizations and provides a controlled environment that
is able to capture and check all the analyzed properties at the same time.

We have built a prototype implementation on top of the LLVM compiler system
and Borealis bounded model checker that has proven to be very resource-efficient with
comparison to the checker itself and, at the same time, being able to correctly identify a
portion of false positives.

In the future we plan to apply this executor to improving the analysis quality further,
building a CEGAR-like refinement loop on top of it, support the things we do not
currently support (fully rebuild top function arguments passed by pointer, use an external
language for external functions, explore the possibilities of checking quantifier-based and
intrinsic contracts, etc.) and do a more thorough comparison with other similar tools.

We also plan to research the possibilities of applying the existing implementation to
different areas it could be used in, like checking and reducing tests produced by test
generation (of which Borealis has limited support |?]), checking results for other kinds
of analysis, explore the possibility for dynamic analysis in general to check arbitrary
code properties during execution. It is also possible to try building a memory-efficient
time-travelling interpreter on top of Tassadar as the data structure used to model the
memory is persistent and implementing versioning on top of it is pretty straightforward.

References

[1] M. Akhin, M. Belyaev, V. Itsykson, “Software defect detection by combining bounded
model checking and approximations of functions”, Automatic Control and Computer
Sciences, 48:7 (2014), 389-397.

[2] P. Baudin, J.C. Filliatre, T. Hubert, C. Marché, B. Monate, Y. Moy, V. Prevosto, 2008,
ACSL: ANSI/ISO C Specification Language. Preliminary Design, version 1.4., Preliminary.

[3] J.L. Bentley, “Solutions to klee’s rectangle problems”, Technical report, 1977.

[4] D. Beyer, “Competition on software verification”, 2012, 504-524.

[5] A. Biere, A. Cimatti, E. M. Clarke, Y. Zhu, “Symbolic model checking without BDDs”,
1999, 193—-207.

[6] M. K. Buckland, F.C. Gey, “The relationship between recall and precision”, JASIS, 45:1
(1994), 12-19.

[7] E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, “Counterexample-guided abstraction
refinement”, CAV, 2000, 154-169.

[8] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, F. K. Zadeck, “Efficiently computing
static single assignment form and the control dependence graph”, ACM TOPLAS, 13:4
(1991), 451-490.

[9] A. Groce, R. Joshi, “Extending model checking with dynamic analysis”, Verification, model
checking, and abstract interpretation, 2008, 142-156.

Belyaev M., Itsykson V.
Executor for Reinforcing Static Analysis 771

[10] ISO, The ANSI C standard (C99), ISO/IEC, 1999.
[11] F. Ivancié¢, S. Sankaranarayanan, “NECLA static analysis benchmarks”, 2009.

[12] D. Kroening, A. Groce, E. Clarke, “Counterexample guided abstraction refinement via
program execution”, Formal methods and software engineering, 2004, 224-238.

[13] C. Lattner, V. Adve, “LLVM: A compilation framework for lifelong program analysis &
transformation”, 2004, 75-86.

[14] D. Novillo, “Tree SSA: A new optimization infrastructure for GCC”, Proceedings of the
2008 gCC developers’ summit, 21, 2014, 83-93.

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
772 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

DOI: 10.18255/1818-1015-2015-6-763-772

DddeKTuBHOE UCIIOJTHEHNE MPOrPaMMHOI0 KO/1a
B KOHTPOJIIPYEMOM OKPY2KEHHUUN KaK CIIOCOO YJIyYIleHusd
pPe3yJabTaTOB CTATUYECKOTO aHaJIN3a W BepupuKaIum IrporpaMmm

Bessies M.A., Unbikcon B.M.

noaywena 15 cenmabpa 2015

CymrecTByomnue CpecTBa U METOIbI CTATHIECKOr0 aHAJIN3a u Bepudukannn koja Ha s3pike C nc-
MOJIB3YIOT PA3JINIHbIE METOJUKHU YIPOIIEHUS TPOrPAMMHON MOJIEJIH, IIPUBOJAIINE K 3HATUTETLHOMY
CHIDKEHUIO TOYHOCTHU aHaJM3a. B TaHHO# paboTe MpeICTaB/IeH HOBBIH MOJXO0/] K MOBBIIIEHUIO TOTHOCTH
aHaJIN3a [yTeM HCIIOJHEHUST ITPOIPAMMHON MO/ B KOHTPOJUPYEMOM OKPY2KEHUU, KOTOPOE TI03BOJISIET
TOYHO OIIPEJIEJISITh ONTMOOTHBIE CUTYaIlul, TAKNE, KAK HAPYIIEHUsS KOHTPAKTOB KOJa U OMIMOKN PabOTHI
¢ TAMSTBHIO, OCTaBasCh MPU ITOM (DPEKTUBHBIM C TOYKYM 3PEHHsT 3aTPAT 110 BPEMEHU U TI0 MaMsITH.
Janubiit moxo/1 ObLT peaan30BaH B MOyJe 1oj Ha3BanmeM «Tassadars B paMKax CpejicTBa OrpaHU-
JeHHoit TpoBepKu Mojieeit «Borealisy. IIporoTun 6611 onmpoboBaH Ha CTAHAAPTHBHIX HAOOPAX TECTOBBIX
[IPOrpaMM J@HHOT'O CPEJICTBA U IIOKa3aJ] MUHUMAJIbHOE BJIMSHUAE Ha ero ODIIYI0 MPOU3BOAUTEIBHOCTD.

CraTbs mpejcraBisier coDON PaCIIUPEHHYIO BepcHio JoKJaaa Ha VI MexayHapomHoMm ceMuHape
“Program Semantics, Specification and Verification: Theory and Applications”’, Kazann, 2015.

CraTbs yOJIMKYeTCsI B ABTOPCKOM PeIaKITHH.

KiroueBbie cjoBa: mporpaMMHAasi HHTEPIPETAIns, CHMBOJIbHOE UCIOJHEHNE, CTATHIECKUI aHaIn3
MIPOrPAMMHOIO KO/Ia, TOYHOCTb AHAJIN3a

Has murupoBanus: Bensies M. A, Unpikcon B.M., "SddexTuBHOE HCIIOMHEHNE TPOrPAMMHOIO KOZa B KOHTPOJIUPYEMOM
OKPY?KEHUHU KaK CIOCO0 yJIydIlIeHNsI PE3YJIbTATOB CTATHYEeCKOIro aHaju3a u Bepudukarmu nporpamm"”, Modeauposarue u
anaau3 UHPGOPMaALUOHHLLT cucmem, 22:6 (2015), 763-772.

O6 aBTOpax:

Bensies Muxaun Aunaronsesud, orcid.org/0000-0003-1260-9211, accucrent
Canxr-IleTepbyprekuit momurexuuydeckuit yausepcurer uM. Ilerpa Besmukoro,
194021, Poccus, r. Cankr-ITerepbypr, [lomurexauueckas yi., 21

e-mail: belyaev@kspt.icc.spbstu.ru

Nupikcon Bragumup Muxaitnosud, orcid.org/0000-0003-0276-4517, noueHT
Canxr-Ilerepbyprekuit nosmrexunydeckuit yuusepcurer uM. Ilerpa Besukoro,
194021, Poccus, r. Cauxr-Iletepbypr, ITonmurexuudeckas yir., 21

e-mail: vlad@icc.spbstu.ru

Modeauposanue u anaausd ungopmayuorror cucmem. T.22, Ne6 (2015), c. 773782
Modeling and Analysis of Information Systems. Vol. 22, No 6 (2015), pp. 773-782

(©Maryasov 1. V., Nepomniaschy V. A., 2015
DOI: 10.18255/1818-1015-2015-6-773-782

UDC 519.681.3

Loop Invariants Elimination for Definite Iterations
over Unchangeable Data Structures in C Programs

Maryasov I. V.1, Nepomniaschy V. A.
Received October 26, 2015

The C-program verification is an urgent problem of modern programming. To apply known methods
of deductive verification it is necessary to provide loop invariants which might be a challenge in many
cases. In this paper we consider the C-light language [18] which is a powerful subset of the ISO C
language. To verify C-light programs the two-level approach [19, 20] and the mixed axiomatic semantics
method [1, 3, 11] were suggested. At the first stage, we translate [17] the source C-light program into C-
kernel one. The C-kernel language [19] is a subset of C-light. The theorem of translation correctness was
proved in [10, 11]. The C-kernel has less statements with respect to the C-light, this allows to decrease
the number of inference rules of axiomatic semantics during its development. At the second stage of this
approach, the verification conditions are generated by applying the rules of mixed axiomatic semantics
[10, 11] which could contain several rules for the same program statement. In such cases the inference
rules are applied depending on the context. Let us note that application of the mixed axiomatic semantics
allows to significantly simplify verification conditions in many cases. This article represents an extension
of this approach which includes our verification method for definite iteration over unchangeable data
structures without loop exit in C-light programs. The method contains a new inference rule for the
deifinite iteration without invariants. This rule was implemented in verification conditions generator.
At the proof stage the SMT-solver Z3 [12] is used. An example which illustrates the application of this
technique is considered.

The article is published in the authors’ wording.

Keywords: C-light, loop invariants, mixed axiomatic semantics, definite iteration, unchangeable data
structures, 73, specification, verification, Hoare logic

For citation: Maryasov I. V., Nepomniaschy V. A., "Loop Invariants Elimination for Definite Iterations over Unchangeable
Data Structures in C Programs", Modeling and Analysis of Information Systems, 22:6 (2015), 773-782.

On the authors:

Maryasov Ilya Vladimirovich, orcid.org/0000-0002-2497-6484, PhD,

A.P. Ershov Institute of Informatics Systems SB RAS

Akademik Lavrentiev pr., 6, Novosibirsk, 630090, Russia,

e-mail: ivm@iis.nsk.su

Nepomniaschy Valery Aleksandrovich, orcid.org/0000-0003-1364-5281, PhD,
A.P. Ershov Institute of Informatics Systems SB RAS

Akademik Lavrentiev pr., 6, Novosibirsk, 630090, Russia,

e-mail: vnep@iis.nsk.su

Acknowledgments:
I This research is partially supported by RFBR grant 15-01-05974.

773

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
774 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

Introduction

C program verification is an urgent problem at the present time. Many projects (for
example [4, 5, 6, 8, 9]) suggest different solutions. But none of them contains any methods
for loop verification. As it is known, in order to verify loops we need invariants whose
construction is a challenge. So the user has to devise these invariants. In many cases it
is a difficult task.

In this paper we suggest a method of loop invariants elimination for definite iteration
of special form [14]. We extend our mixed axiomatic semantics of C-light language by a
new rule which allows verification of such loops without invariants provided by user.

C-light language [18] is a powerful subset of the C language. To verify C-light prog-
rams the two-level approach [19, 20] and the mixed axiomatic semantics method |1, 11]
were suggested.

On the first stage, we translate [17] the source C-light program into C-kernel one. C-
kernel language [19] is a subset of C-light. On the second stage, the verification conditions
are generated by applying the rules of mixed axiomatic semantics [10, 11]. The word
“mixed” means that it can be several inference rules for the same program construction
which are unambiguously applied depending on its context. In many cases the use of
specialized inference rules allows us to simplify verification conditions.

All our methods have theoretical justification. Theorems of correctness of translation
of C-light into C-kernel and soundness of the C-kernel axiomatic semantics are proven
in [17, 10].

At the proof stage, the automatic theorem prover Z3 [12] is used. Extra axioms can
be provided by the user in case the prover has failed to check whether a verification
condition is true. If all verification conditions have been proven, then the program is
partially correct. Otherwise, the user has to modify the program or its specification and
to repeat the verification process in C-light verification system [11, 16].

1. Definite Iteration over Unchangeable Data
Structures and Replacement Operation

The method of loop invariants elimination for definite iteration was suggested in [14]. It
includes four cases [13, 15]:

1. Definite iteration over unchangeable data structures without loop exit.
2. Definite iteration over unchangeable data structures with loop exit.
3. Definite iteration over changeable data structures possibly with loop exit.

4. Definite iteration over hierarchical data structures possibly with loop exit.

This paper deals with the first case.

Let us remind the notion of data structures which contain a finite number of elements.
Let memb(S) be the multiset of elements of the structure S and |memb(S)| be the power
of the multiset memb(S). For the structure S the following operations are defined:

Maryasov I. V., Nepomniaschy V. A.
Loop Invar. Elimination for Def. Iterat. over Unchang. Data Struct. in C Progr. 775

1. empty(S) = true iff |memb(S)| = 0.
2. choo(S) returns an element of memb(S) if —empty(S).

3. rest(S) = 5’, where S’ is a structure of the type of S and memb(S’) = memb(S) \
{choo(S)} if —mempty(S).

Sets, sequences, lists, strings, arrays, files and trees are typical examples of the data
structures.

Let —mempty(S), then vec(S) = [s1, So, . .., Sn] where memb(S) = {s1, s2,...,s,} and
s; = choo(rest'™1(9)) fori=1,2,...,n.

last(S) is a partial function such that last(S) = s,,.

A function head(S) returns a structure such that vec(head(S)) = [s1, S2, ..., Sp_1] if
—empty(S).

Let S7 and S, be structures. Then we can define a concatenation operation con(Si, Ss)
as follows:

1. con(Sy, S2) = Sy if empty(Sy).

2. choo(con(S1,53)) = choo(Sy) and rest(con(Sy,S2)) = con(rest(Sy), S2)
if mempty(S7).

Consider the statement
for x in S do v := body(v, x) end

where S is a structure, x is the variable of the type of S element, v is the vector of loop
variables which does not contain x and body represents the loop body computation, does
not modify x and S and terminates for each x € memb(S). The loop body can contain
only the assignment statements and the i f statements, possibly nested.

The operational semantics of such statement is defined as follows. Let vy be the vector
of initial values of variables from v. If empty(S) then the result of the iteration v = vy.
Otherwise, if vec(S) = [s1, S2,..., 58y, then the loop body iterates sequentially for x
taking the values s, s9,...,,.

To express the effect of the iteration let us define a replacement operation

rep(v, S, body) = v,

where vy = v if empty(S), v; = body(v;_1,s;) for all i = 1,2,... n if mempty(S).

A number of theorems which express important properties of the replacement opera-
tion was proved in [13, 14, 15]. Let us mention the most important of them.

Theorem 1. rep(v, con(Si, Sz), body) = rep(rep(v, Sy, body), Sz, body).

Theorem 2. —empty(S) = rep(v, S, body) = body(rep(v, head(S), body), last(S)).

2. The Inference Rule and Its Implementation
There is no for statement in C-kernel. The loop for (e1; ez; e3) B; is translated first into

the while statement e;; while (e2) {B;e3; }; and then the common inference rule of the
mixed axiomatic semantics is applied:

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
776 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

E,SPF{P}eyi;{INV}
E,SP+{INV A cast(val(ea, M D), type(ez),int) # 0} B;es;{INV'}
E,SP+ {INV A cast(val(ea, M D), type(es),int) = 0} A;{Q}
E,SPt+ {P}eq; {INV}while (e2) {B;es} A;{Q}

Here P is precondition, () is postcondition, I NV stands for loop invariant, A are program
statements after the loop.

E is the environment [10] which contains an information about current function (its
identifier, type and body) which is verified, an information about current block and label
identifier if goto statement occurred earlier.

SP is program specification which includes all preconditions, postconditions and
invariants of loops and labeled statements.

The function cast performs type casting according to ISO C standard, the function
val calculates the value of the expression es, the function type returns the type of e.

The meta-variable M D defines the values stored in memory [1, 10].

Now we can introduce the special inference rule for definite iterations:

E,SPF {3 Plv<v) Nv=rep(,S, body)} A;{Q}
E,SPt {P}for xin S do v := body(v,x) end A;{Q}

We use forward tracing: we move from the program beginning to its end and eliminate
the leftmost operator (on the top level) applying the corresponding rule. The correctness
of this rule can be proved by modification of the proof for backward tracing from [14].

The implementation of this rule extends our verification conditions generator which
is based on mixed axiomatic semantics of C-kernel [1, 10].

Note that the common rule adds at least two verification conditions and the rule for
definite iteration does not increase the number of verification conditions for a program.

In C-light there is no such statement as for x in S do v := body(v,x) end. So in
fact the generator of verification conditions must be able to determine z, S, v and body
in a loop of a form for (e;;es; e3) B;.

Depending on the data structure S we have to introduce several inference rules for
each case. For example if S is a subset of integers we have the following rule:

E,SPF {3 P(v<+ ') ANv=rep(v,(j,j+ ¢, j+2¢c...),body)} A {Q}
E,SPH{P}for (i=ji<k;i=i+c;)v=body(v,i); A{Q}

Here 1, 7, k, c are integers. In the case when ¢ > k or ¢ = ¢ — ¢ the rule looks similarly.

Every time when there is no invariant provided by the user before the for statement
the generator of verification conditions tries to apply one of the inference rules suggested
by our method. When it fails an error is raised and the user has to provide an invariant
himself.

3. Example

To demonstrate the application of our method of loop invariants elimination let us
consider the following program. It iterates over an array of integers and for given integer
computes the number of entries to this array.

The annotated (in SMT-LIB v2 syntax of Z3) C-kernel program has the form:

Maryasov I. V., Nepomniaschy V. A.
Loop Invar. Elimination for Def. Iterat. over Unchang. Data Struct. in C Progr. 7T

/* (assert (> length 0)) */
int count(int key, int* arr, int length)

{
auto int result = 0;
for (i = 0; i < length; i =1i + 1)
if (arr[i] == key) result = result + 1;
return result;
+

/* (assert (= result (COUNT key a O (- length 1)))) */

The function COUNT returns the number of entries of key to arr from arr[j] to
arr[k]. It is defined recursively as follows:

(declare-fun COUNT (Int (Array Int Int) Int Int) Int)

(assert
(and
(forall ((j Int) (k Int))
(implies
(> j k)
(= (COUNT key arr j k) 0)
)
)
(forall ((j Int) (k Int))
(implies
(and
=ik
(= (select arr k) key)
)
(= (COUNT key arr j k) 1)
)
)
(forall ((j Int) (k Int))
(implies
(and
(=] k)
(not
(= (select arr k) key)
)
)
(= (COUNT key arr j k) 0)
)
)
(forall ((j Int) (k Int))
(implies

(and
(< j k)

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
778 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

(= (select arr k) key)

)
(=
(COUNT key arr j k)
(+ (COUNT key arr j (- k 1)) 1)

)
)
)
(forall ((j Int) (k Int))
(implies
(and
(< j k)
(not (= (select arr k) key))
)
(=
(COUNT key arr j k)
(COUNT key arr j (- k 1))
)
)
)

The first conjunct describes the case when the second bound is greater then the first
bound. The second and the third conjuncts defines the behavior of COUNT when the
length of arr is equal to 1. The fourth conjunct increases the value of COUNT by 1 in
the case when the entry of key was found at the index k. Otherwise COUNT is equal
to COUNT from j to k — 1 as it is defined by the last conjunct.

73 is the SMT-solver but we are interested in verification conditions validity, not
satisfiability. So the verification conditions generator produces the negation of the verifi-
cation condition:

(assert
(not (forall ((key Int) (arr (Array Int Int)) (length Int))
(implies
(exists ((result!l Int))
(and
(> length 0)
(= result!l 0)
(= result (rep result arr length))
)
)

(= result (COUNT key arr O (- length 1)))

Maryasov I. V., Nepomniaschy V. A.
Loop Invar. Elimination for Def. Iterat. over Unchang. Data Struct. in C Progr. 779

And then we expect the answer “unsat” which means that the negation is unsatisfiable
so the verification condition is true.

Also the generator produces the recursive definition of the rep function for this
program:

(declare-fun rep (Int (Array Int Int) Int) Int)

(assert (and (forall ((i Int))
(implies
(<1 0)
(= (rep result arr i) 0)

)
(forall ((i Int))
(implies

i0)
(rep result arr i) 0)

~
Il

)
(forall ((i Int))
(implies
(and
(< 0 1)
(= (select arr (- i 1)) key)

)
(=
(rep result arr i)

(+ (rep result arr (- i 1)) 1)
)

)
(forall ((i Int))
(implies
(and
(<0 1)
(not
(= (select arr (- i 1)) key)

)
(=

(rep result arr i)
(rep result arr (- i 1))

)

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
780 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

Unfortunately Z3 does not support proofs by induction. In this example it goes into
infinite loop without any answer. During our experiment we substituted constants for
length in the verification condition, and it turned out that for example for length = 15
it took 70 seconds for Z3 to provide the desired answer “unsat” running on AMD Athlon
IT X2 245 processor at 2.9 GHz with 4 gigabytes of RAM.

4. Conclusion

This paper represents an extension of the system for C-light program verification. In
the case of definite iteration over unchangeable data structures without loop exit this
extension allows to generate verification conditions without loop invariants.

This generation is based on the new inference rule for the C-light for statement which
introduces the replacement operation. It expresses definite iteration in special form.

K. Rustan M. Leino suggested a rewriting strategy and a heuristic for when to apply
it to verify simple inductive theorems [7]. We plan to use this tactic in our generator of
verification conditions.

The next step will be the case of loop invariants elimination for changeable data
structures possibly with loop exit.

References

[1] I. S. Anureev, I. V. Maryasov, V. A. Nepomniaschy, “C-programs Verification Based on
Mixed Axiomatic Semantics”, Automatic Control and Computer Sciences, 45:7 (2011),
485-500, http://link.springer.com/article/10.3103/S0146411611070029.

[2] I. Anureev, I. Maryasov, V. Nepomniaschy, “Revised Mixed Axiomatic Semantics
Method of C Program Verification”, Proceedings, Third Workshop ”Program Semantics,
Specification and Verification: Theory and Applications”, PSSV 2012 (Nizhni Novgorod,
Russia, July 1-2), eds. Valery Nepomniaschy, Valery Sokolov, 2012, 16-23.

[3] 1. S. Anureev, I. V. Maryasov, V. A. Nepomniaschy, “Two-level Mixed Verification Method
of C-light Programs in Terms of Safety Logic”, Computer Science, 34, NCC Publisher,
2012, 23-42.

[4] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, K. Rustan M. Leino, “Boogie:
A Modular Reusable Verifier for Object-Oriented Programs”, Formal Methods for
Components and Objects, 4th International Symposium, FMCO 2005 (Amsterdam, The
Netherlands, November 1-4), Lecture Notes in Computer Science, 4111, Springer, 2006,
364-387, http://link.springer.com/chapter/10.1007/11804192_17.

[5] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen, W. Schulte,
S. Tobies, “VCC: A Practical System for Verifying Concurrent C”, Theorem Proving in
Higher Order Logics, 22nd International Conference, TPHOLs 2009 (Munich, Germany,
August 17-20), Lecture Notes in Computer Science, 5674, Springer, 2009, 23-42,
http://link.springer.com/chapter/10.1007/978-3-642-03359-9_2.

[6] J.-C. Filliatre, C. Marché, “Multi-prover Verification of C Programs”, Formal Methods
and Software Engineering, 6th International Conference on Formal Engineering Methods,
ICFEM 2004 (Seattle, WA, USA, November 8-12), Lecture Notes in Computer Science,
3308, Springer, 2004, 15-29, http://link.springer.com/chapter/10.1007/978-3-540-30482-
1.10.

[7] K. Rustan M. Leino, “Automating Induction with an SMT Solver”, Verification, Model
Checking, and Abstract Interpretation, 13th International Conference, VMCAI 2012
(Philadelphia, PA, USA, January 22-24), Lecture Notes in Computer Science, 7148,
Springer, 2012, 315-331, http://link.springer.com/chapter/10.1007/978-3-642-27940-9_21.

Maryasov I. V., Nepomniaschy V. A.
Loop Invar. Elimination for Def. Iterat. over Unchang. Data Struct. in C Progr. 781

18]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

K. Rustan M. Leino, “Dafny: An Automatic Program Verifier for Functional Correctness”,
Logic for Programming, Artificial Intelligence, and Reasoning, 16th International
Conference, LPAR-16 (Dakar, Senegal, April 25-May 1), Lecture Notes in Computer
Science, 6355, Springer, 2010, 348-370, http://link.springer.com/chapter/10.1007/978-
3-642-17511-4_20.

X. Leroy, “Formal Verification of a Realistic Compiler”, Communications of the ACM,
52:7 (2009), 107-115.

I. V. Maryasov, The Mixed Aziomatic Semantics Method, Novosibirsk, Siberian Division
of the Russian Academy of Sciences, A. P. Ershov Institute of Informatics Systems, 160,
2011, http://www.iis.nsk.su/files/preprints/160.pdf.

I. V. Maryasov, V. A. Nepomniaschy, A. V. Promsky, D. A. Kondratyev, “Au-
tomatic C Program Verification Based on Mixed Axiomatic Semantics”, Automatic
Control and Computer Sciences, 48:7 (2014), 407-414, http://link.springer.com/article/
10.3103/S0146411614070141.

L. de Moura, N. Bjgrner, “Z3: An Efficient SMT Solver”, Tools and Algorithms for
the Construction and Analysis of Systems, 14th International Conference, TACAS 2008
(Budapest, Hungary, March 29-April 6), Lecture Notes in Computer Science, 4963,
Springer, 2008, 337-340, http://link.springer.com/chapter/10.1007 /978-3-540-78800-3_24.

V. A. Nepomniaschy, “Symbolic Verification Method for Definite Iteration over Altered
Data Structures”, Programming and Computer Software, 1 (2005), 1-12.

V. A. Nepomniaschy, “Verification of Definite Iteration over Hierarchical Data structures”,
Fundamental Approaches to Software Engineering, Second International Conference,
FASE’99 (Amsterdam, The Netherlands, March 22-28), Lecture Notes in Computer
Science, 1577, Springer, 1999, 176-187, http://link.springer.com/chapter/10.1007/978-
3-540-49020-3_12.

V. A. Nepomniaschy, “Verification of Definite Iteration over Tuples of Data Structures”,
Programming and Computer Software, 1 (2002), 1-10.

V. A. Nepomniaschy, 1. S. Anureev, M. M. Atuchin, I. V. Maryasov, A. A.
Petrov, A. V. Promsky, “C Program Verification in SPECTRUM Multilanguage
System”, Automatic Control and Computer Sciences, 45:7 (2011), 413-420, http://link.
springer.com/article/10.3103/5S014641161107011X.

V. A. Nepomniaschy, I. S. Anureev, I. N. Mikhaylov, A. V. Promsky, Towards
The Verification of C Programs. Part 3. Translation From C-light To C-light-kernel
and Its Formal Proof, Novosibirsk, Siberian Division of the Russian Academy of
Sciences, A. P. Ershov Institute of Informatics Systems, 97, 2002 (Russian), http://
www.iis.nsk.su/files/preprints/097.pdf.

V. A. Nepomniaschy, I. S. Anureev, A. V. Promsky, “Towards Verification of C Programs.
C-light Language and Its Formal Semantics”, Programming and Computer Software, 28
(2002), 314-323.

V. A. Nepomniaschy, I. S. Anureev, A. V. Promsky, “Towards Verification of C Programs.
Axiomatic Semantics of The C-kernel Language”, Programming and Computer Software,
29 (2003), 338-350.

V. A. Nepomniaschy, I. S. Anureev, A. V. Promsky, “Verification-Oriented Language C-
Light and Its Structural Operational Semantics”, Perspectives of System Informatics,
5th International Andrei Ershov Memorial Conference, PSI 2003 (Akademgorodok,
Novosibirsk, Russia, July 9-12), Lecture Notes in Computer Science, 2890, Springer, 2003,
103-111, http://link.springer.com/chapter/10.1007/978-3-540-39866-0_12.

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
782 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

DOI: 10.18255/1818-1015-2015-6-773-782

DJIMMUHANNS MHBAPUAHTOB IUKJIOB JJI1 (PMHUTHOM MTepaIuu
HaJT Hem3MeHsIeMbIMHU CTPYKTypamMu JaHHbIX B Cu mporpammax

Mapgscos W. B.!, Hemomusamuit B. A.
noayuena 26 oxkmabps 2015

Bepudwukarus C-rporpamm sBISIETCS aKTyaJbHON TPOHIEMON COBPEMEHHOTO TPOrPAMMUPOBAHMIS.
st mprMeHeHnsT U3BECTHBIX METOJIOB JIeJlyKTHBHON BepUMDUKAIME HEOOXOIMMO AHHOTHPOBATH ITUKJIBI
[IOCPEJICTBOM MHBAPUAHTOB, YTO BO MHOI'UX CJIyUYasaX sIBJIAETCS TPYIHON 3ajadeii. B 9Toll cTaTbe MbI
paccmarpuBaeM sa3bik C-light, KOTOpBIi sIBJIsIeTCS BBIPA3UTEIBLHBIM TOJIMHOXKECTBOM si3bika C, cooTBeT-
crByromero cranmapty [SO. dnsa sepudukarmu C-light nmporpamMm Hamu ObLIM TIPEITIOKEHBI IBYXYPOB-
HeBblit ozxox [19, 20] n MeTox cMmermaHHON akcmoMaTHdecKoil cemanTuxu |1, 3, 11]. Ha nepsoit craanu
sToro mogxoaa ucxomnas C-light mporpamma Tpancaupyercst [17] B mporpammy Ha sizbike C-kernel [19],
KOTOPBI sIBJIsIeTCsl oAMHOKeCTBOM s3bika C-light. TeopeMa 0 KOPPEKTHOCTH 3TON TPAHC/ISIKA ObLIA
nokazana B [10, 11]. ITo cpasrennto ¢ C-light B sisbike C-kernel MeHbIe omepaTopoB, UTO MO3BOJISET
YMEHBIIUTH YUCJIO TPABUJI BBIBOJA MPU Pa3paboTKe aKCHOMATUIEeCKOl cemanTuku. Ha BTOpoil crajun
9TOTO TOAXOJa Jist mporpaMM Ha st3bike C-kernel mopoxKmarorTcst ycsioBUSI KOPPEKTHOCTH TI0 TPABHU-
JIaM CMEITaHHON aKcmoMaTnieckon cemanTuku [10, 11|, KoTopast MOXKeT comepKaTh HECKOIBKO MPABUIT
BBIBOJIA JIJIsl OJHON W TOM Ke MPOrpaMMHONM KOHCTPYKIMA. B Takux ciIydasx IpaBuja BBIBOJIA IIPUMeE-
HSIIOTCS OJIHO3HAYHO B 3aBUCHUMOCTU OT KOHTEKCTA. 3aMETUM, YTO BO MHOTUX CJIyYasiX UCIIOJIbL30BAHUE
CMEIAHHOW aKCMOMATHYIECKON CEMAHTUKHU MTO3BOJISET YIPOCTUTH YCJIOBHS KOPpeKTHOCTH. B 3T0it cra-
The MPEJCTABJICHO PACIIUPEHUe JAHHOTO IMOJIX0J/ia, KOTOPOEe BKJIIOYAET HAIIl METO, BepUMUKAIUU JJIsd
dUHUTHOI UTEpaIuu HaJl HEM3MEHSIeMBIMI CTPYKTYPaMU JaHHBIX 0e3 BbIXoJa u3 Teja mukiaa B C-light
mporpamMmMax. JIaHHBIA MeTOJ, CONEPKUT HOBOE IPABUJIO BBIBOJA JIJIsi TAKUX (PUHUTHBIX HTeparmii 6e3
UHBAPUAHTOB. DTO MPABUJIO OBLIO PEATIM30BAHO B TeHEpaTOpe yCIoBuil KoppekTHocTn. Ha cramum moka-
3aTenbcTBa ucnosbayercss SMT-permarens Z3 [12]. PaccmoTpen npumep, WITIOCTPUPYIONIHI IPUMEHEHNE
JIAHHOTO MOIXO0/1A.

CraTbsi mpejicTaBjsieT coDON pacIupeHHyo Bepcuio nokJagsa #Ha VI MexynapomnoMm cemuHape
“Program Semantics, Specification and Verification: Theory and Applications”, Kazaus, 2015.

Crarbs my0JIMKyeTCsl B aBTOPCKOHM peIaKIui.

Kurouesbie cioBa: Cu, vHBapUaHTHI [IUKJIOB, CMEIIaHHAs] aKCHOMaTHIeCKasl CEMAHTUKAa, (DUHUTHAS
uTepalys, Hen3MeHseMble CTPYKTYPbI JaHHBIX, CleluduKanys, BepuduKaIys, JOIruKa Xoapa

st yurupoBanus: Mapbscos U. B., Henomusmumii B. A., "DauMunanus nHBApUAHTOB IUKJIOB 11 (GDUHUTHON UTepanuu
HaJ| HeU3MeHsiIeMbIMH CTPpyKTypamu gaHHbix B Cu nporpammax", Modeauposarue u anaau3 UHGOPMAUUOHHBIT CUCTEM,
22:6 (2015), 773-782.

O6 aBTOpax:

MapsbsicoB Unbs Biragumuposud, orcid.org/0000-0002-2497-6484, kanyn. ¢dus.-maT. HayK,
WNucturyTt cucrem nadopmaruku um. A.I1. Epmosa CO PAH

np. Axkaznemuka JlaBpenrbesa, 6, . HoBocubupck, 630090, Poccus,

e-mail: ivm@iis.nsk.su

Henomusimuit Basepuii Asiekcannposnd, orcid.org/0000-0003-1364-5281, kanx. dbus.-Mar. HayK, JOIEHT,
Nucruryt cucrem nadopmaruku um. A.Il. Epmosa CO PAH

up. Akagemuka JlaBpenTbesa, 6, r. HoBocubupck, 630090, Poccusi,

e-mail: vnep@iis.nsk.su

BaaromapuocTu:
197a pabora BBIIOAHEHA HOpH TOAIepKKe rpanTa PODU 15-01-05974.

Modeauposanue u anaausd ungopmayuorror cucmem. T.22, Ne6 (2015), c. 783-794
Modeling and Analysis of Information Systems. Vol.22, No 6 (2015), pp. 783-794

©Shilov N. V., 2015
DOI: 10.18255/1818-1015-2015-6-783-794

UDC 519.711

Teaching Formal Models of
Concurrency Specification and Analysis

Shilov N. V.1
Received October 26, 2015

There is a widespread and rapidly growing interest to the parallel programming nowadays. This
interest is based on availability of supercomputers, computer clusters and powerful graphic processors
for computational mathematics and simulation. MPI, OpenMP, CUDA and other technologies provide
opportunity to write C and FORTRAN code for parallel speed-up of execution without races for
resources. Nevertheless concurrency issues (like races) are still very important for parallel systems in
general and distributed systems in particular. Due to this reason, there is a need of research, study and
teaching of formal models of concurrency and methods of distributed system verification.

The paper presents an individual experience with teaching Formal Models of Concurrency as a
graduate elective course for students specializing in high-performance computing. First it sketches course
background, objectives, lecture plan and topics. Then the paper presents how to formalize (i.e. specify)
a reachability puzzle in semantic, syntactic and logic formal models, namely: in Petri nets, in a dialect
of Calculus of Communicating Systems (CCS) and in Computation Tree Logic (CTL). This puzzle is a
good educational example to present specifics of different formal notations.

The article is published in the author’s wording.

Keywords: concurrency and parallelism, formal methods, formal models, Petri nets, calculi for
communicating systems, labeled transition systems, reachability problem, temporal logic, model checking

For citation: Shilov N. V., "Teaching Formal Models of Concurrency Specification and Analysis", Modeling and Analysis
of Information Systems, 22:6 (2015), 783-794.

On the authors:

Shilov Nikolay Vyacheslavovich, orcid.org/0000-0001-7515-9647, PhD,
A.P. Ershov Institute of Informatics Systems SD RAS,

Lavrent’ev av., 6, Novosibirsk, 630090, Russia,

e-mail: shilov@iis.nsk.su

Acknowledgments:
1Reserch is part of Program IV.39.1 "Theory and applied problems of design and implementation of efficient and faultless
program systems and information technologies".

783

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
784 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

Introduction

One of English-to-Russian technical translation problem is about Russian equivalent for
English term concurrency. Unfortunately the term is translated as napaaseausm i.e. by
the same word as parallelism. To make distinction, let us quote a talk by Dan Grossman
at Workshop on Curricula for Concurrency and Parallelism (Nevada, Oct. 17, 2010) [6]:

By parallelism, I mean using extra computational resources to solve a problem
faster. By concurrency, I mean correctly and efficiently managing access to
shared resources. While using these terms in this way is not entirely standard,
the distinction is paramount.

Rapid growth of parallel computing power raises questions about correctness (i.e.
reliability, safety, liveness, etc.) of parallel system and programs. According to the above
citation, concurrency is one of the critical issues related to the correctness of parallel
systems and programs. It makes important to introduce formal models and methods
of concurrency to Computer Science, Software Engineering and Computer Engineering
curricula. But a serious problem for curricula development is diversity of individual
notations. Another related problem is right choice of introductory, basic and /or advanced
teaching /education level.

An elective topic on Formal Models of Concurrency at Department of Information
Technology of Novosibirsk State University (IT NSU) and at Department of Applied
Mathematics of Novosibirsk State Technical University (AM NSTU) was taught in
years 2006-2012 during the second (spring) semester of graduate studies. The number
of registered students varied from 8 to 16. Typically these students were affiliated with
chairs of High-Performance Computing (IT NSU) and Parallel Computation Technologies
(AM NSTU). The primary purpose of this course was to introduce basic concepts and
means of semantic, syntactic and logic formal models of concurrency that had (already)
become classics of Computer Science.

The rest of the paper is as follows. The syllabus of the course is sketched below in the
present section; it comprises course background, objectives and topics & lecture plan. The
next section 1 introduces a puzzle that is used in the course to illustrate /study /distiguish
all formal models covered in the course. In particular, section 2 sketches how to represent
the puzzle in Petri nets (semantical formal model), section 3 — in a dialect of Calculus
of Communicating Processes (syntax modal), and section 4 — is Computational tree
Logic (logic model). Finally we discuss in brief paradigm of parallel programming in the
concluding section 5. The latest version (for fall semester of academic year 2012-13) of the
recommended reading is presented in the References section of the paper and comprises
English and Russian papers and books [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19].

0.1. Course Background

At the transition stage to cluster/multiprocessor/multicore architecture and ubiquitous
parallelism, the importance (even urgency) of specifying, developing and validating paral-
lel and concurrent behavior is increasing. Formal methods in Computer Science are
mathematical theories and techniques for a sound specification, development and verifica-
tion of soft /hard-ware. The use of formal methods is motivated by the expectation that

Shilov N. V.
Teaching Formal Models of Concurrency 785

rigorous mathematical notation and analysis help to understand better functionality and
can improve the reliability and robustness. Different formal methods have different types
of formal models: semantic models, syntax models, and logical where both syntax and
semantics play important roles.

There are numbers of formal models for concurrency, these models have different
types. First we have to point out at Petri nets as a purely semantic model. Next we
must refer to Communicated Sequential Processes (CSP), an algebraic formal language
with fixed syntax and denotational semantics. There exist several calculi that formalize
different aspects of concurrency and parallelism: the Calculus of Communicating Systems
(CCS), the Pi-Calculus for Communicating and Mobile Systems, the Ambient Calculus
and its variations for mobile agents and security, etc. Various types of dynamic, process,
and temporal logics are used for specification and verification of parallelism and concur-
rency.

The course should help Software Engineers and Applied Mathematicians to overview
the spectrum of formal models for concurrency and parallelism, get idea of different
reasoning techniques that are available for formal verification of concurrent and parallel
systems. Students are expected to be familiar with basic concepts of concurrency and
parallelism, elements of set theory and propositional Boolean logic.

0.2. Course Objectives

The course intends to help students to achieve the following objectives:

e to understand why we need formal models for concurrency and to know the concept
of syntax, semantic and logic formal models;

e to use different formal models of concurrency for modeling concurrent and parallel
systems;

e to comprehend definition of Petri nets and to learn reachability and boundedness
properties and algorithms for Petri nets;

e to learn syntax and basic semantics of Communicated Sequential Processes (CSP);

e to become acquainted with the Calculus of Communicating Systems (CCS), the
Pi-Calculus, and the Ambient Calculus;

e to learn the concept of Labeled Transition Systems (LTS) and to understand why
LTS are used for semantics of different formal models;

e to become acquainted with the concept of bisimulation for LTS and to know about
Hennessy-Milner logic and its relations to bisimulation;

e to become familiar with syntax and semantics of Computation Tree Logic (CTL)
and its use for specification and verification of properties of LTS;

e to discuss ways of introduction of formal models of concurrency and parallelism
into Software Engineering practice.

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
786 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

0.3. Topics and Lecture Plan

Introduction. Concepts of syntax, semantic, algebraic and logic formal models (by
study of naive set theory, propositional formulas, Boolean algebras, propositional
logic). Why do we need formal models for concurrency?

Basics of Petri nets. Definition of marked Petri net. Firing, small /big-step semantics.
Reachability problem and reachability tree/graph. Boundedness problem and chec-
king. Problem solving with aid of Petri nets.

Process Algebras. Communicating Sequential Processes (CSP) by A. Hoare. Process
algebra of J. Bergstra and J. Klop.

Calculi for concurrency. Calculus of Communicating Systems (CCS) by R. Milner.
Pi-Calculus by R. Milner. Ambient Calculus by L. Cardelli. Modeling with aid of
calculi.

Labeled Transition Systems. Definition of LTS. Examples of LTS by Petri nets and
calculi. Definition of bisimulation and its properties. Bisimulation and Hennessy-
Milner Logic.

Computational Tree Logic. CTL syntax and semantics. Using CTL to specify prop-
erties of LTS. CTL Model Checking: algorithmic verification of LTS

Conclusion. Do we need a comprehensive model for concurrency and parallelism?

1. One Puzzle for Many Formalisms

The following puzzle Four Men and a Boat was used in the course to illustrate several
formal models, namely Petri nets, a dialect of Calculus of Communicated Systems and
Computational Tree Logic.

Four men Albert, Conrad, Donald and Edmund are on the left bank of
a river and need to move to the right bank by a boat that has 2 seats and
one pair of oars. Sporty Albert can cross the river by the boat without a
companion in 5 minutes (in one forth or back direction), regular Conrad can
do the same in 10 minutes, fatty Donald — in 20 minutes, and fat Edmund
— in 25 minutes. When any two men are crossing the river together the pace
of the boat is defined by the fattest man in the pair, ex., Albert and Donald
together can cross the river in 20 minutes. Question: do these four men can
cross the river in one hour?

This is really a very nice puzzle! Typically 8 in 10 students (in my experience) first
“prove” that the four men cannot cross the river in one hour. They usually assume that
sporty Albert have to accompany (convoy) other men because he is the fastest and
it would be better him to transport the boat back every time; under this assumption
transportation of 4 men takes 1 hour and 5 minutes.

The author also made this assumption when heard the puzzle for the first time
17 years ago, and was very much confused when Andrei Sabelfeld (http://www.cse.

http://www.cse.chalmers.se/~andrei/
http://www.cse.chalmers.se/~andrei/

Shilov N. V.
Teaching Formal Models of Concurrency 787

chalmers.se/~andrei/, he was a student at the time of the story) told him that it is
wrong. In turn Andrey simply gave the following scenario how men can cross the river
in one hour:

e first Albert and Conrad cross the river together in 10 minutes, then Albert trans-
ports the boat back in 5 minutes;

e next Donald and Edmund cross the river together in 25 minutes and Conrad
transports the boat back in 10 minute;

e finally Albert and Conrad cross the river together again in 10 minutes.

So this puzzle gave a good lesson to author to be skeptical about “obvious” assumptions.

2. Puzzle in Petri nets

C&D:L-R
C&ER-L

900 0

BOAT:1

Fig 1. Fragment of net model for Four Men and a Boat Puzzle

A sketch of a marked Petri net that models the puzzle is presented on the figure 1.
One can see on this figure

e a place TIMER with initial marking 12 tokens each of which models 5 minutes
(because all time values in the puzzle are dividable by 5);

e a place BOAT with initial marking 1 that models the boat;

e places AL, CL, DL and EL with initial marking 1 each; the initial marking models
that initially Albert (A), Conrad (C), Donald (D) and Edmund (E) are on the left
(L) bank of the river;

http://www.cse.chalmers.se/~andrei/
http://www.cse.chalmers.se/~andrei/

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
788 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

e places AR, CR, DR and ER with initial markings 0 each; the initial marking models
that initially Albert (A), Conrad (C), Donald (D) and Edmund (E) are absent on
the right (R) bank of the river;

e three sample transitions that model situations when Albert moves from left bank
to the right (A:L-R), when Bob and Conrad move together from left bank to the
right (C&D:L-R), and when Bob and Donald move together from right bank to
the left (C&E:R-L) by boat; omitted 17 transitions are similar;

e several edges without tags and two edges tagged by integers 4 and 5: edges without
tags have multiplicity 1, edges tagged by integers have multiplicity according to
their tags; the multiplicity represents the number of 5 minutes intervals that is
required for the corresponding transition;

e firing of each transition models a move from one bank to another by a man or by
a pair of men in the boat.

The presented marked net is bounded, it can be checked by construction of Karp-
Miller coverage tree. The background (unmarked) net is structurally bounded (i.e. it is
bounded for every initial marking), the structural boundedness of the net is obvious'.

In terms of Petri nets, to solve the puzzle means that the following final marking is
reachable from the initial one (TIMER:0, AL:0, CL:0, DL:0, EL:0, AR:1, CR:1, DR:1,
ER:1, BOAT:1). Since the net model is bounded, the set of all reachable markings is
finite?; so the puzzle can be solved by construction of the reachability graph for the
marked net. Let us observe that this reachability graph is an example of labeled transition
system where nodes are reachable markings of the net and edges are transition firings.

3. Puzzle in CCS

Let us describe a simplified dialect of Calculus of Communicating Systems. Syntax of
the dialect is defined in terms of the following three context-free grammars:

S = (empty) | N = P;S
P:=0|AP|(P+P)|(P|P)|N
Axz= R|I|O

where

e N, R, I and O are disjoint finite alphabets which elements are called process names,
regular, input and output (action) symbols,

e words generated from symbol P are called processes, and words generated from
from symbol S are sets of definitions (separated by semicolon).

1Sorry for claiming that something is “obvious”. This time the claim follows from the net structure:
for every marking every firing of a transition reduces the total number of tokens.
2Tt contains not more than 208 reachable states.

Shilov N. V.
Teaching Formal Models of Concurrency 789

Process constructors “.”, “+” and “|” are conventionally called sequential, nondeter-
ministic and parallel compositions. A set of definitions is consistent if every name that
occurs in the system has single definition in the set.

Input and output alphabets are mutually complementary: they are equipped by a
bijection function ()¢ such that

e for every input symbol ¢ the complement i€ is an output symbol and (i¢)¢ = 1,
e for every output symbol o the complement o° is an input symbol and (0°)¢ = o.

Let us specify the puzzle in terms of our dialect of CCS. Let

TIMER = tick.tick.tick.tick.tick.tick tick.tick.tick.tick.tick.tick,0

12 times

be definition of a process name T1M ER where tick is an output symbol (to represent
time interval of 5 minutes) with the complementary input symbol tack. This input symbol
is used in process definitions affiliated with men in the puzzle. For example, in definitions
for two process names AL and AR (that correspond to Albert on the left and on the
right banks) follow below:

AL = (acgBL.tack.AR + ALackCL.AR + ALackDL.AR + ALackEL.AR)
AR = (done.0 + acgBR.tack.AL +
+ ARackCR.AL + ARackDR.AL + ARackER.AL)

where
e done is a regular action symbol;

e acgBL and acgBR are output symbols (to represent that a man acquires the boat
located on the left/right back respectively) with complementary input symbols
relBL and rel BR (to represent boat release);

o ALackCL, ALackDL, ALackEL and ARackCR, ARackDR, ARackE R are input
symbols (to represent that Albert acknowledges an invitation of Conrad, Donald
or Edmund with the same location to cross the river together) with complimentary
symbols C'LaskAL, DLaskAL, ELaskAL and C RaskAR, DRaskAR, ERaskAR
respectively (to represent invitations).

The intended semantics of these two definitions is behavior of Albert on the left and on
the right banks.

e AL specifies that on the left bank he has the following 4 disjoint options:
— acquire the boat (acqBL), cross the river (synchronizing tack with tick) and

then proceed further on the right back according to AR;

— acknowledge invitation to use the boat acquired by Conrad (ALackCL) to
cross the river and then proceed further on the right back according to AR,

— acknowledge invitation to use the boat acquired by Donald (ALackDL) to
cross the river and then proceed further on the right back according to AR,

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
790 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

— acknowledge invitation to use the boat acquired by Edmund (ALackEL) to
cross the river and then proceed further on the right back according to AR.

e AR specifies that on the right bank he has the following 5 disjoint options:

stop any further activities and remain on the right bank (done);

— acquire the boat (acgBR), cross the river (synchronizing tack with tick) and
then proceed further on the left back according to AL;

— acknowledge invitation to use the boat acquired by Conrad (ARackCR) to
cross the river and then proceed further on the left back according to AL;

— acknowledge invitation to use the boat acquired by Donald (ARackDR) to
cross the river and then proceed further on the left back according to AL;

— acknowledge invitation to use the boat acquired by Edmund (ARackER) to
cross the river and then proceed further on the left back according to AL.

Definitions for names C'L and C'R (that correspond to Conrad on the left and on
the right banks), DL and DR (that correspond to Donald on the left and on the right
banks), and EL and FR (that correspond to Edmund on the left and on the right banks)
are presented in the table 1.

Table 1. Definitions that model Conrad, Donald and Edmund behavior
CL = acqBL.tack.tack.(CR + CLaskAL.CR) + CLackDL.CR + CLackEL.CR
CR = done.0 + acqBR.tack.tack.(CL + CRackAR.CL) + CRackDR.CL + CRackER.CL
DL = acqBL.tack.tack.tack.tack.(DR + DLaskAL.DR + DLaskCL.DR) + CLackEL.CR
DR = done.0 + acgBR.tack.tack.tack.tack(DL + DRaskAR.DLDRaskCR.DL)+
+DRackER.DL
EL = acqBL.tack.tack.tack.tack.tack.
(ER+ ELaskAL.ER+ ELaskCL.ER + ELaskDL.ER)
ER = done.0 + acqBR.tack.tack.tack.tack.tack.
(EL+ EFRaskAR.EL + ERaskCR.EL + FERaskDR.EL)

The last two definitions for names BL and BR correspond to the boat on the left
and on the right banks:

BL = relBL.BR and BR = (done.0 + rel BR.BL).
The initial configuration of the puzzle can be represented as the following process
(TIMER|AL|CL|DL|EL|BL).
Reduction rules are very standard for CCS:
e if r is a regular action symbol then r.a@ — «,
e if @ — v then (o« +) — v and («|f) — (7]5),
e if s is an input/output symbol then (s.a|s®.8|v) — (a|B]7),

as well as the following congruencies:

Shilov N. V.
Teaching Formal Models of Concurrency 791

eat+f=F+aand at(B+7)=(a+5)+7,

e a|0 =, a|8 = Bla, and o|(Bly) = (a|B)|v,
e if S is a set of name definitions and n = « is one of them then?® n é Q.

In terms of the presented CCS-dialect, to solve the puzzle means that the final process
0 is reachable (assuming system of name definitions that comprises all definitions listed
above are provided) in the reduction graph for the initial process (TIMER | AL | C'L]|
DL | EL | BL). This graph is finite because every nondeterministic branch with recursion
in any of our definitions contains at least one tack that must be synchronize with tick,
but the total amount of ticks is 12 (according to definition of TIM ER). So the puzzle
can be solved in terms of CCS by construction of the reduction graph. Let us observe
that this graph is also an example of labeled transition system where nodes are process
configurations (that are reducts of the initial process) and edges are reductions.

4. Puzzle in CTL

As follows from sections 2 and 3, the puzzle can be reduced to the reachability problem
for finite graphs (label transition systems in particular) with aid of Petri nets (semantic
model) or CCS (syntactic model). Moreover, the puzzle can be solved on the fly at time
of constructing the corresponding labeled transition system.

But let us recall that students who try to solve the puzzle usually believe that Albert
have to accompany other men for accelerating transportation. In other words they make
the following belief assumption:

If a positive solution exists,
then there exists a solution where Albert convoys other men
until all are on the right bank.

There are two ways how to refute this belief: human-oriented or computer-aided.

e Human-oriented way in this case comprises two steps: first someone should solve
the puzzle (it was Andrey Sabelfeld in my case), then prove manually impossibility
of a solution where Albert convoys other men (that is very easy).

e Computer-aided approach needs to build the corresponding labeled transition sys-
tem first, then to modify a reachability algorithm to check whether there exists a
path where Albert is always on the move.

The first step of a computer-aided approach can be carried out in many ways:
for example one may construct reachability graph for the Petri net (that model the
puzzle), or reduction graph for the corresponding CCS specification. The next step of
the approach may be generalized: it makes sense to build an efficiently decidable graph
query language so that the standard reachability (and many its modifications) becomes
just a special query of this language.

3Supscript S may be omitted when the system is implicit.

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
792 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

There are many query languages of this sort indeed, Computation Tree Logic (CTL),
Linear Temporal Logic, p-Calculus for instance. For example, in CTL the belief assump-
tion can be represented by CTL formula presented in the table 2. Here Albert at Left,
Conrad_at_Left, ..., Edmund_at Right and Albert _on_Mowve are propositional
variables with natural interpretation in the labeled transition system.

Table 2. CTL specification for the belief assumption about the puzzle
(Albert _at Left & Conrad _at Left &
& Donald _at _Left & Edmund _at _Left &
& Boat _at_Left & Timer is_Set) —
— (EF(Albert _at Right &Conrad_at Right &
& Donald_at Right & Edmund_at Right) —
— E(Albert _on_Move U (Albert _at Right & Conrad_at Right &
& Donald _at Right & Edmund_at Right)))

5. Parallel Programming Paradigm

Paradigm is an approach to problem formulation/formalization and the ways to solve
them. The term comes from Greek and means pattern, example (nouns), exhibit, represent
(verbs). A contemporary meaning of the term is due to well-known book by Tomas Kuhn
[11]. Robert Floyd was the first who had explicitly used the term in the Computer Science
context. In particular, he addressed Paradigms of Programming in his Turing Award
Lecture in 1968 [5]. Unfortunately, R. Floyd had not defined explicitly this concept.
Peter Van Roy has published in 2009 a taxonomy The principal programming paradigms
(at http://www.info.ucl.ac.be/ pvr/paradigms.html) with 27 different paradigms.
He also suggested the following definition [16]:

A programming paradigm is an approach to programming a computer based on
a mathematical theory or a coherent set of principles. Each paradigm supports
a set of concepts that makes it the best for a certain kind of problem.

The definition suggested by Peter Van Roy has been refined in [18] as follows.

e Programming paradigms are alternative approaches (patterns) to formalization
of information problems (problem statements), data presentation, handling, and
processing.

e They are fixed in a form of formal (mathematical) theory and accumulated in
programming languages.

e Programming value of a paradigm may be characterized by a set of programming
problems/application areas that the paradigm fits better than the other ones.

e Educational value of programming paradigms is to teach to think different about
programming problems and to select the best paradigm to solve any particular
problem.

http://www.info.ucl.ac.be/~pvr/paradigms.html

Shilov N. V.
Teaching Formal Models of Concurrency 793

This definition assumes that teaching/learning formal models/theories is obligatory

for mastering/comprehending any programming paradigm, the parallel programming in
particular. And the puzzle about four men and a boat helps to teach and learn some
formal models and theories of concurrency.

References

(1]
2|

3]

4]

5]

[6]

17l

18]

19]
[10]

[11]
[12]
[13]
[14]
[15]
[16]
[17]

[18]

[19]

Handbook of Process Algebra, eds. J.A. Bergstra, A. Ponse, S.A. Smolka, Elsevier,
Amsterdam, 2001.

L. Cardelli, A.D. Gordon, “Mobile ambient”, Lecture Notes in Computer Science, 1378,
Springer-Verlag, Berlin, Heidelberg, 1998, 140-155.

L. Cardelli, “Mobility and Security.”, Foundations of Secure Computation, Proceedings of

the NATO Advanced Study Institute on Foundations of Secure Computation, IOS Press,
Amsterdam, 2000, 3-37.

E.M. Jr. Clarke, O. Grumberg, D.A. Peled, Model Checking, MIT Press, Cambridge,
Massachusetts, 1999.

R.W. Floyd, “The paradigms of Programming”, Communications of ACM, 22 (1979),
455-460.

D. Grossman, “Ready-For-Use: 3 Weeks of Parallelism and Concurrency in a Required
Second-Year Data-Structures Course”, SPLASH 2010 Workshop on Curricula for
Concurrency and Parallelism (Reno, Nevada, USA, Oct. 17, 2010), https://homes.cs.
washington.edu/~djg/papers/grossmanSPAC_position2010.pdf.

C. A.R. Hoare, Communicating Sequential Processes, Prentice Hall, Upper Saddle River,
New Jersey, 1985, (This book was updated by Jim Davies at the Oxford University
Computing Laboratory in 2004 and the new edition is available at the http://www.
usingcsp.com/).

Yu. G. Karpov, Model Checking. Verificaciya parallelnyh i raspredelennyh programmnyh
system, BHV-Peterburg, Saint Petersburg, 2010, (In Russian).

V. E. Kotov, Seti Petri, Nauka, Moscow, Russia, 1987, (In Russian).

Z. Manna, A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems:
Specification, Springer-Verlag,, New York, 1992.

T.S. Kuhn, The structure of Scientific Revolutions, Univ. of Chicago Press, Chicago and
London, 1996, (3rd Edition).

R. Milner, Communicating and Mobile Systems: the Pi-Calculus, Cambridge University
Press, Cambridge, England, 1999.

R. Milner, A Calculus of Communicating Systems, Lecture Notes in Computer Science,
92, Springer-Verlag, Berlin, Heidelberg, 1980.

J. L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice Hall, Upper Saddle
River, New Jersey, 1981.

W. Reisig, A Primer in Petri Net Design, Springer-Verlag, Berlin, Heidelberg, 1992.

P. van Roy, “Programming Paradigms for Dummies: What Every Programmer Should
Know”, New Computational Paradigms for Computer Music,, eds. G. Assayag, A. Gerzso,
IRCAM /Delatour, France, 2009, 9-38.

N.V. Shilov, K. Yi, “How to Find a Coin: Propositional Program Logics Made Easy”,
Current Trends in Theoretical Computer Science. V.2, World Scientific, Singapore, 2004,
181-214.

N.V. Shilov et al., “Development of the Computer Language Classification Knowledge
Portal”, Ershov Informatics Conference PSI’11, Lecture Notes in Computer Science, 7162,
Springer-Verlag, Berlin, Heidelberg, 2012, 340-348.

C. Stirling, Modal and Temporal Properties of Processes, Springer-Verlag, New York, 2001.

https://homes.cs.washington.edu/~djg/papers/grossmanSPAC_position2010.pdf
https://homes.cs.washington.edu/~djg/papers/grossmanSPAC_position2010.pdf
http://www.usingcsp.com/
http://www.usingcsp.com/

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
794 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

DOI: 10.18255/1818-1015-2015-6-783-794

O npenomaBannm popMaJIbHBIX MojeJieii 1 aJropuTMOB aHAJIN3A
napaJuieJibHbIX CUCTEM

Munos H. B.!
noayuena 26 oxkmabps 2015

B macrositiiee Bpemst HAGITIOAETCST OTPOMHBIN PAKTHIECKUI HHTEPEC K TAPAJIIIETHEHOMY ITPOTPAMMU-
POBAHUIO. DTOT HHTEPEC 0OYCIOBIIEH JOCTYITHOCTHIO cytiep-9BM, KOMIIBIOTEPHBIX KJIACTEPOB U MOIITHBIX
rpauYecKuX IMPOIECCOPOB JIJIsi MACCOBOIO UCIIOJIb30BAHUS B BBIYUC/IUTEIBHON MATEMATHKE U KOMITHIO-
TepHOM MojieupoBannu. Kpome Toro, Takue TeXHOJIOTUN MAPAJIIEILHOTO IporpaMMupoBanust, Kak MPI,
OpenMP u CUDA, mo3BoJISIOT HCIIOJIB30BATH HE30IACHBIM 0OPA30M OTIBIT MPOTPAMMUPOBAHUS HA KJIAC-
cuyeckux a3bikax Cu u FORTRAN s yckopenus Bbraucienuii, usberas kondaunkros (“ronox”) us-3a
pecypcoB. OHAKO TAKOW MPOTPece mapaJsieIbHOTO TPOrpaMMUPOBAHIS HE O3HAYAET, UYTO KOHKYPEHIIHsI
n3-32 PECYPCOB HE MOXKET BO3HUKATDH B [1aPaJUIEJbHBIX OOIIEro BHJA, B TAK HA3BIBAEMBIX pacnpedeet-
HOLX cucmemaxr B dacTHOCTU. [loaTOMY OCTaeTcs aKTyaJIbHBIM M3yUeHne U IperojiaBanue (hpopMaIbHbIX
Mojiesiell apaJieu3Ma U CpeicTB BepudUKAU IOBEJEHIECKUX CBONUCTB IapaJUIeJbHbIX (pacipeje-
JIEHHBIX) CHCTEM.

B craTbe npeicTaBiieH onbIT MPENoIaBanusl CIEIUAIBHOTO Kypca 10 (GOPMAaTbHBIM MOIEJISIM apaJi-
JIeJIN3MA, JIJIsi MArICTPAHTOB U aCIIUPAHTOB, CHEIUAIA3UPY FOIIIXCS B 00JIACTH BHICOKOITPOU3BOIUTEIBbHBIX
Beranciienuit. CHagaja B cTaThbe JaH 0030p Kypca B IIeJI0M, IIPeIBAPUTEIbHBIX 3HAHUI, HEOOXOIUMBIX JIJIsi
9TOrO Kypca, Iejeil u 3a1a9 Kypca, IPeJCTABJICH IUIaH JIEKINI U CIIUCOK PEKOMEHIOBAHHON JIUTEPATY-
pbL. 3aTeM IIpPeICTABIIEH IIPUMED OJHOM 10y YUTEJILHON [OJIOBOJIOMKY (Ha JOCTUKUMOCTD B IIPOCTPAHCTBE
cocrostHuil) 1 ee (POPMAIMBAIMN CPEJCTBAMU CEMAHTHYCCKUX, CHHTAKCUIECKUX U JIOTMYECKUX MOJIEJIeid,
Kak-To: cersimu [leTpu, cpeicTBAMM CUNCIEHNsI TAPAIUIENIbHBIX B3anMozeiicTByomux nporeccos (CCS)
u TeMropaJibHoil jjoruku CTL. DTa rojioBosioMKa — XOPOIIHii IPUMEp JIJIsi TOTO, 9TOOBI TOKa3aTh CIIe-
UKy U TOJIb3Y KaXKJIOr0 U3 PACCMOTPEHHBIX (DOPMAJIA3MOB.

Crarbs mpeacTaBiser cOOO pacIIUpeHHyo Bepcuio fokJaga Ha VI MexmynapomHoMm cemuHape
“Program Semantics, Specification and Verification: Theory and Applications”, Kazann, 2015.

CraTbst IyOJIMKYeTCsI B ABTOPCKOM PEIAKITHH.

KiroueBbie cioBa: CHUCTEMBI C HApasIean3MoM, (GopMasibHble METOMIbI, (POpPMaJIbHbIE MOJIETH, Ce-
tu [lerpu, ncuncienus B3anMOAEHCTBYIONNX IPOIECCOB, TOMEYEHHBIE CUCTEMBI IIEPEX00B, IPodemMa
JOCTHXKUMOCTHU, TEMITOPaJIbHAS JIOTHKA, BepuduKaust Mojeseit

Hasa nuruposanus: [Ilunos H.B., "O npenogasanun (popMasbHBIX MOZAEJIEH W aJTOPUTMOB aHAIN3a IapajlleIbHbBIX
cucreM", Modeauposanue u aHaiu3 UHPGOPMAUUOHHBLT cucmem, 22:6 (2015), 783-794.

O6 aBTOpax:

[Tunos Hukouait Bsueciasosud, orcid.org/0000-0001-7515-9647,
KaHJ. PuU3.-MaT. HAyK, CTAPIINil HAYYIHbI COTPYIHUK,

MNucturyt cucrem nadopmaruku um. A.Il. Epmosa CO PAH
630090 Poccus, r. HoBocubupck, np. JlaBperTbesa, 6,

e-mail: shilov@iis.nsk.su

Baaromapuocru:
1PaGora BhImOAHEHA B paMKax mporpaMmbl 1V.39.1 «Teopermueckue u IpuKIafHble IPOGIEMbI CO3IaHMsS SPDEKTUBHBIX
HaJe?KHBIX ITPOrPaMMHBIX CUCTEM U I/IH(bOpI\.IaL[I/IOHHBIX TEXHOJIOTHI».

Modeauposanue u anaaus ungopmayuorror cucmem. T.22, Ne6 (2015), c. 795-817
Modeling and Analysis of Information Systems. Vol.22, No 6 (2015), pp. 795-817

©Mikhailov A. V., 2015
DOI: 10.18255/1818-1015-2015-6-795-817

UDC 51

Formal Diagonalisation of Lax-Darboux Schemes

A.V. Mikhailov
Received November 28, 2015

We discuss the concept of Lax-Darboux scheme and illustrate it on well known examples associated
with the Nonlinear Schrodinger (NLS) equation. We explore the Darboux links of the NLS hierarchy
with the hierarchy of Heisenberg model, principal chiral field model as well as with differential-difference
integrable systems (including the Toda lattice and differential-difference Heisenberg chain) and integrable
partial difference systems. We show that there exists a transformation which formally diagonalises all
elements of the Lax-Darboux scheme simultaneously. It provides us with generating functions of local
conservation laws for all integrable systems obtained. We discuss the relations between conservation
laws for systems belonging to the Lax-Darboux scheme.

Keywords: formal diagonalisation, Lax-Darboux schemes, nonlinear Schrédinger equation, NLS

For citation: Mikhailov A. V., "Formal Diagonalisation of Lax-Darboux Schemes", Modeling and Analysis of Information
Systems, 22:6 (2015), 795-817.

On the authors:

Alexander V Mikhailov — Professor, University of Leeds, School of Mathematics (Leeds, UK)
University of Leeds, Leeds, LS2 9JT, UK

e-mail: A.V.Mikhailov @ leeds.ac.uk

795

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
796 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

1. Introduction

Often, integrable partial differential, differential-difference and partial difference equa-
tions can be regarded as parts of an algebraic structure which we call a Lax-Darboux
scheme. In this context the Lax representations for the integrable partial differential
equation (PDE) and a hierarchy of its symmetries form a Lax structure. Darboux
transformations for the corresponding Lax operators are automorphisms of this Lax
structure resulting in a chain of Bécklund transformations for the PDE and its symmetries.
The latter represents an integrable system of differential-difference equations (DAEs)
and its symmetries (often non-evolutionary). The Bianchi permutability conditions for
Darboux transformations represent a system of partial difference equations (PAEs). This
system possesses an infinite hierarchy of commuting symmetries (the above mentioned
DAEs) and thus it is an integrable partial difference system in its own right. There
are many journal publications and monographs focusing on certain aspects of this big
picture [1, 2, 3, 4, 5. In particular, paper [4] contains a good collection of Lax-Darboux
representations recursion operators for integrable differential-difference equations. In this
paper we discuss the ways in which PDEs, DAEs and PAEs belonging to the same Lax-
Darboux scheme share the same hierarchy of local conservation laws.

The main idea standing behind our theory is a formal diagonalisation of the Lax-
Darboux scheme. We show that there exists a formal (i.e. in the form of a formal series)
gauge transformation which simultaneously diagonalises (or brings to a block-diagonal
form) the Lax operators of the Lax structure and Darboux matrices associated with
Darboux transformations. It provides us with a regular method for recursive derivation
of a hierarchy of local conservation laws for the nonlinear differential and difference
systems associated with the Lax-Darboux scheme.

The method of formal diagonalisation of differential operators can be found in the
classical literature concerning asymptotic expansion [6]. In application to Lax representa-
tions for partial differential equations and recursive derivation of the hierarchy of local
conservation laws, there is a neat and instructive exposition of the method [7]. It has been
successfully used in the Symmetry Approach to classify of integrable partial differential
equations [8]. Here we extend the method to Darboux transformations and in this
way to differential-difference and partial difference integrable systems. We shall explain
the method using the Lax-Darboux scheme associated with the Nonlinear Schrédinger
equation. Its generalisations to other Lax-Darboux schemes is rather straightforward.
This paper is based on a lecture courses given by the author in the Bashkir State
University (Ufa, 2012) and as a part of MAGIC course on Integrable systems (UK,
2014), a number of conference talks (Ufa, October 2012; Moscow, November 2012 [9];
Cambridge, July 2013 [10]) where the concept of Lax-Darbiux scheme and formal diagona-
lisation approach were originally presented. This method has proven to be useful in a
many applications(see for example [5, 11, 12]).

Mikhailov A. V.
Formal diagonalisation of Lax-Darboux schemes 797

2. Lax-Darboux scheme for the Nonlinear Schrodinger
equation

In this paper we consider Lax integrable equations, i.e. equations which can be integrated
using the Inverse Spectral Transform method. For such equations we can build up a Lax-
Darboux scheme with the following objects:

e the Lax structure, which is an infinite sequence of Lax operators whose commuta-
tivity conditions are equivalent to the equation and a hierarchy of commuting
symmetries;

e Darboux transformations, which are automorphisms of the Lax structure;

e Bécklund transformations, which are follow from the compatibility conditions of
the Lax structure and Darboux transformation. They can be regarded as integrable
differential-difference systems;

e the conditions of Bianchi permutability for the Darboux transformations, which
lead to systems of integrable partial difference equations;

e Ajacent Lax structures associated with a Darboux transformation which lead to
adjacent symmetries of these differential-difference and partial difference equations
and are integrable differential-difference equations in their own right.

In this section we would like to give explicit representations of all listed above objects
in the case of the Nonlinear Schrédinger (NLS) equation.

2.1. Lax structure of the Nonlinear Schrodinger Equation

The Nonlinear Schrédinger Equation is a system of two partial differential equations

201 = Pux — 8P°¢, 21 = —Qux + 8¢°D (1)

where x,t are independent variables. In the literature the term Nonlinear Schrédinger
Equation usually stands for one complex equation of the form

iq = qer %+ 2|q/q,

which can be obtained from (1) after a change of variables ¢ — 2it, * — 2iz and
reduction p = F¢*. In this paper we shall use equation (1) to illustrate the method, since
the reduction condition would add some inessential technicalities.

It has been shown by Zakharov and Shabat [13| that the system of equations (1) is
equivalent to the commutativity condition [L(p, ¢), A(p, q)] = 0 for two linear differential
operators

L(p,q) = D, — U, A(p,q) =D;—V, (2)

where D, and D, are operators of differentiation in x and ¢ respectively,

B 0 2p (1 0 g [2pq —Du
U—)\J+(2q 0>,J—(O _1),V—>\U (" _2pq>, (3)

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
798 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

and A is a spectral parameter. Linear operators L(p, q), A(p,q) form a Lax pair (or a
Lax representation) for equation (1).
The NLS system (1) admits an infinite hierarchy of commuting symmetries

ptk:fka th:gk, k:0,1,2,... (4)
where . .
f = 2]77 g = —2q,
fl = Pa; gl = Qx,
2 1 2 2 1 2
fe= %pm — 4pq, g° = _5%“"’ + 4¢°p NLS,
1
f?= 1 Pre = 6P, 9* = 1 %ew — 64pgs,

1
ft= ?sz — 4Pz — 3qD5 — 20Pale — P Qea + 120°¢%,
4

9" = Glzrer — 44pqer — 302 — 2442Ds — ¢PPuw + 12¢°P%, ...

All functions f*, ¢* € [C, p, ¢; D,] are differential polynomials over the field C of variables
p =p, ¢© =g and their a-derivatives p™¥ = p,, ¢V = ¢z, P? = poe, ¢¥ = Gua, ...
and

> 0 0
_ (n+1) _~Y (n+1)
De =2 0" g 0

By (generalised) symmetries of the NLS equation (1) we understand derivations

Dy = Dw(fk)ap(n) + D} (gk)m
n=0

commuting with D, = D,, and D,
[th, Dtk] — 0, [Dx, Dtk] — 0

Symmetries are called commuting if the corresponding derivations commute. It is sufficient
to verify that Dy (fm) = Dy, (fn) and Dy, (gm) = Dy, (9,). Motivations and general
definition of symmetries one can find in [14, 15].

Each symmetry from this hierarchy has a Lax representation

. = 1" @, =9" & [Lp.q), A (p,q) =0 (5)

with the same operator L(p,q) = D, — U and A*(p,q) = D;, — V* where matrices V*
can be found recursively starting from V° = J and for k > 1

1 1 1
VEHL Pk _ §Dx(vk)J — 5[v’“, UlJ — §D;1Tr(UDx(Vk))J. (6)

Here D! stands for integration in z. It can be rigorously proven that Tr(UD,(V*)) €
Im D, for any k, thus the integral can be evaluated and the result belongs to the
differential ring [C;p, ¢; D,]. The constants of integration can be chosen arbitrary, or
fixed by the condition Vk\p(z):q(x)zo = *J. In the latter case

1 _ Q2
Vo= J Vi=U VE=V, v3:AV2+—<2pq”E 24Ps - Poo 8”),....
2\ ez —8¢°p 2qp, — 2pq.

Mikhailov A. V.
Formal diagonalisation of Lax-Darboux schemes 799

Recursion relation (6) can be simplified and represented in the form
V0= VL= AV"+B,, n=01,...

where the A-independent matrices B,, can be found recursively

0 2 J _
By = < 2% g) , B =) (Dz(Bk) + [Br, Bo] — D, ' Tr(BoDy(By))) -

The set of Lax operators {L(p, q), A*(p,q), k € Z>¢} and corresponding compatible
partial differential equations (commuting symmetries) {(f*, g*), k € Z>} form the Lax
structure for the Nonlinear Schrodinger equation (1).

2.2. Darboux and Backlund transformations for NLS

Since all linear differential operators {L(p,q), A*(p,q), k € Z>o} commute with each
other, there exists a common fundamental solution ¥ of the linear problems

L(p,q)¥ =0, A%(p,q)¥ =0. (7)
We shall study a transformation S of a fundamental solution
S: U U =MV, det M #£0 (8)

such that the matrix function VU is a fundamental solution of the linear problems

Lp,)® =0, A%p, ¥ =0. (9)
with new “updated potentials” p, ¢. In the literature this type of transformation is often
referred to as a Darboux transformation and the matrix M is called the Darboux
matrix. We shall assume that a Darboux matrix M is a rational function of the spectral
parameter A, whose entry may depend on p, ¢, p, ¢ and may also depend on some auxiliary
function(s) h or constant parameter(s) (examples will be given later in this section). The
given description of a Darboux transformation can be cast into a rigorous definition using
elements of differential-difference ring theory. We wish to avoid the introduction of these
concepts at the present time to make the paper accessible to a wider community.

It follows from (7), (8), (9) that transformation S can be extended to the set of Lax
operators:

S: L(p,q) — L(p,q) = ML(p,q) M,
(10)
S:A¥p,q) = AP, q) = MA*(p,g)M~', k=0,1,... .

Let us show it for the first equation. Indeed, we have
DV =S(U)¥ = D (M¥) =SU)MVY = D, (M) —SU)M + MU =0

and thus L(p, §)M — M L(p, q) = 0. Here we use notation S(U) for matrix U (3) in which
variables p, ¢ are replaced by p, . Equations (10) are equivalent to a compatible system
of equations for M

D,(M)=S(U)M — MU, (11)
Dy (M) =S(VFYM — MV*.. (12)

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
800 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

It follows from (10) that a Darboux transformation S can be regarded as an automor-
phism of the Lax structure. It maps the set of commuting Lax operators into another
commuting set

S {L(p.q), A*(p,q); k € Zso} — {L(p.q), A*(p,q); k € Zxo},

and results in a Béacklund transformation which transforms a solution p, ¢ of the NLS
hierarchy into a new solution

S (pa) = (P, 0)-
Equations (11), (12) follow from the conditions that the map S and derivations D,, Dy,
commute

SL=MLM™" = AdyL, SA* = MA*M~' := Ad, A", k=0,1,... .

Darboux transformations are obviously invertible and a composition of two Darboux
transformations &7, Sy with Darboux matrices My, My

82 o 81 U= Sl(Mg)Mqu

is a Darboux transformation. There is a problem to describe all elementary Darboux
transformations for a given Lax structure, such that any rational Darboux transformation
can be represented as a composition of the elementary ones. In the cases of the Lax
structure corresponding to the Korteweg-de Vries equation and the Nonlinear Schrodinger
equation the solution of this problem can be found in [16]. In particular, it has been shown
that any Darboux transformation of the Lax operators L, A (2) can be represented as a
composition of elementary Darboux transformations J3, Sy, 7, with matrices

Js : Jg = diag(8, 571), (13)

o= (IR, &

n:m:(%’;g), (15)
and their inverse transformations with a certain choice of constant complex parameters
’ CYI.t follows from (11) that

TsL = Ady,L < Js(p) = B°p, Ts(q) = B7%¢; (16)

Pe = 28.(p) — 20°Sa(q) + 2ap,
SoL =Ady, L < (17)
Sa(qz) = —2q + 2pSa(q?) — 2a8.(q);

Tl =Adyn, L & (18)
pTu(q) = 1.

The first map (16)
Ts: (p.q) = (8%, 67%q)

Mikhailov A. V.
Formal diagonalisation of Lax-Darboux schemes 801

is nothing but a point symmetry of the NLS equation (1).

Equation (17) is a Backlund transformation (the x part of the Backlund transformation)
for the NLS equation (1). Starting from a solution p,q of the NLS we can find a new
solution (p1,q1) = (Sa(p), Sa(q)) by solving a Riccati equation for ¢,

1. = —2¢ + 2pg} — 2aq,

and then p; = p*q; — 2ap — p,. Equations (17) can be regarded as an integrable system
of differential-difference equations (DAEs). In variables

Dn = Sg(p)a Gn = SS(Q)a Qp = SS(C“) (19>
it takes the form [17]
Pnaz = 2pn+1 - QpiQnJrl + 2anpn7
Qn.e = _Qanl + 2pn71q721 - 2an71Qn>

In order to simplify notations we often shall omit n in the lower index for functions
depending on the point of the lattice replacing p,+1 by p+i1, etc. System (20) has a
Lax-Darboux representation (often called a semi-discrete Lax representation)

LU =0, Su(¥)=M,U.

neZ, a,cC. (20)

Its compatibility condition (11) is equivalent to (20). It has an infinite hierarchy of
commuting symmetries following from the conditions S,A* = Ad,;, A* and local conser-
vation laws. The latter will be shown in the next section.

Automorphism 7, gives the explicit map for solutions of the NLS:

_ gL (P _1
-5 (%) . - 1)
In variables p = exp ¢, ¢ = T,F(¢), hy = T,*(h) it can be written as
¢:(: = —Zh, hx = 2€Xp(¢1 - ¢) - 26Xp<¢ - ¢71> (22)

and after elimination of A it takes the form of the Toda lattice:

P = 46Xp(¢ - ¢—1> - 4exp(gz§1 - ¢)

The DAEs which follow from T, A* = Ady, A* are symmetries of (22). For example for
k=0,1,2,3 we obtain

{ bty = 2, { b1, = —2h,
hiy = 0; he, = 2(Th — 1) exp(¢ — ¢-1);
{ Gr, = 2h° = 2(Ty, + 1) exp(¢p — d-1),
hiy = =2(Tp, — 1)(exp(¢ — ¢—1)(h—1 + R));
Gis = 2exp(¢ — ¢-1)(2h + h1) + 2exp(¢1 — ¢)(2h + hy) — 217,

hey = 2(Th — 1)((h2; + hoah + h?) exp(¢ — ¢_1)+
exp(2¢ — 2¢_1) + (Tn + 1) exp(¢ — ¢_2)).
To define the explicit map (21) we have to consider the localisation of the ring with

respect to the element p~!. Then we introduced the exponential function in order to
transform the system in the standard well known form of the Toda lattice.

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
802 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

2.3. Bianchi commutativity of Darboux maps
and integrable PAEs

Let us impose the condition that automorphisms corresponding to two Darboux maps
S, and S commute

[Sa,Sg] =0 = Sa(Mg)Ma — Sg(Ma)Mﬁ =0. (23)

It leads to the Bianchi lattice which can be regarded as a system of partial difference
equations (PAE) on Z2.

(Ss(p) — Sa(p))(1 + pSSalq)) — (= B)p =0

(Sp(q) — Sa(@))(1 + pSpSalq)) + (a — B)SpSalq) =0

Denoting pnm = SESF (D), Gnm = SaS§(q) we get a quadrilateral system of equations:

a—pf a—pf
- - 7 = - —qn . 24
Por = Pio + 1+ pan Py Gor = Qo — 7 Fpon qn (24)
DAEs, which follow from conditions
S.L = Ady;, L, S,A" = Ady, A (25)

are generalised symmetries of (24). Symmetries corresponding to conditions SzL =
Ady, L, SsAF = Ady, A* are equivalent to (25) modulo system (24).
Similarly, the condition [S,, 7] = 0 leads to

E(Ma)Nh - Sa(Nh)Mom (26)
which is equivalent to the fully discrete Toda lattice
e¢1o—¢> _ e¢—¢—10 + e¢—11—¢ _ e¢—¢1,71 +a—a_1=0, (27)

and
h = e?P1-1 _ o109 _ a,

in the variables ¢,, = TFS?logp and TFa = a,8%a = ay,a; € C. The discrete Toda
lattice is a difference equation which is defined on a 5—points stencil.
Equations which follow from conditions

S.L = Ady, L, S, A" = Ady,, A (28)
are symmetries of the discrete Toda lattice. For example S,L = Ad,,, L results in
by = _2(e¢—¢1,71 — P09 _ Oz).

Symmetries corresponding to conditions 7,L = Ady, L, TpA* = Ady, A are equivalent
to (28) modulo system (27).

Mikhailov A. V.
Formal diagonalisation of Lax-Darboux schemes 803

2.4. Adjacent Lax structure

In Section 2.2 we discussed the problem to find all elementary Darboux matrices corres-
ponding to a given Lax structure. There is another interesting and important problem to
find all possible Lax structures associated with a given Darboux matrix. In this section
we show that the Darboux matrix M, (14) corresponding to Lax operators (2) admits
an alternative Lax structure with operators B¥ = D, — W". We shall assume that
S.(@) = «, i.e. the constant o does not depend on the vertex of the lattice.

We notice that the determinant of the Darboux matrix

- (M)

is A\ — . Thus at A = o M? = M,| =, has rank 1 and can be represented by a bi-vector

Me= (1) uta v,

Let us search for a Lax operator By = D, — W} with a matrix W} having a simple
pole with a residue of rank 1 at A = o and vanishing at A = oo

Wl
1 _ «
W, = o
It follows from S, B! = Ad,;, B! that
D,(M,) = So(WHM, — M, W} (29)

Taking the residue at A = o we get equation

Sa(W!

«

)My = MW,

which has a unique (up to a scalar constant factor v) solution

Wi o < Sai(p)) (Su(g), 1).

148, (P)Sa(0)
In what follows we set v = 1. Thus
1 1 S (p)Sala) STH(p)
We = (A= a)(1+ 81 (p)Sa(a)) < Salq) 1) '

Entries of W! are not from the differential-difference polynomial ring and localisation of
the ring by the element (14 S, (p)Sa(q)) ™" is required.

With this W] equation (29) is equivalent to the following evolutionary system of
integrable differential-difference equations

b1 q1

N o) SR 30
Ltpaa ¥ 1T1p (30)

Dy =

Here we use notations introduced in (19). System (30) is a new symmetry of differential-
difference system (20) as well as of partial-difference systems (24),(27).

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
804 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

It can be shown that there is an infinite hierarchy of commuting operators

1

Bk:Dyk_Wc]fﬂ Wolzﬁ_l:/\—Oé

«

(W +C") (31)
and C* is a A-independent matrix. Using condition [B}, B2| = 0 we can find that

Cct = ; (P-191y = P-19y@1 —P-1y —p2_1ql,y) _
(1+p1q)? \ Gy + P ip—1y P-1y@ — P-1G1y

For matrices W’ there exists a recursion (similar to (6)) which enables one to find
the infinite hierarchy of operators B* recursively. Operators BX, k = 1,2,... form the
adjacent Lax structure.

The partial differential equation which is equivalent to the condition [Bl, B2] = 0 is

of the form
2q1((p-1),)°
I+paq

~ 2pa((qn)y)?
L+pqa

(P-1)ys = —(P=1)yy +
(32)

(QI)yz = (QI>yy

System (30) is a Béacklund transformation for (32). Equation (32) is well known, it is a
Heisenberg model for ferromagnets [18]

S, =S xS S?=1

yy»

after the change of variable y, = i7 and stereographic projection

:(p_1+ql S =P p—1Q1—1>
l+paq’ 1+4+pag’ 14+paq /)

We can use equation (30) to eliminate y derivatives from the Lax operator B2 and
partial differential equation (32). The latter will take the form of a differential-difference
system

p2142(1 + p_aq) — p_o(1 + pgo)

p :
2 (T +poaq)(T+po1qr)?(1 + pgo)

(33)
0 = 20 AP20) — gip—2(1 + pg2)
2 (T4 poaq) (4 po1ga)*(1 + pgo)

Equation (33) is a Bécklund transformation for (32) and a symmetry of systems (30),
(20), (24), (27).

The system of partial difference equations (24) is equivalent to the commutativity of
Darboux transformations [S,, Ss] = 0, corresponding to Darboux matrices M, and Mg,
with distinct values of the parameters o and 5. With these matrices we associate two
Lax operators

Wl 4%
Ba:Dy_A_aOé7 B,BZDZ_—B

a# f, (34)

Mikhailov A. V.
Formal diagonalisation of Lax-Darboux schemes 805

which coincide with the Lax pair for the principal chiral field model [19]. The compatibility
condition [B,, Bg] = 0 leads to the system

(Wa, Wil

(W, W]
B—a’

(Wﬁl)y: 6_04)

(Wi)z =

which in variables p,,, = Sy S5 (p), ¢nm = SHSE'(q) can be written as

(po,—1 — P—1,0)(1 + p-1,090,1)
(@ = B)(1 + po,—190,1)

(p—l,o)z =

(10 = o.1)(1 +po,—1q1.0) (35)
(o= B)(1 + po,-190,1)

(C]l,o)z =

(po,—l)y = (p—l,O)za (QO,l)y = (611,0)2-
Finally, let us consider the compatibility condition [L, B,| = 0 for two linear problems
LV =0, B, Y =0

with the original Lax operator L (2) and operator B, (34). Vanishing of the commutator
at infinity in X is equivalent to equations (30). Using equations (30) we can express p_;

and ¢; as
_ 1+ /T +4(),(9), L+ /1 +4(p)y(a)y

2(9), T 2(p),

Of course there is also the second solution with the negative sign at the square root, it
can be treated similarly. Then the compatibility conditions are equivalent to the system
of partial differential equations

(P)ay = 2a(p)y + 2p\/ L+4(p)y(@)y, (@)zy = —2a(q)y + 2(]\/ 14 4(p)y(q)y- (36)

The constant a can be removed by a simple change of variables P = pe™2%, () = qe?**.
Then the system admits an obvious reduction P = @) to a single hyperbolic equation

(P):vy = P\/ 1+ 4((P)y)2‘

The latter equation is well known in the literature. It can be reduced to the sine-Gordon
equation by a differential substitution [20]. The above construction provides us with the
Lax representation for the system (36) with the Lax operators L (2) and the second

operator
_n ! V1+4(p)y(9)y —2(p)y
ERATo ey (Aq)y —v/TF 40,y) | 1)

Similarly one can eliminate shifts from operators B* to build up the Lax structure
correponding to (36), (37).

pP—1

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
806 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

3. Formal diagonalisation of the Lax-Darboux Scheme

In this section we show that the Lax operators and corresponding Darboux matrices
can be simultaneously formally diagonalised. The resulting objects will be presented by
formal Laurent expansions at poles of the chosen Lax operator. It will enable us to
find recursively local conservation laws for corresponding partial differential, differential-
difference and partial difference equations simultaneously. Our aim is to show that
for evolutionary equations from the same Lax-Darboux scheme with Lax operators
L,A* k = 0,1,... and Darboux maps S;, i = 1,2, ... there is an infinite sequence of
common local conservation laws with densities p,, 7 and fluxes 0. That is,

1. PDE’s corresponding to the Lax structure [L, A*¥] = 0 possess conservation lows

Dy, pn = Dok, k=0,1,....

2. For differential-difference equations originating from the conditions S;L = Ady, L
and S;AF = Ad,;, A* there are conservation laws of the form

Dxrfm = (SZ - 1>pn; Dtkrfz = ('Sl - 1)0-7Ii
with the same p,, and 07’2 as above, modulo equation S;L = Ad,, L.

3. For partial difference equations, corresponding to the Bianchi lattice [S;, S;] = 0
the corresponding sequence of the conservation laws are:

(S, — Dy, = (Si—1)r).

We shall demonstrate it on the examples described in the previous section, associated
with the Lax-Darboux scheme for the nonlinear Schrodinger equation as well as with the
adjacent Lax structures considered in Section 2.4. A generalisation of this approach to
other Lax-Darboux schemes (or their parts) often is rather straightforward and it will
be discussed at the end of this Section.

3.1. Formal diagonalisation of the Lax structure for NLS (L, A¥)

In the Lax operator L (2) matrix U has a simple pole in A at infinity with the coefficient
J which is diagonal (3). The matrices V* in operators A* = D, — V* are differential
polynomials in variables p, ¢ and their x derivatives with complex coefficients. The leading
(in \) coefficient is also diagonal and is equal to A*J. By local functions (in this case)
we shall understand elements of the differential polynomial ring R, = [C; p, q; D,].

Let us consider endomorphism ad; of the linear space 9t = Matgyo(R,) of 2 X 2
matrices with entries from R,

ady : M— M, ady(a) =Ja—aJ, a€M.

The kernel of ad; is the subspace of diagonal matrices, the image space of ad; is a
subspace of off-diagonal matrices. Thus

SDT:E)JIHEBEDTL, imnzKeradJ, M, =Imad;.

Mikhailov A. V.
Formal diagonalisation of Lax-Darboux schemes 807

In 991, the endomorphism ad; is invertible
1
ad}1 M = M, ad}lazzadja, Ya € M, .

In the space 91 it is convenient to introduce two projectors

1 .
T, = —ad%, T =1id — Ty

4

where ¢d is the identity map. They are projectors on the off-diagonal and diagonal part
of a matrix respectively

TM=M,, M=

We shall use a simplified version of the Drinfeld-Sokolov Lemma, which they have
formulated and proved in a rather general setting [7].

Lemma 1. For linear operator L (2) there exists a unique formal series
Q=T+X"Q1+X?Q+ A7 Qs+, QreM (38)
such that
L=Q'LQ=D, -\ —Uy— XUy = XUy —---, Uy, € M. (39)

The coefficients Q. can be found recursively

pt+q=k
Qi=—pdilU, Qu = jad, (Dx@m > @pUQq>, (40)

p=1,g=1

and

Uy =0, U, =UQy .
Proof. Let us substitute L, £ and @ in
C=LQ—-QL=Co+N'CL+ X 2Cy+--- .

The condition that the formal series C' should vanish provides us with a sequence of
equations to determine the coefficients Uy, Qx. The linear in A term vanishes automatically.
The coefficient at \° is

Co=[J,Q1] +U —Uy.

Applying projectors m; and 7, to Cy we find that
([, Q1] + U — Uy) = —Uy = 0, T ([, Q1] + U —Uy) = [J,Q1] + U = 0.
Thus Uy = 0 and Q) = —}ladJU. The coefficient at A" is

pta=k

Cr = ad; Qi1 — Da(Qn) + UQk U — > Quldy.

p=1,4=1

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)

808 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)
Therefore
m(Cr) =UQk —Upy =0 = Uy, = UQy,
pt+q=k
TL(Ch) = adyQusr — Da(Qi) = Y Quldy =0
p=1,q=1

Thus the coefficients @),,,U,, can be found recursively:

pt+q=Fk

Q= —iadﬂﬁ Qr+1 = iadJ (Dz(Qk) + Z QpUQq> , U = UQy.

p=1,q=1
Note that Q) and U}, are all local, i.e. expressed in terms of differential polynomials. O

We are going to show that () diagonalises the whole Lax-Darboux scheme, i.e. diagona-
lises the operators A* and the Darboux matrices M, (corresponding to S,). It is well
known that all operators A* in the Lax structure become diagonal and lead to local
conservation laws for the corresponding partial differential equations and their symmetries.

Proposition 1. Let [L, A*] =0, where
AR =Dy — AT = NVE N

Then
AF = Q1 A*Q = D, — NFJ — NFIVE L NERYE L (41)

has diagonal coefficients V¥ € My, s=k—-1,k—-2,....

Proof. If [L, A*] = 0, then [£, A*] = 0 where £ = Q7'LQ (39) and A* = Q1A*Q
(41). Using induction we show that all coefficients of the formal series A" are diagonal.
The leading coefficient of the series A\¥J is diagonal. Let us assume that coefficients
Ve VY .., VE are diagonal. Then the leading term of w,[£, A*] is equal to
Ne=mad VE . Tt should vanish and thus VE,_, € M. O

Corollary 1. The following ystems of partial differential equations
(P = % @, = 9") & [L,A*]=0
have an infinite hierarchy of common conservation laws
Uy, = D, (VF), n=12...,
Moreover, D,VF =0, form=1-k,2—k,...,1,0.

Proof. From [L, A¥] = 0 it follows that [£,.A*] = 0 which leads to

o0

Z A_n(un)tk - A_n(VS)x =0.
n=1 =

n=1—k

Vanishing the coefficients at each power A" proves the statement. O

Mikhailov A. V.
Formal diagonalisation of Lax-Darboux schemes 809

It is easy to show that differential polynomials Tri4,, € Im D, and thus they correspond
to trivial densities. Let us take the matrix entry (U,)22, (V¥)22 to define

Pn = (Un)2,27 Ufb = (Vf)m-

It can be shown that the corresponding densities are all non-trivial.
Example. Taking L corresponding to the NLS (2) we find that

(0 —p B 1 0
Ql_(q O)a ul_QPQ(O_l)a

0 ps pge 0)
1
= 1 ’ U, = — 7
Q= (4@ O) ? < 0 gqps
Qs =1L (0 —Pax + 4p%q) Us = 1 (pqm — dp*¢? 0)
\ G — @ 0 ’ 2 0 AP*¢* — qpaa)
and

p1 = —2pq, 07 = @up — Paqs 05 = 5(Pele — Plae — @Paz) + 6P*¢ ..,
P2 = —(qPx, U% = %(px%{: - qux) + 2p2q27 Ug = Zi(poc:c%c - qpxoc:c) + 4pq2px cee
p3 = 20°¢* — 5qDaxs p1 = PA(PGz + 4GD2)) — $UPran - - - -

3.2. Formal diagonalisation of the Darboux matrices M,, N,

The diagonalising transformation () can be extended to the Darboux matrices M,, Mg
and Nj,. We substitute L = QLQ ™" in S,(L) = M,LM_;! to obtain

Soa(L) = M LMY, M, =8,(Q) ' M,Q. (42)
Similarly we obtain
Ta(L) = NoLN', Ni=To(Q)7'NQ.
These equations can be rewritten in the form

D,(M,) = So(L)My — ML, (43)
D, (Ny) = Th(L)N, — NLL. (44)

Proposition 2. The coefficients M~ NF of the formal series
My =8u(Q) " MoQ = IMT + MO+ XML+ ATPME + -

and

Ni=Th(Q)'NQ =M+ NP + AN+ A2NE + -+

are diagonal matrices.

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
810 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

Proof. We prove it by induction. The leading coefficients M_! = A, —1 are diagonal
matrices with (1,0) on the diagonal. Let us assume that the coefficients M2, ... M"
are diagonal. Taking the coefficient ¢, at A™™ in D (M) — So (L) My + ML we obtain

= Dy (M?) — [J, MH1] — Zs (U)ME + MEU, . = 0.
k=-1

Projection 7, (¢,) = —[J, M"™!] = 0, which implies that M™*! is diagonal. The proof is
similar for the coefficients of Nj,. O
Equation (43) can be written in the form

Dy(log My) = (S — 1)L,

since all matrices in (43) are diagonal. Thus log M,, is a generating function for local
conservation laws for the differential-difference equation (20):

<

"oy Ta
A)\

Dy(ra) = Salpr) = pr-
It follows from (12) and Proposition 1 that

log(Ma)2,2 = + + s

> |Qﬁw

Dy, (r3) = Saloy) — -
Moreover, it follows from (23) that
Sa(Mp)Ma = Ss(Ma) Mp.
Therefore
(Sq — I)1log Mg = (Sg — I)log M,
and thus
(Sa = D)1l = (Sg — I)rk E=1,2,....

)

Similarly, from (26) it follows that T,(Ma)N}, = So(N,)M,, and thus

7“1 7”2 ,,,.3

(Sa_l)rk: (771—])7‘:;, log(Nh>2,2 = X_Fﬁ—i_ﬁ—i_

Example. Using equations (17), (18) corresponding to S, L = Ady;, L, T, L = Ady L
for elimination of all z-derivatives we get

_ _ 0 —p _ 0 _Oép_Sa(p)+p28a(Q) _
@=1I+A 1(q 0)H 2(8a1(q)+aq—3al(p)q2 0)er_

(0 —p) 0 hp
I+ A <q 0)+/\ (—El(hp_l) 0 +

i, 0 B —Ti(p)) ,
) (T (P =T, 207) 0 *

Mikhailov A. V.
Formal diagonalisation of Lax-Darboux schemes 811

Ma:/\(é 8>+<p5a(%)—04 (1]>+x1<%q —pga(Q))+"'

/\/h:/\(l O)+<h O)H—l(pTh_l(p_l) 0)+A—2<_p7h_;(hp_l) 2>+

and

00 00 0 1
Thus
p1 = —2pq = —2exp(¢p — T, '¢), (45)
p2 = —qps = —2 (apq + Su(p)q — p°¢Sa(q)) = 2exp(¢ — T, '¢)h (46)
1
0y = Dge — qps, 05 = 4p°¢* + 5 (P = 0Pra), (47)
1
ra =—pSal(q), 12 ==p’¢" — apSa.(q) — Sa(pq), (48)

2
Py 1= SR = exp(Ti(6) = 0), 1 = —3h° + exp(Ta() — O)(h + Ta(h)), ...

In applications to differential-difference equations one also need to eliminate x—derivatives

from o}, 05 using equations (17), (18).

3.3. Diagonalisation of adjacent Lax structure

It is easy to justify that the transformation (38), which formally diagonalises the Lax
operator L (Lemma 1) and operators A, also diagonalises the operators B (31) associated
with the adjacent Lax structure. For example,

0B (p-lql 0>+ A2 (p-l(q+aql) 0)+
L+paq 0 1 L+paq 0 a — pqu

Thus, the coefficients 6%

. 1
Ui:—zl_\/l‘i‘llprya

I+paq
. o+ pqy
62 = T = a(l — /14 4pyq,) + pqy, - ..

in the expansion
@ 'BLQ),, = 6N+ 62N+ 6N 4

22

are fluxes for the local conservation laws of (30)
Dy(ra) = (Sa = 1)da, Dy(r3) = (Sa—1)53, .

andfor (36)
Dy(p1) = Du(65), Dylp2) = Du(62), ---
1,2

where 7}, rZ and py, p; are given in (48) and (45),(46) respectively.
Lax operator B! has a pole at A = o and we can diagonalise it around this pole. It is
convenient to introduce a local parameter u = (A — «)~! and diagonalise the coefficient

at the pole by the gauge transformation

Bl =T;'B:Ty =D, — puJy + W, (49)

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
812 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

where

p-1 —1 1 10 3 —NP-1y iy
T = Ji=—(I+J)= W= , v
0 (1 ql)’ 1=5U+J) (0 0)’ Py P-1Giy

Proposition 3. Transformation T-'BT =B brings operator B (49) to a diagonal form
B:Dy—,ujl—Wo—,u_IW1—M_2W2+"', WkZTF”(Wk),
Where

A A

Wo = 7T||(W), Wk = 7TJ_(W)T]€
T=T4p "+ 2Ty + -
and off—-diagonal coefficients T}, can be found recursively

1 ~
T1 = —iadJ(W),

k-1
1 . A .
Tir = zady (T;w — 1 (W) Ty, + Ty (W) + ZTk_Sm(W)TS> :
s=1

We omit the proof since it is very similar to the proof of Lemma 1.

The same transformation £ = (TyT) "' LT, T brings the Lax operator L to a diagonal
form (this diagonalisation is different from the one given in Lemma 1). The coefficients
or = (Wi)22 of the expansion

P-1G1y P19y

0o = —) 01 = —
’ IT+pan ! (

Tt paa)?
are densities of the conservation laws for the Heisenberg hierarchy (32), principal chiral
field model (35) and system (36).

It can be easily shown that transformation M, = S,(T,T) ' M,TyT brings the
Darboux matrix M, in a diagonal form M,. To apply the transformation to M, we
need to eliminate the y—derivatives from the coefficients T} using equation (30).

There is a direct way to diagonalise the Darboux matrix M,. Matrix M, has two
points on the Riemann sphere, where the leading coefficient (in the local parameter) is
singular. Indeed, at A = co and A\ = « the leading coefficients are

10 PG P
A(OO) and (Q1 1)

respectively. Let us diagonalise the Darboux matrix at A = a without using the result
Proposition 3. Namely, we can find coefficients of a formal series

T=1+p " Ty+p T+ p Ty + - Ty = 71 (T)
such that the coefficients Mk in
Mo =8 (T) ' MT = Mo+ "My + p 2 Mo+ -+, My =m(Myi) (50)
where

Ma = Sa(To)ilMaTo = MO + ,uflMl,

~ I+p_iqn O ~ 1 D-1Gq2 —Q2
M, = M= .
’ (0 0 > T l4pg \ pa 1

Mikhailov A. V.
Formal diagonalisation of Lax-Darboux schemes 813

Proposition 4. The coefficients Ty, T), = 7, (T}) such that the coefficients My =
Mo, My =7 (M)Ty are diagonal can be found recursively

T = 1 (0 q2)
Y (T poig)(T+pg) \ P 00)7
k
MoTip1 = Sa(Thp1) Mo + 7y (M) T = Y Sa(To)m L (M) Ty = 0.

s=1

The proof is straightforward. What is important here is that in the recursion we
do not need to solve difference equations since rankMo = 1 and Ker/\;lg@lm/\;lo =
C2. Therefore all entries of T}, and M, are elements of the difference ring [C;p,q, (1 +
p_1q1)%; Sal, i.e difference polynomials of variables p, ¢, (1+p_1q1)~* and their S¥, k € Z
shifts with complex coefficients.

It follows from Proposition 4 that

N - IL+p_iqn O n pot p-1q2 0 . p? 11«)#;»2:112(1 0 4o
a 0 0) " 1T+pe\ 0 1) 1+paqp\ O v

" 14pge

and thus the coefficients 77,

X - P-1G2
0% = —log(l +pga), ri4 = e
() (1+pg2)(1 +p-1q1)

in the expansion of (My)as = —log(p) + 104 + 7l + - - are new densities of local
conservation laws for differential difference equations (20), (30) and partial difference
equations (24), (27).

It is obvious that the transformation constructed in Proposition 3 and in Proposition 4
coincide modulo equation (30) and these two approaches are equivalent.

3.4. Summary

In this paper we have presented the concept of Lax-Darboux scheme and illustrated it on
the example of the NLS equation. From the differential-difference algebra point of view
the scheme can be described as follows. The base object is a differential-difference ring

polynomials R = [C;u; D,,, D,,,...;81,Ss,...] of a (vector) variable u = u!,... u™,
its derivatives and shifts DJ!--- DpmSp" .. .SyPu, equipped with a set of commuting
derivations D,,, k = 1,2,... and commuting automorphisms §;, ¢ = 1,2.... To each

D,, we associate a Lax operator of the form L* = D,, — U* where U* is N x N matrix
with entries belonging to R(\), i.e. are rational functions of a spectral parameter A with
coefficients from R. With each automorphism S; we associate a Darboux N x N matrix
M with entries from R(\). Then the system of Lax-Darboux equations we identify with
the differential-difference ideal

T = (L' L], S;(L’) — Adyn:(L7), S;(MI)M" — S;(M))M7) C R

and consider a quotient ring Rz = R_~Z. In this setup a statement that two expressions

are equal modulo equations simply means that these two expressions are equal as elements
of RI.

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
814 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

We can formally diagonalise (or bring to a block-diagonal form) simultaneously all
matrices U, M7 near singular points in A and generate infinite sequences p, 7, k =
1,2, ... such that in R they satisfy relations

D,,.pl. = Dy, p},
Dy, 1y, = (85 = Dy,
(Si — Dy = (S5 —)y

These relations can be regarded as a sequences of local conservation laws for partial
differential, differential difference and partial difference equations. The Lax-Darboux
scheme can be generalised to the case when the derivations are not commuting, but such
generalisatins are beyond of the scope of this paper.

In the case of the NLS equation the elements of the Lax-Darboux scheme are:

e The Lax structure, i.e. Lax operators L, A* such that the commutativity conditions
[L, A¥] = [A* AP] = 0 are equivalent to a system of integrable partial differential
equations and its symmetries (5).

e Darboux transformations S,, 7, with Darboux matrices M, (14) and N, (15)
respectively. The compatibility conditions S,L = AdpyeL, T, L = Ady,L and
So AR = Adpe A¥, TR A = Ady, A¥ result in Biicklund transformations of the
above integrable system and its symmetries (20), (21). Backlund transformations
also can be regarded as integrable differential-difference equations in their own
right.

e The Bianchi lattices, which follow from the commutativity conditions for pairs of
Darboux transformations result in integrable systems of partial difference equations
(24), (27). The mentioned above differential-difference equations (20), (21) are
symmetries of these systems.

e There is an adjacent Lax structure (corresponding to operators B¥ (31)) sharing
the same Darboux matrix M, and resulting in the differential-difference integrable
system (30). The commutativity condition [BL, B¥] = 0 results in the hierarchy of
the Heisenberg model (32). The commutativity condition [B}, B] = 0 is equivalent
to the principal chiral field model (35), so that the hierarchy of the Heisenberg
equation is a hierarchy of symmetries for (35). Equation [L, B¥] = 0 provide us
with a hierarchy of symmetries for system (36). Integrable differential-difference
systems of equations arising from the conditions S,(B*) = Ady, (B*) (such as
(30) and (33)) are Bécklund transformations for the above listed hierarchies and
symmetries for differential-difference equations (20), (21) and partial difference
equations (24), (27).

We have shown that there is a formal diagonalistaion of the Lax-Darboux scheme,
i.e. a transformation (in the form of a formal series in the spectral parameter) which
diagonalises simultaneously the Lax structure, associated Darboux transformations and
adjacent Lax structures. The diagonalised Lax (and adjacent Lax) operators and logarithms
of the diagonalised Darboux matrices are generating functions of local conservation laws
(both the densities and fluxes) for related partial differential, differential-difference and

Mikhailov A. V.
Formal diagonalisation of Lax-Darboux schemes 815

partial difference equations, which are neatly related to each other. Moreover, there
may exist several different diagonalisations, which lead to adjacent hierarchies of local
conservation laws for equations corresponding to the Lax-Darboux scheme.

Acknowledgements

I would like to thank participants of my lecture courses, seminars and conferences, where
several parts of this study were presented, for their useful comments. In particular
I am grateful to G. Berkeley, R.N. Garifullin, S. Konstantinou-Rizos, V.V. Sokolov,
R.I. Yamilov and J.P. Wang for discussions and advice. I am gratefully acknowledge
support from the Leverhulme Trust.

References

[1] V.B. Matveev, M. A. Salle, Darbouzx Transformations and Solitons, Springer Series in
Nonlinear Dynamics 4, Springer-Verlag, Berlin, 1991.

[2] C. Rogers, W. K. Schief, “Béacklund and Darboux transformations”, Geometry and modern
applications in soliton theory, Cambridge Texts in Applied Mathematics, 2002.

[3] A.I. Bobenko, Yu.B. Suris, “Integrable systems on quad-graphs”, Int. Math. Res. Notices,
11, 573-611.

[4] F.Khanizadeh, A. V. Mikhailov, Jing Ping Wang, “Darboux transformations and recursion

operators for differential-difference equations”, Theoretical and Mathematical Physics,
177(3) (2013), 1606-1654.

[5] A.V. Mikhailov, G. Papamikos, Jing Ping Wang, “Darboux transformation with dihedral
reduction group”, Journal of Mathematical Physics, 55(11) (2014), 113507, arXiv:
1402.5660.

[6] W.R. Wasow, Asymptotic expansions of solutions of ordinary differential equations, Pure
and applied mathematics, Wiley Interscience Publishes, New York, 1965.

[7] V.G. Drinfel’d, V. V. Sokolov, “Lie algebras and equations of Korteweg— de Vries type”,
Itogi Nauki i Tekhniki, 24, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform.,
Moscow, 1984, 81-180.

[8] A.V. Mikhailov, A.B. Shabat, “Conditions for integrability of systems of two equations
of the form u; = A(u)ugzy + F(u,uy). 17, Teoret. Mat. Fiz., 62(2) (1985), 163-185.

[9] A.V. Mikhailov, “Formal diagonalisation of Darboux transformation and
conservation laws of integrable PDEs, PDAEs and PAEs”, International
Workshop — “Geometric ~ Structures — in Integrable — Systems” (October 30
November 02, 2012, M.V. Lomonosov Moscow State University, Moscow),
http://www.mathnet.ru/php/presentation.phtml?option_lang=eng&presentid=5934.

[10] A.V. Mikhailov, “Formal diagonalisation of the Lax-Darboux scheme and conservation
laws of integrable partial differential, differential-difference and partial difference”, DIS
A follow-up meeting (8-12 July 2013, Isaac Newton Institute for Mathematical Sciences),
http://www.newton.ac.uk/programmes/DIS /seminars/2013071114001.html.

[11] I.T. Habibullin, M. V. Yangubaeva, “Formal diagonalization of a discrete lax operator and
conservation laws and symmetries of dynamical systems”, Theoretical and Mathematical

Physics, 177(3) (2013), 1655-1679.

[12] R.N. Garifullin, A.V. Mikhailov, R.I. Yamilov, “Discrete equation on a square lattice
with a nonstandard structure of generalized symmetries”, Theoretical and Mathematical
Physics, 180(1) (2014), 765-780.

[13] V.E. Zakharov, A.B. Shabat, “Exact theory of two-dimensional self-focusing and one-
dimensional self-modulation of waves in nonlinear media”, Z. Eksper. Teoret. Fiz., 61(1)

(1971), 118-134.

http://www.mathnet.ru/php/presentation.phtml?option_lang=eng&presentid=5934
http://www.newton.ac.uk/programmes/DIS/seminars/2013071114001.html

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
816 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

[14] A.V. Mikhailov, A. B. Shabat, V. V. Sokolov, “The symmetry approach to classification of
integrable equations”, Springer Ser. Nonlinear Dynamics, Springer, Berlin, 1991, 115-184.

[15] A.V. Mikhailov, editor, “Integrability”, Lecture Notes in Physics, 767 (2009).

[16] V.E. Adler, Classification of discrete integrable equations, DSci Thesis, L.D. Landau
Institute, 2010.

[17] 1. Merola, O. Ragnisco, Gui-Zhang Tu, “A novel hierarchy of integrable lattices”, Inverse
Problems, 10(6) (1994), 1315-1334.

[18] L. A. Takhtadzhyan, V.E. Zakharov, “Equivalence of the nonlinear Schrédinger equation
and the equation of a Heisenberg ferromagnet”, Theoretical and Mathematical Physics,
38(1) (1979), 26-35.

[19] V.E. Zakharov, A.V. Mikhailov, “Relativistically invariant two-dimensional models of
field theory which are integrable by means of the inverse scattering problem method”, Zh.

Eksper. Teoret. Fiz., 74(6) (1978), 1953-1973.

[20] A.V. Zhiber, V. V. Sokolov, “Exactly integrable hyperbolic equations of Liouville type”,
Uspekhi Mat. Nauk, 56(1(337)) (2001), 63-106.

Mikhailov A. V.
Formal diagonalisation of Lax-Darboux schemes 817

DOI: 10.18255/1818-1015-2015-6-795-817

®opmanabHasg auaroHaamsanus cxeMm Jlakca—/lap0y

Muxaitios A.B.

noayvwena 28 nosabpa 2015

B crarbe mbI 06cyKmaeM Kourentuio cxembl Jlakca—/lapOy u mnmocTpupyeM ee Ha XOPOIIO U3BECT-
HBIX [IpUMepax, aCCOIMMPOBAHHBIX ¢ HeJInHeHHbIM ypaBHeHueM IIIpéauarepa. Mbl u3ydaem cBsi3u, BO3-
Hukimme OJaromaps mpeobpasoBanusiM JapOy, MeXIy uepapxXusiMi HEJUHEHHOTO ypaBHEHUs!
Ipénunrepa, monesu [eitzenbepra, Momenn rIaBHOTO KHPAJIBHOTO TOJs, 8 TaKxKe AuddepeHinaabHOo-
PA3HOCTHBIME cUCTeMaMK (TaKuMU Kak Ienodka Toubl u quddepennnaibHo-pa3HOCTHAS Tenouka, [eii-
3eHbepra) ¥ KOHEYHO-PA3HOCTHBIMK MHTErPUPYeMbIMU cucTeMaMu. MBI [IOKa3biBaeM, UTO CYIIECTBYET
dopmasbHOE TpeobpazoBaHue, KOTOPOE OHOBPEMEHHO JUATOHAJU3YET BCE IJIEMEHTHI cxeMbl Jlakca—
Jlapby. DTo MPUBOAUT HAC K MPOU3BOISNIMM (DYHKIIUSM JIOKAJBHBIX 3aKOHOB COXPAHEHWS I BCEX
MHTErpUPYEMBIX CHCTEM, TOJIyYeHHBIX B paMKax JaHHoi cxeMmbl Jlakca—/lapby. Obcyx)matorcst cBsa3u
MEXK/Iy 3aKOHAME COXPAHEHUsI CHCTEM, IPUHAJJIEXKAIINX 3a1aHHoil cxeme Jlakca—/lap0Oy.

KuroueBbie ciioBa: dopmasnbHas auaronaamsanus, cxeMmbl Jlakca—/lapOy, menumeitHoe ypaBHeHue
[IIpénuurepa

st nurupoBaHusi: Muxaiios A.B., "®opmanbaas guaronanusamnusi cxem Jlakca—/dap6y", Modeauposarue u anasus
unopmayuonnur cucmem, 22:6 (2015), 795-817.

O6 aBTOpax:

MuxaitnioB Anekcanap BacunbeBud — qoKTOp (pU3NKO-MaTEMATHIECKIX HAYK, Ipodeccop,
IIkosna maremaTuku Yuusepcurera Jluaca (JIuac, Benukobpuranus)

University of Leeds, Leeds, LS2 9JT, UK

e-mail: A.V.Mikhailov @ leeds.ac.uk

Modeauposarue u anaaus ungpopmavyuorrvir cucmem. T.22, Ne6 (2015), c. 818-833
Modeling and Analysis of Information Systems. Vol.22, No 6 (2015), pp. 818-833

(©Shershakov S. A., Rubin V. A., 2015
DOI: 10.18255/1818-1015-2015-6-818-833

UDC 519.682.6-+004.43

System Runs Analysis with Process Mining

Shershakov S. A.!, Rubin V. A.
Received December 15, 2015

Information systems (IS) produce numerous traces and logs at runtime. In the context of SOA-based
(service-oriented architecture) IS, these logs contain details about sequences of process and service calls.
Modern application monitoring and error tracking tools provide only rather straightforward log search
and filtering functionality. However, “clever” analysis of the logs is highly useful, since it can provide
valuable insights into the system architecture, interaction of business domains and services. Here we took
runs event logs (trace data) of a big booking system and discovered architectural guidelines violations
and common anti-patterns. We applied mature process mining techniques for discovery and analysis of
these logs. The aims of process mining are to discover, analyze, and improve processes on the basis of IS
behavior recorded as event logs. In several specific examples, we show successful applications of process
mining to system runtime analysis and motivate further research in this area.

The article is published in the authors’ wording.

Keywords: process mining, software process, software runtime analysis

For citation: Shershakov S. A., Rubin V. A., "System Runs Analysis with Process Mining", Modeling and Analysis of
Information Systems, 22:6 (2015), 818-833.

On the authors:

Shershakov Sergey Anreevich, orcid.org/0000-0001-8173-5970, research fellow,
National Research University Higher School of Economics,

20 Myasnitskaya str., Moscow, 101000, Russia,

e-mail: sshershakov@hse.ru

Rubin Vladimir Aleksandrovich, orcid.org/0000-0001-8176-2426, PhD, CEO,
Dr. Rubin IT Consulting,

60599, Frankfurt am Main, Germany,

e-mail: vroubine@gmail.com

Acknowledgments:

1This work is supported by the Basic Research Program of the National Research University Higher School of Economics.

818

Shershakov S. A.,; Rubin V. A.
System Runs Analysis with Process Mining 819

Introduction

Processes are all around us. Processes accompany data and are accompanied by data. As
processes becomes more complex, the information systems accompanying them become
more complex too. Thus, the complexity of modern software systems containing millions
of lines of code and thousands dependencies among components is extremely high.
Supporting such systems requires involving new techniques and tools responding to the
challenge of scale and complexity of modern information systems.

Almost all modern software systems trace data at runtime. Information about failures
and exceptions is always traced, but also particular data about system execution, system
state, called services and so on. In most cases, traces are the only possibility to understand
the behavior of a productive system, which usually runs in a separate production environ-
ment and can not be debugged.

Process mining is a discipline, basic research and practical purpose of which is to
extract process models from data of a special type, that is event logs [1]. The traditional
areas of the process mining application include business processes (management), social
processes, such as medicine or management of municipalities, technological processes.
The Process Mining Manifesto released by the IEEE Task Force on Process Mining [2]
in 2011 is supported by more than 50 organizations, more than 70 experts contributed
to it. One particularly interesting research area is Software Process Mining (SPM), that
deals with extracting models of processes related to design, development, debugging
and support of software from event logs containing data that software systems trace at
runtime [3, 4, 5].

Speaking of ISs, one can distinguish a separate class of component-based information
systems, the main feature of which is the structure in which the expansion of functionality
of the IS is achieved by adding special components. One of the most growing and rather
young approaches to component design is Service-oriented architecture (SOA) [6]. For
such systems, logged data can represent traces of interconnection of their components
such as processes and seruvices.

Process 2 ke Service 2

(Tech) Domain 1
Business Domain

eeeeee

(Tech) Domain N

PG “Content”

Business Domain “Content” Business Domain N

(Tech) Domain 3

Business Domain 2

Fig 1. “Domains-Processes-Services” architecture scheme

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
820 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

A large European touristic Computer Reservation System (CRS) will be considered
as an example of process-driven system based on SOA architecture. A CRS system we
are studying is a distributed SOA-based software containing different client (thin and
rich clients) and server components. The system contains processes as a basic task of
the underlying business logic. Each instance of these processes can be considered as a
start point for yet another use case studied with using process mining technics. Processes
orchestate services. There are a lot of services that can be considered as basic working
elements of the system.

There are several business domains. Each of them consists of processes and technical
services. Each process and service belongs to only one business domain according to their
business purposes. For example, there are “booking” and “accounting” business domains.
The processes are combined into process groups (PG) and the services are grouped into
technical domains (TD)! (Fig. 1). Coming back to the earlier example, there are PG
and TD named “booking”. Technically all the processes and services are implemented as
Java interfaces (correspond to InterfaceName) organized as Java-packages (correspond
to PackageName). Each process and service send and receive messages (correspond to
OperationName), and each specific message is logged as an individual trace to a log.

We have a set of logs tracing interconnections of those processes and services and
containing a lot of different aspects of data. By examining certain wviews of the data
we can look at the system from different perspectives. Each specific view can represent
some aspect of the system. We distinguish such aspects as Control Flow Aspect, Data
Perspective (also can be treated as Informational Aspect), Organizational Aspect and
Infrastructural context. Here we are primarily focusing on the control low aspect, hovewer
at subsequent steps the data aspect is also considered.

Architecture teams normally define a set of rules about how individual processes
can invoke other (sub)processes and services from different domains. As an example
there are a lot of restrictions about invoking services or processes from other services.
These rules and restrictions are also known as Architectural Guidelines or Architectural
Conventions. Such rules can be complicated enough in order to be simply tested at
compile-time, or during the module testing or at runtime. This paper deals with detecting
some architectural violations in the model discovered from the event logs derived from
a running system.

In the area of software engineering there are a set of well-known architectural princip-
les, such as loose coupling, separation of concerns, etc. Our goal here is not only to detect
the violations of architectural conventions of the company, but also of the violations of
these common architectural principles. We consider the ability to make some kinds of
models of a given software system by using process mining approaches.

The rest of this paper is organized as follows. Section 1 presents data logs and
tools used for logs analysis. It also contains three examples of violations of architectural
conventions and principles detected by using process mining techniques. Section 2 discus-
ses some related work and section 3 summarizes the work done and discusses future work.

'We especially refer to them as technical domains in order not to mix them with the business domains.

Shershakov S. A.,; Rubin V. A.
System Runs Analysis with Process Mining 821

1. Experience report

1.1. Log and Tools

An event log is the starting point for almost any process mining research.

The subsystems of the CRM system maintains an ability for tracing of all the
necessary processes and services communication. The initial invocation of any process,
e.g. made by a rich-client application, is accompanied by allocation of a special invocation
id (also reffered to as InvID).

Both processes (PR) and services (SV') receive a request message (R(@) as input and
a return response message (RS) or an exception (SE) as output. These messages are
logged. On the log level the traces are written in an XML format. A sample of such XML
log is presented in the Listing 1. Each trace is included into a tracingevent element
containing several sections that describe the trace and contain additional data that could
be used for deeper analysis. For the first step we are interested in the following data:
an invocation id, a message recipient (given by its full-qualified name including business
domain (we also refer to it as UnitName), package name, interface name, and operation
name).

Then, we also consider two very important fields. An event timestamp is first. Describ-
ing the second one we have to mention that a trace event contains a payload, given in
the form used by processes and services to exchange data between each other. Payloads
are presented in the form of an XML-based piece of data and can be used to analyze a
model made with this log from a data perspective. During this work we are considering
only two attributes of the payload: size of its data and its hash sum to identify whether
the payload is changed from call to call.

Listing 1. Event trace for resolveLocationByAlias service call

<tracingevent>

<InvocationIdentifier>
<id>639041439044799821</id>

<time>Fri Dec 20 00:11:48 CET 2013</time>

</InvocationIdentifier>
<TransactionContext>

</TransactionContext>

<log4j:event logger="tracer.de.der.pu.domains.geo.
location.LocationQuery.resolvelLocationsByAlias"
timestamp="1387494715759" level="INFO"
thread="WorkerThread#8[10.10.10.42:57387] ">
<log4j:message><! [CDATA[Request]]></logdj:message>
</log4j:event>

<jboss>

</jboss>
<payload>
<! [CDATA[

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
822 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

<ServiceRequest>

</ServiceRequest>
11>

</payload>
</tracingevent>

In this paper we are considering a log produced by the system during a period of 24
hours. The size of all XML files of the log is approximately 10 GB.

1.1.1. Log traces “normalization” with an RDBMS approach

The event log has a complex structure and contains heterogenous data covering different
aspects, such as control flow, organizational aspect (including user information, authenti-
cation and authorisation info), infrastructural context and other resources. It is necessary
to represent them in a formalized form.

We decided to use RDBMS as a log representation because it provides the possibility
to make various data views for different types of analysis depending on each specific
aspect containing in our log. Also, it is an instrument for effective manipulation of big
amounts of log data.

Creating a view on data involves two operations. First, projection of a data set (that
could be a regular table as well as a joint of a number of tables) performs selecting only
a particular subset of all attributes (table columns) that correspond to specific aspects.
Second, filtering of the dataset provides only those records (table rows) which match
some selection criteria.

Converting a text-based logs into a well-defined RDBMS allows us to obtain a
desirable data projection on a specific aspect in a very natural way just by pointing
all the necessary atributes out. At the same time it is very simple to obtain a filtered
subset of events by specifying arbitrary filtering criteria [1, 261]), with subsequent export
as frequently as it is necessary. Using indexes prepared in a proper way allows performing
such operations quickly enough even on a very big amount of data. Similar approach was
effectively used in other case studies [7].

We decided to use SQLite database engine to store and manipulate the data. A part
of a relation diagram for the log database is depicted on Fig. 2. Here, we distinguish two
main parts of physical storage. One part consists of declarations of interfaces including
PR/SV type, business domain unit name, package name, and interface name. The part
is represented as a table with Interfaces name. All other data corresponding to the
log’s trace events are represented by TracingEvent table. For our cases we used joint
records with Interfaces.ID and TracingEvents.Interface_ID fields as keys. We refer
to those as FullData3 view below.

An example of records corresponding to the trace described by Listing 1 is given on
Fig. 3.

We developed a tool performing parsing of XML source files and adding parsed data
to a database. For the given 10 GB log (discussed in sect. 1.1), it takes at least an hour
to convert all the XML data to the DB format using a laptop with an Intel®) i3 @ 2,4
GHz comparable processor on the board?.

Shershakov S. A.,; Rubin V. A.

System Runs Analysis with Process Mining 823
Interfaces FullData
PK [ID IfsID
IntType
IntType UnitName
UnitName PackName
PackName InterfaceName
InterfaceName EventID
EventSegNum
* T OperationName
InviD
TracingEvents EventType
EventTimestamp
PK (1D PayloadSize
PayloadHash
FK2 | Interface_ID

OperationName
InvIiD
InvNodeName
InvIP
TransContext_ID
AppServerContext_ID
ActionType
EventTimestamp
PayloadSize
PayloadHash
EventSegNum

Fig 2. A relation diagram of a log DB

RecNo | ID PDType | UnitName | PackName | InterfaceName

1 110 | SV geo location LocationQuery
Interfa- | Operation Event Payload Event
RecNo | ID P InvID EventType . Y Seq
ce ID Name Timestamp Size
— Num
resolve
1 170097 | 110 Locations 639041439 RQ 1387494715759 | 393 11
. 044799000
ByAlias

Fig 3. DB records for a trace from Listing 1 (table Interfaces at top and table
TracingEvents at bottom)

“Normalizing” the log by converting it to the DB allows making a rather compact
representation of source data. Thus, for the 10 GB containing approximately 500000
traces there is just 60 MB of data given in SQLite DB ver.3 format. Moreover, reexporting
a full set of (merged) data from the DB to an external CSV-text file takes just a couple
of seconds.

As shown further, using SQL queries for extraction of a precisely needed data projecti-
on is significantly efficient. Thus, the SQL-based approach is one of the basic tools used
in this work.

2Among the factors significantly affecting the converting speed, one can distinguish a hashing
algorithm.

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
824 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

/ I |

Fig 4. Fuzzy diagram representing relations between processes, AP (100, 100)

1.1.2. Process mining specific tools

Today, there is a set of freeware and commercial process mining tools. Examples of these
tools include ProM |8], which is a widely used research workbench containing more then
600 plugins. Disco is another well known process mining tool [9].Disco is based on Fuzzy
miner which was initially implemeted in ProM [10].

In [11] we show an RDBMS-based approach to automation process mining experiments
with rapid creation of datasets using VI'Mine Framework, which is our own tool for
modeling and conducting process mining experiments. DPModel [12, 13], a graphical
language for automation of experiments in Process Mining, underlies the tool.

We decided to mine a process model of our system as a fuzzy model that can be
discovered with Disco. It has a good usability and good performance in processing large
event logs. Moreover, it can perform advanced filtering on the basis of Fuzzy miner.

In the further sections, with the help of process mining techniques we analyze the
logs in order to find software architectural violations and inconsistencies.

1.2. Example 1: Architectural Violations

In Introduction we have already discussed Architectural Conventions and Architectural
Violations. Invoking some processes from other processes can be an example of such
violation. In our CRS the only processes from “content” PG (and, respectively, business
domain) can be invoked from other processes. Calling any other processes from different
domains are not allowed. In this section we investigate the presence of exactly this
violation.

We can detect such forbidden calls from different domains by investigating a fuzzy
diagram.

The very important assumption we have to make is that there are no asynchronous
messages calls between processes and services in the scope of the set of events related to
one specific case.

1.2.1. Model in Disco

Now we are looking at Control Flow Aspect for discovering forbidden services calls. In
order to discover process calls violations we build a Disco model depicting PG/Domain
relationships.

Shershakov S. A.,; Rubin V. A.
System Runs Analysis with Process Mining 825

Although all event attributes can be used for process mining, we focus on the two
attributes that are mandatory for process mining. Any event should refer to a case (i.e.,
a process instance) and an activity. Moreover, events related to a particular case should
be ordered. Thus, for performing data import to Disco from a RDBMS one need to point
out which attributes are used for indicating case, activity and timestamp (for ordering
reasons). Other attributes are indicated for Disco as resources that can be used for
filtering.

In this work, we are using invocation identifier given as InvID attribute as a case
ID and EventTimestamp attribute as a timestamp. Choosing attributes that play a role
of activity ID is closely related to the studying case. For this case, we use a pair of
attributes IntType (which can be either PR or SV for processes/PG and services/domains
respectively) + UnitName (representing the name of PG or domain and corresponding
to business domain) as an activity ID.

There are two parameters of Disco’s Fuzzy Miner: (1) number of activities, and (2)
number of paths shown on a fuzzy map. They are used to make a quick filtration by
the criteria of frequency of activities and paths being met while making the map. We
refer to both of these parameters as a pair, e.g. AP(100,100), where the numbers in the
brackets are the percentage of activities and paths, respectively.

There is a fuzzy map with AP(100,100) produced by Disco depicted on Fig. 4.
This map is a graph that demonstrates the relations between both PGs and domains
transparently given through the messages sent by their interfaces. The map was built
from a filtered dataset in order to restrict the model to view only processes. For this
very purpose we can apply Disco attribute filter selecting only the activities containing
PR\\ we would like to observe.

The map contains only 10 vertices and a number of arcs which is not so big so
we are able to track individual relations between each pair of processes. Vertices color
coding shows us how many messages are sent to individual vertices. Thus, PR\\content
is represented as a dark blue vertex showing us that it has many more incoming messages
(57758) than the others. This is because process content plays a special role in the whole
system (as it was mentioned above). In other words, it contains common “routines”.

At the same time we can remark the presence of pairs of income/outcome edges
between other PGs as well as those which contain only few traces. The direct communica-
tion of the PGs with each other represent examples of violations of the architectural
conventions.

To investigate this violation more precisely we will first make a more detailed filtration
by using Disco. As a concrete example one can consider inappropriate direct relations
between two PGs — bocamo and search. We use the so-called Follower Filter that lets
us define a couple of activities with a restriction of how they should follow one another.
Thus we set a filter a way that search activity follows bocamo activity (Fig. 5).

We can see that there are 54 messages from bocamo to search. Here, we understand
a message as a pair of events, first of which corresponds to PR\\bocamo activity and is
directly followed by second one corresponding to PR\\search activity. Such pairs are
found in a number of cases, and some of the cases contain such pairs several times.
Depending on event activities and their order in the cases the latter are grouped into
so-called variants.

By using Disco case statistics we can see there are 10 different variants of traces

826

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

PR\\bocamo
108

PR\content

1080

968
| .

Fig 5. Correlation between activities search, bocamo, and content

including from 1 to 40 cases per variant. For example, variant 2 contains 5 cases, from
which we have detected one (with invocation id 190248972438317148) when bocamo
process quoteItemFromSearch calls search process getPricesForRouting and it is forbid-
den. See a sequence diagram in Fig. 7.

PG

Operation

Type

bocamo
search
content
content
content
content
search
content
content
content
content
content
content
content
content
bocamo

quoteltemFromSearch
getPricesForRouting
priceAvailability
priceAvailability
calculateFees

calculateFees
getPricesForRouting
determineBest Product
determineBest Product
checkBookingUnitRestriction
checkBookingUnitRestriction
getExternalReferences
getExternalReferences
performQuote

performQuote
quoteltemFromSearch

RQ
RQ
RQ
RS
RQ
RS
RS
RQ
RS
RQ
RS
RQ
RS
RQ
SE
SE

Fig 6. Subset of events of case 190248972438317148 related to PGs bocamo, search and

content

Shershakov S. A.,; Rubin V. A.
System Runs Analysis with Process Mining 827

bocamo search content

[
|
|

quoteltemFromSearch/RQ:

—

getPricesForRouting/RQ

[
|
|
|
|
|
|
|
|
|

priceAvailability/RQ :

priceAvailability/RS

freeCalculation/RQ

freeCalculation/RS

getPricesForRouting/RS

Skipping several messages |
performQuote/RQ I

performQuote/RSExc u

K= |
quoteltemFromSearch/RSExc : :
L | |
| |
| |

Fig 7. UML diagram corresponding to case 190248972438317148

On Fig. 7, a manually created UML sequence diagram based on the data of the 16-
event subset above is depicted. It can be used as a convenient tool for reporting detected
violations to developers.

1.2.2. Generalization in SQL

In order to obtain a collection of all the similar violations we created a set of SQL queries.
These queries are based on the idea of a square Cartesian product of the set of all the
traces. As a result of such product and futher filtering by the same case ID for both
parts of the product, we obtained a collection of so-called N-step relations between all
the events. Each N-metric is calculated as a difference between relative time positions
of each events in one given case. Among the pairs from this relation there are some
pairs that contain 1-step relations. Every such relation corresponds to a couple of events
among which the first event is directly followed by the second one. Finally, we have to
filter the resulting dataset by setting desirable restrictions, such as:

1. both parts of a pair contain different PGs;

2. no part of a pair contains content PG;

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
828 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

3. both parts of a pair contain R() messages, so we are interested only in “request —
request” processes with different PGs that is actually forbidden;

As a result of excecuting the SQL query we obtain a set of 2031 traces that produce
system architectural violations. The set is mapped to a set of cases containing these
events. By constructing one more query grouping cases by InvID attribute, we obtain
a set of cases containing at least one violation. So, we have found exactly 1789 cases
that violate discussed architectural violations. The maximum number of forbidden 1-
step relations per case is 3 (for 34 cases). Typical number is just 1 per a case (1581
cases).

1.2.3. Benefits

We have found the violation and reported an appropriate bug to the developers with
a view to creating a ticket in a bug-tracking system. Using a notion of UML sequence
diagrams may help showing to developers an explicit fragment of the system where the
violations are detected.

1.3. Example 2: Antipattern “Unnecessary repeating calls”

Let us now look for more oddities by applying the same techniques.

Thus, we set OperatinName in conjuction with IfsID and EventType attributes as
activity. Looking at the statistics panel in Disco one can conclude that among the
most often used activities there is getAgency activity in agcumg domain: there are
7642 RQs and RSs instances. Let us consider it more precisely. Applying an attribute
filter for this activity name and marking it as “mandatory” we obtain a fuzzy map
which, depending on AP() value, contains a small or large number of activities, but
under the condition that all these activities are related to getAgency. Thus, there is
a number of cases containing getAgency as a repetitive activity. Among the latter,
getInvoiceListByReservationNumber in accust PG can be identified.

Such cases are characterized by the fact that they have repetitive messages getInvoice
ListByReservationNumber <> getAgency with the same payload (given by its size and
hash sum), that can lead to the fact of presence of multiple excessive process invocations.
This can signify to us a bad implementation example where payload data must be
cached or stored instead of their repititive obtaining.

Let us consider a technique for detecting such patterns. The first step is creating of an
auxilary view ActivitiesCountPerCases1 that for each case contains a set of activities
(identified separately for RQ/RS) with a number of their repetitions:

CREATE VIEW [ActivitiesCountPerCasesi] AS
SELECT *, COUNT(*) AS ActsNum

FROM FullData3

GROUP BY InvID, IfsID, OperationName, EventType;

Then we can fix a certain threshold number of activities’ repetitions and select only
the instances of repetitive activities (make another auxilary view Activities3PerCase):

CREATE VIEW [Activities3PerCase] AS
SELECT InvID, IfsID, OperationName

Shershakov S. A.,; Rubin V. A.
System Runs Analysis with Process Mining 829

FROM ActivitiesCountPerCasesi
WHERE ActsNum >= 3;

Next step: retrieving full attributed data for all the activities satisfying the condition
above (another view EventsBy3ActivitiesPerCasel):

CREATE VIEW [EventsBy3ActivitiesPerCasel] AS

SELECT

FROM Activities3PerCase AS L INNER JOIN FullData3 AS R
ON (L.InvID = R.InvID AND L.IfsID = R.IfsID AND
L.OperationName = R.OperationName)

GROUP BY ID;

Finally, we form a resulting set according to identical values of PayloadSize and
PayloadCache:

SELECT *, COUNT(*) AS NumOfRepeatedPayload

FROM EventsBy3ActivitiesPerCasel

GROUP BY InvID, IfsID, OperationName, EventType,
PayloadSize, PayloadCache

By filtering NumOfRepeatedPayload attribute by number of maximum allowable
repetitions we obtain all the events (and consequently cases) with excessive payload
transmitting.

1.4. Example 3: Antipattern “Cross-cutting concern”

According to the statistics, getConfiguration in smerge domain is the most often
invoked service (aprx. 12 % of all traces). Let us observe how smerge domain (both as
business and techical means) is related to other PGs.

First, we set a pair of attributes IntType and UnitName as activity. In order to
eliminate irrelevant cases we add some filters: (1) selecting only RQ traces, (2) selecting
only processes from all domains and services in smerge domain, (3) marking getConfigu-
ration operation name as mandatory. The resulting fuzzy map is depicted on Fig. 8.

As we can conclude, smerge domain is actively “invoked” by 7 other PGs. Precisely,
operation getConfiguration is invoked by the processes contained in these PGs. So,
this operation can be considered as a so-called “Cross-cutting concern” and must belong
to a dedicated domain (but not to smerge domain) or should be moved to context
domain.

2. Releated work

There are various works on software execution traces and runtime analysis. In [14], two
runtime analysis algorithms, a data race detection algorithm and a deadlock detection
algorithm, are introduced to analyze Java programs. The concerned approach is based on
the idea of single program execution and observing the generated run to extract various
kinds of information. In contrast with this approach, process mining works with a set of
traces, but not with only one trace, despite using algorithms.

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
830 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

PRIlcontent
21383

PRlagcumg 1
3

________ PRVacoust
334

Fig 8. Fuzzy diagram representing relations between PG and a smerge domain,
AP(100, 100)

An approach to recover interaction patterns between different entities such as methods,
files, or modules, based on analysis and comparision of execution traces of different
versions of a software system, is proposed in [15|. One of the goals is to track the evolution
of particular modules and to visualize the findings. Like in our paper, the authors use a
standard database technology for maintaining analyzed data.

Both of the approaches above and a number of other “classical” approaches to runtime
analysis is based on an idea of code instrumenting [16]. Process mining does not require
any specific code instrumenting and utilize any traces that software can produce during
its execution.

A trace summarization technique for manipulating traces, based on metrics for measur-
ing various properties of an execution trace, was introduced in [17]. It is proposed to use
trace summaries to enable top-down analysis of traces as well as recovery of system
behavioural models. There was proposed a trace summarization algorithm that is based
on successive filtering of implementation details from traces.

An idea to apply process mining to services, so-called service mining, was proposed
in [18, 19|. Finally, based on the process mining discipline, a comprehensive approach
to diagnostic information in compliance checking was proposed in [20]. We suppose that
using a similar approach for Petri net models of the processes discussed in our paper can
introduce some new ideas for achieving the objectives of SRA.

One of the most novel approaches to reverse engineering for obtaining real-life event
logs from distributed systems is presented in [21]. The approach allows to analyze
operational processes of software systems under real-life conditions and use process
mining techniques to obtain precise and formal models.

Shershakov S. A.,; Rubin V. A.
System Runs Analysis with Process Mining 831

3. Future work and conclusion

The results obtained during the first practical experiments show us several ways for
future work.

First, taking into account specificity of the subject domain, which is software architect-
ure and engineering, introduction of convenient and accustomed tools particularly for
model representation is desirable. As an example, the UML sequence diagrams miner
mentioned in sec. 1.2.1 can be considered, possibly based on ProM or any other tool.
Now we have to construct a UML sequence diagram manually, and it would be a good
challenge to provide ability for constructing such diagrams automatically, e.g. by a special
ProM plug-in.

Then, it is rather desirable to obtain other kinds of models to provide more comprehen-
sive analysis by using different mining algorithms. Nevertheless, it is still a problem to
process large logs with a full range of academic tool basically implemented as ProM
plug-ins. Also, we suppose that it is possible to use these models to detect/recognize
other architectural patterns that can be used for improving systems in some ways. In
order to do this one needs to consider also other methods for pattern recognition in a
model like the one proposed in compliance checking research [20].

In this paper only few violations of architectural principles and patterns are concerned.
One of our goals is to create a catalog of architectural patterns/architectural violations
related to different kinds of systems.

Finally, there is also Software Performance Analysis which is a separate big problem
we would like to investigate with the help of process mining techiques.

4. Acknowledgment

The authors would like to thank Fluxicon for powerfull process mining tool Disco provided.

References

[1] W. M. P. van der Aalst, Process Mining — Discovery, Conformance and Enhancement of
Business Processes, Springer, 2011.

[2] TEEE Task Force on Process Mining, “Process Mining Manifesto”, BPM 2011 Workshops,
ser. Lecture Notes in Business Information Processing, 99, eds. F. Daniel, S. Dustdar,
K. Barkaoui, Springer-Verlag, Berlin, 2011, 169-194.

[3] E. Kindler, V. Rubin, W. Schéfer, “Activity mining for discovering software process
models”, Software Engineering, 79, eds. B. Biel, M. Book, V. Gruhn, 2006, 175-180.

[4] V. Rubin, I. Lomazova, W. M. van der Aalst, “Agile development with software process
mining”, ICSSP 2014, ACM, Nanjing Jiangsu, China, 2014, 70-74.
[5] V. Rubin, A. A. Mitsyuk, I. A. Lomazova, W. M. P. van der Aalst, “Process mining can

be applied to software too!”, Proceedings of the 8th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement, NY: ACM, 2014.

[6] J. McGovern, O. Sims, A. Jain, M. LittleEnterprise Service Oriented Architectures:
Concepts, Challenges, Recommendations, Springer, 2006.

[7] A. Mitsyuk, A. Kalenkova, S. Shershakov, W. van der Aalst, “Using process mining for the
analysis of an e-trade system: A case study”, Software Engineering (in Russian), 3, 2014,
15-27.

832

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

8]

9]
[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]
[19]

[20]

[21]

H. Verbeek, J. Buijs, B. Dongen, W. Aalst, “ProM 6: The Process Mining Toolkit”, Proc.
of BPM Demonstration Track 2010, ser. CEUR Workshop Proceedings, 615, eds. M. L.
Rosa, 2010, 34-39.

[Online|. Available: http://www.fluxicon.com/disco.

C. W. Giinther, W. M. P. Van Der Aalst, “Fuzzy mining: Adaptive process simplification
based on multi-perspective metrics”, Proceedings of the 5th International Conference on
Business Process Management, ser. BPM’07, Springer-Verlag, Berlin, Heidelberg, 2007,
328-343.

S.A. Shershakov, “VTMine framework as applied to process mining modeling”,
International Journal of Computer and Communication Engineering, 4:3 (2015), 166-179.

S. Shershakov, “DPMine/P: modeling and process mining language and ProM plug-ins”,
Proceedings of the 9th Central & Fastern FEuropean Software Engineering Conference in
Russia, eds. A. N. Terekhov, M. Tsepkov, ACM New York, NY, USA, 2013.

S. A. Shershakov, “DPMine graphical language for automation of experiments in process
mining [in russian|”, Modeling and Analysis of Information Systems, 21:5 (2014), 102-115.

K. Havelund, “Using runtime analysis to guide model checking of java programs”, SPIN,
Lecture Notes in Computer Science, 1885, eds. K. Havelund, J. Penix, W. Visser, Springer,
2000, 245-264.

M. Fischer, J. Oberleitner, H. Gall, T. Gschwind, “System evolution tracking through
execution trace analysis”, IWPC, IEEE Computer Society, 2005, 237—-246.

T. Ball, “The concept of dynamic analysis”, ESEC / SIGSOFT FSE, Lecture Notes in
Computer Science, 1687, eds. O. Nierstrasz, M. Lemoine, Springer, 1999, 216-234.

A. Hamou-Lhadj, Techniques to simplify the analysis of execution traces for program
comprehension, Ph.D. dissertation, Ottawa-Carleton Institute for Computer Science School
of Information Technology and Engineering, University of Ottawa, 2005.

W. Aalst, H. Verbeek, “Process Mining in Web Services: The WebSphere Case”, IEEE
Bulletin of the Technical Committee on Data Engineering, 31:3 (2008), 45-48.

W. van der Aalst, “Service mining: Using process mining to discover, check, and improve
service behavior”, IEEE Transactions on Services Computing, 99:PrePrints (2012), 1.

E. Ramezani, D. Fahland, B. F. wvan Dongen, W. M. P. van der Aalst,
Diagnostic information for compliance checking of temporal compliance requirements,
Tech. Rep., 2013., [Online|. Available: http://dblp.uni-trier.de/db/conf/caise/
caise2013.html#TaghiabadiFDA13.

M. Leemans, W. M. P. van der Aalst, “Process mining in software systems: Discovering real-
life business transactions and process models from distributed systems”, 18th ACM/IEEE

International Conference on Model Driven Engineering Languages and Systems, MoDELS
2015, Ottawa, ON, Canada, September 30 - October 2, 2015, 2015, 44-53.

http://www.fluxicon.com/disco
http://dblp.uni-trier.de/db/conf/caise/caise2013.html#TaghiabadiFDA13
http://dblp.uni-trier.de/db/conf/caise/caise2013.html#TaghiabadiFDA13

Shershakov S. A.,; Rubin V. A.
System Runs Analysis with Process Mining 833

DOI: 10.18255/1818-1015-2015-6-818-833

AHaJm3 cucTeMHBIX MCIIOJIHEHUU ¢ momoInbio Process Mining

lepmaxos C. AL, Py6un B. A.
noayvwena 15 dexabpsa 2015

Nudopmanmonnsie cucrembl (VIC) 0CTABISIOT MHOTOYHMCIIEHHBIE CIIEbl U YKyDPHAJBI COOBITHH CBO-
eit paborbl. B KoHTEKCTE CcepBUCHO-OpueHTHpoBaHHOH apxuTeKTypbl (COA) nHbDOPMAIMOHHON cuCTeMBI
TaKue YKYPHAJbI COJAEPXKAT JIETAJIHHYI0 WH(POPMAIMIO O ITOC/IEI0BATETLHOCTSX BBI30BOB IIPOIECCOB U
cepBucoB. COBpeMeHHbIE MHCTPYMEHTHI MOHUTOPUHTA IIPUJIOXKEHUN W OTCIEKUBAHUS OIMTHOOK WX WC-
[IOJTHEHUS MPEIOCTABIIAIOT JOBOJBHO [IPOCTHIE CPEJCTBA IIOMCKA U (DUIIBTPAIUN KYyPHAJIOB COOBITUI.
Tem He Mmenee, “MHTE/JIEKTYAJbHBIN aHAIN3 TaAKUX KYPHAJIOB COOBITHUIl SIBJISIETCA KpailHe MOJIE3HBIM,
TaK KaK MOXKET IIPEJOCTABUTH IEHHYIO MHMOPMAIUI 00 apXUTEKTYPe CUCTEMbBI, B3aUMOIEHCTBIUN MeXK-
nly 6u3Hec-JOMeHaMK U cepBUCaMu. B pabore paccMaTpUBalOTCs YKyPHAJIBI COOBITHIA (IIPEICTABIISIONINE
JAHHBIE O CUCTEMHBIX HCIIOJHEHUAX) GOIBINON HH(MOPMANMOHHON CHCTEMbI TOAJEPKKH OPOHUPOBAHMSI,
Ha OCHOBAHUU JIAHHBIX KOTOPBIX IIPOU3BOAUTCHA OOHADPYKEHUE HAPYIIEHUN apXUTEKTYPHBIX PUHIIAIIOB
B3aMMOJIEHCTBUsT KOMIIOHEHTOB U obmux antunarrepuoB COA. [l anam3a 3TUX KYPHAJIOB TPUMEHSI-
FOTCSI TPOBEPEHHBIE TTOXO/IbI JAUCIIUIIIIVHBI N3BJI€UEHNsT U aHAJIN3a [IPOoIeccoB (process mining). Process
mining NpUMEHsIeTCsI JIjIsi AaBTOMATHYECKOTO CHHTE3a MOJeJiell IPOIeCCOB, aHAJMU3a STUX IIPOIECCOB U
WX yJIydileHusi Ha ocHOBe mHdopmaruu o nosefgennn VC, 3anucanuoit B Bue XKypHasoB cobbrrmit. Ha
6a3e HEeCKOJbKNX KOHKDETHBIX IIPUMEPOB JIEMOHCTPUPYETCs YCIEITHOEe IMPUMEHEHUs OIXO/I0B Process
mining /s aHaJIM3a CUCTEMHBIX MCIIOJHEHUI 1 TPUBOAUTCA ODOCHOBAHNE HEOOXOMUMOCTA JAJTHHEHTIINX
HCCJIEJOBAHUM B JIAHHON 00JIACTH.

Crarbst myOJIMKYyeTCsi B aBTOPCKON PeJIaKIun.

KiroueBble cjioBa: u3BJ€UEHHE U aHAJM3 IIPOIECCOB, TPOrPAMMHbBIE TIPOIECChI, AHAJIN3 CUCTEMHBIX
UCIIOJTHEHU I

Jas nurupoBanus: [llepmaxkos C. A., Pyoun B. A., "Ananmus cucreMHBIX HCIOTHEHHUHE ¢ moMormibio Process Mining",
Modeauposanue u anausd un@opmayuornos cucmem, 22:6 (2015), 818-833.

O6 aBTOpax:

Illepmakos Cepreit Aunpeesnd, orcid.org/0000-0001-8173-5970, nayunstit corpyaunk HYJI IIONC OKH,
HanponasnbHbIM necaeq0BaTeIbCKUM yHUBEpCUTET BhIciias mKoia SKOHOMUKN

101000 Poccus, r. Mocksa, yi. Mscaunkast, 20,

e-mail: sshershakov@hse.ru

Py6un Buamgumup Astekcannposud, orcid.org/0000-0001-8176-2426, PhD, CEO
Dr. Rubin IT Consulting,

60599, Frankfurt am Main, Germany,

e-mail: vroubine@gmail.com

BuaaromapuocTu:
1Pa6oTa BhIIOIHEHA B paMKax Ilporpammsl ¢byHIaMeHTaIbHBIX nccaenosarmii HUIY BIIID B 2015 roxy.

Modeauposarue u anaaus ungpopmavyuorroir cucmem. T.22, Ne6 (2015), c. 834-851
Modeling and Analysis of Information Systems. Vol. 22, No 6 (2015), pp. 834-851

©XKapstera M. C., 2015
DOTI: 10.18255/1818-1015-2015-6-834-851

YIK 004.853

JIMHrBOoCTaTUCTUYECKNiA aHAJIN3 TEPMMNHOJIOI'IA
AJIA IIOCTPOEHU:A TE3aypyCa HpeﬂMeTHOﬁ obJlacTn

Kapsiea M. C.1

noayvwerna 15 masa 2015

Pabora mocssitnena aHa M3y KOpIyca TEPMUHOB U TEPMUHOJOITIECKUX UCTOTHUKOB C IEJIbIO J1a/Ihb-
HeHIeil aBTOMATH3aIIN TIOCTPOEHNsT Te3aypyca JAHHON IPeAMETHO 001acTh, B KAIEeCTBE KOTOPOil pac-
cMaTpuBaeTcs modrosorud. IIpeaBapurenbaas CHCTEMATAZAINA TEPMAHOJIOIUU C UCIOJIH30BAHUEM JIMHT -
BOCTATHCTUIECKOTO T0JIX0/1a (POPMUPYET KOPIIYC CEMAHTUYECKU CBA3AHHBIX IOHATHI JIJI aBTOMATU3a~
U1 U3BJICUEHNsI CEMaHTUIECKNX OTHOIIEHNN MeK/ Iy TepMUHAMU, OIIPeIeSIAONINX CTPYKTYPY Te3aypyca
YKa3aHHON MpeIMEeTHON 00IaCTH.

KiroueBsbie ciioBa: Te3aypyc, METPUKHN CEMaHTAIECKON Oiim3octu, data mining, KOMIbIOTEpHAS JIMHT-
BUCTHUKA

Hasi uutuposanusi: Kapsiesa M. C., "JIuHrBocTaTucTUIecKuii aHAJIN3 TEPMUHOJIOIUH sl TIOCTPOEHUS T€3ayPyca MPel-
MeTHO# obiact", Modeauposarue u anaius urnpopmayuontvir cucmem, 22:6 (2015), 834-851.

O6 aBTOpax:

Kapsieba Mapus Cepreesna, orcid.org/0000-0003-4466-1735, aciupanr,
Apocnasckuit rocymapcrBennblii yausepcurer um. 1.1 Jlemumosa,

ya. Coeerckasi, 14, r. fdpocnasib, 150000 Poccust,

e-mail: mari.karyaeva@gmail.com

BuaaromapHocTu:
1PaGora mommepskana rpanrom PODU Ne 13-06-00448

834

Kapsiera M. C.
JIMHrBOCTATUCTHYIECKU aHAIN3 T€PMUHOJIOIHI 835

BBenenue

B nocienee BpeMst BO3poc MHTEPEC K TAKOMY BHJLY IIPEICTaBICHUs 3HAHWI, KaK Te3ay-
pyc. o Tezaypycom 0OBITHO TOHUMAIOT CJIOBAPb KOHIIEIITOB C OIPEJIEIEHHOM CTPYKTY-
poit XpaHeHUs JAHHBIX U HADOPOM CEMAHTUIECKUX OTHOIIEHUM, YKa3bIBAIONINX Ha OOIII-
HOCTD (HAIIPUMED, CHHOHUMWYECKUH Psijl) WM IPOTUBOIOCTABIEHIE 3HAYEHWH JIEKCHIe-
ckux emuHuil. [1aBHoe oryimdme Te3aypyca OT CJIOBapsd — 9TO CHCTEMa IIPEJICTABICHUS
JIAHHBIX, KOTOPAas IMO3BOJIsIeT UCIIOI30BATh T€3aypPyC HE TOJBKO KaK CPEJICTBO JJIsi 0TOD-
paxkeHuss HHMOOPMAIIUU B yI000UNTAEMOM BHUJIE, HO U I JaJIbHEiIeil paboThl ¢ HUAM,
KaK C UCTOYHUKOM 3HAHWI I 33/a49, CBSI3aHHBIX C KOMIIBIOTEPHON JUHTBUCTHKON U
urGOpMannoHHbIM onckoM. Hampumep, poccuiickuii Tesaypyc PyTes [1] ucnosnbsyerca
B KadecTBe pecypca Jijisi aBTOMaTHIeCKON 0O0pabOTKN TEKCTOB B IIPOEKTAX JJIsd TOCYyIap-
CTBEHHBIX U KOMMepUeckux opranuzarnuii. PyTe3 orHocuTcs K Kjaccy Te3aypycoB THUIIA
WordNet [2], To ecTb 6a3bl 3HAHUIT 3HAMEHATEIHLHBIX YacTell pedn (CymeCTBUTE/IbHBIX,
[JIAr0JIOB, HAPEUWH, IPUIATATEIbHBIX), TJI€ JIEKCHIECKOH eIMHUIIEH SBIISeTCI «CHHCET,
WM CHHOHUMHUYECKHI Psil, TO eCTh HADOp CJIOB CO CXOXKUM 3HAYEHUEM. 1eM CaMbIM, 3a
CYeT CeMaHTHYECKON CeTH MeK/Iy KOHIIEIITaMU BO3MOYKEH aBTOMATUYECKUI aHAIN3 TEK-
CTOB U PsJi JAPYTHUX 3aJad, KOTOPbIe BO3MOXKHO PEIIUTH ¢ MOMOIIBIO TaKOI'0 MOIIHOIO
HHCTPYMEHTA.

Hanuane mpeaMeTHO-OPUEHTHPOBAHHOIO Te3aypyca IO3BOJIAET 3HAYUTEILHO YIIPO-
CTUTH IIporiece coopa, popMam3alinm, XpaHeHns, OEHKHN U UCIIOJIb30BaHUs 3HAHUI, ITO
CIIOCOOCTBYET MOBBIMIEHUIO 3(DDEKTUBHOCTU PAOOTHI CHEIUATUCTA WU PA0OYIeil IPYIIIIbI
BBIOpAHHOM ITPeIMETHOI 00JIACTH.

Cozanue Te3aypycoB IPEJMETHBIX 00JacTell — JIOCTATOYHO TPYIOEMKUH U JI0POro-
CTOSITITUH TIPOTIECC, MTOCKOJIBKY TIPU 9TOM HEOOXOINMO O0beINHEHNE YCUINN ME/IbIX TPYIII
COOTBETCTBYIONINX CIEIUAJHUCTOB U SKCIEPTOB I 00PabOTKU OOJIBIIOro Yucja 00b-
€MHBIX HUCTOYHUKOB WHMOPMAIUU: CJIOBapeil, CIPaBOYHUKOB, HAYIHBIX IIyOJIMKAIUi 1
JIPYTUX TEKCTOB. EcTecTBEHHBIM MOIXOA0M K CO3/IAHUIO T€3aypPyCa B CBSI3U C PA3BUTHEM
nHMOPMAIMOHHBIX TEXHOJIOTUN SBJISETCd KOMOMHUPOBAHUE KAK PYUHBIX, TAK U ABTOMA-
TUIECKUX METOJIOB.

B nmammOoM ciydae B KadecTBe HpeIMETHON 00/iacTi BbIOpaHa MOITOJIOTU, O] KO-
TOPOI TMOHUMAETCsI T'PyIIa JUCIUILINH, OPUEHTHPOBAHHBIX HA BCECTOPOHHEE TEOpEeTHU-
YeCKOe W MCTOPUIECKOe M3yUeHne M033un. J[j1s1 TesaBpupoBaHUsS MOITOJOTUN OBLIH 3a-
JIOZKEHBI JIOCTATOYHBIE OCHOBBI |3, 4], B KOTOPBIX 9KCIEpTaMy MPEJIMETHON 001acTi ObLI
pa3paboTan 0a30BbIif TEPMUHOJJOIUYIECKN CJIOBHUK Te3aypyca, HACIUTHIBAIOIIHI TOJITO-
PbI TBICIYU CHEIUATBHBIX TEPMUHOB, MPEJICTABACHHBIX B 10 IPeIMETHBIX 0100I1aCTAX
(kracTepax).

[IpeacTaBisiioch JOTUIHBIM I YCKOPEHUs 3aIl0JIHEHNsT OCHOBHBIX MH(MOPMAIMOH-
HBIX HOJIeii TepMuHOIorndeckux crareil resaypyca (TCT) cozmasarh Tesaypyc Kak oOT-
KPBITBII CETEBOI Pecype C IMOJHOIEHHBIM JIOCTYIIOM IOJIb30BaTe/eil K COCTABICHUIO U
penakruposanuio Kopryca TCT [5]. Oxnako nocie pasmeriennst B ceru VHTepHeT mpo-
roruna rezaypyca [6] ¢ ucnonnzoBannem Wiki-TexHosoruii ¢Tajio siCHO, 4TO Ha 3TOM
9Talre Takoi KpayJICOPCUHTOBBIN MOJIX0/] K CO3IaHUI0 Te3aypyca He 3(pHEeKTUBEH B CBSI3U
C HEJIOCTATKOM MOTHUBAIUHU Y II0JI30BATE/CH CAMOCTOATEILHO Pa3BUBATD JIMHIBUCTUIE-
ckue pecypcbl. [ToaTomy okazasicss METOOIOTTIECKT aKTYAJIbHBIM TTOX0/T C aBTOMATHIe-
CKUM COCTAaBJICHUEM Te3aypyca Ha OCHOBE TEPMHUHOJIOI'UU IIPEIMETHON 00J1acTh, & UMEeH-

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
836 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

HO UMEIOIIErocst 0a30BOr0 TEPMUHOJIOIMTIECKOTO CJIOBHUKA Te3aypyca U PsiJia UCTOUHUKOB
MEPBUYHON MH(MOPMAINH, COJIEPKAIINX MHMPOPMAIIUIO JIJIsI 3aTI0JJTHEHIS OCHOBHBIX TI0JIEi
TCT, kak siBHYIO — JiJIsT OIIPe/ieJIeHnsT TeEPMUHA, TaK U HEsIBHYIO — JIJIT CEMaHTUIeCKUX
CBs3€el JIAHHOTO TEPMUHA C APYTUMHU. ABTOMATH3AIMA JTUHIBOCTATUCTUICCKOTO aHAIN3A
9TO# TEPMUHOJIOIUU € HEOOXOMMOCTBIO IIPEIBAPSET 33/1a9y aBTOMaTUIEeCKOI'0 COCTaBJIe-
HUS Te3aypyca.

Nzyuenne ocHOBHBIX 3aKOHOMEPHOCTEI IPU MOCTPOEHUU Te3aypyca IOMOXKET (op-
MaJIn30BaTh OCHOBHBIE ITArd M METOJUKHU JJid CO3/annd 6a3 3HAHWI U CIIOCOOCTBOBATD
Pa3BUTHIO TE3ayPYCOB B JIDYTUX IMPEJIMETHBIX 00/1acTdaX. B KadecTBe MeToma JIjId aBTO-
MaTHIECKOTO U3BJIEYEHNST CEMAHTUIECKIX OTHOIEHWI ObLI BRIOPAH METOJI, OCHOBAHHBII
Ha M3BJIEYeHNN WHMOOPMAIINN U3 OIpPeJIeJIeHNl paccMaTpUBaeMblXx TepMUHOB. CeMaHTH-
YecKast OJIM30CTH TEPMUHOB OIEHUBAECTCA C TOMOIIBIO JIBYX METPUK OJIM30CTU U PYUHOI
OIIEHKU KCIIEpTa MPEJIMETHOM 06/1acTH.

B xadecTBe OTHOIIEHU MEXK Ty TEPMUHAMHY JIjId aBTOMATUYIECKOTO U3BJICYEHUS MOTYT
OBITH PACCMOTPEHBI:

1. Pomo-BuioBbIe OTHOIIIEHUST;
2. lenoe—vactu;
3. OTHomenne CHHOHNUMUN.

ABToMaTrUecKoe pacro3HaBaHne CEMAaHTHIECKUX OTHOIIEHUH BO3MOXKHO C IIOMOIIBIO
JIEKCUKO-CUHTaKCH4IecKuX mabsionos [7|. B janHoil crarhbe ObLIM MPEICTABIEHBI JOCTA-
TOYHO IIPOCTbIE KOHCTPYKIIUU JIjId U3BJIEUECHUS POJIO0-BUIOBBIX OTHOIIEHUN IIPU LOCTPOE-
uun Te3aypyca WordNet. V3Biieuenne ceMaHTUIeCKUX OTHOIIECHUN 6€3 MICHTU(MDUKAIIIN
0 TUIIAM IIpeJIcTaBIeHo B pabore [8]. Meron 3ak/rouaercs B UCHOIb30BaHuN craTeii Bu-
KUY IS peain3aliui MeTOI0B MAITMHHOTO O0YYeHUs, OCHOBAHHDBIX Ha AJrOPUTMax
OJTMKANIIINX W B3aUMHBIX OJIMXKAMIINX cocejieil U JIBYX METPUKAX CeMaHTHUIeCKO#N OJIu-
30CTU CJIOB. Pe3y/bTarsl U3BJIeYeHrs UCIOIb3YIOTCA B cucreMe Serelex 9] s momncka
CEMAHTUYECKU CBA3aHHBIX CJIOB.

JList m3BJI€YEeHUST POJIO-BUIOBBIX OTHOIIEHU OBIJT JOCTATOYHO YCIIEITHO UCIIOJIb30BaH
noxoz [10] Ha ocHOBe MCHOIB30BAHMUST OTIPE/IEJICHUTT TOJIKOBBIX CJIOBapeii ¢ HaJIOKeHHeM
pAa IPaBUJI JJI PACIIO3HABAHNA OTHOIIIEHUA MEZKJITY ONPENeIaeMbIM CJIOBOM B KQUECTBE
poa 1 OJHUM M3 CJIOB JeUHUAIMN B Ka4ecTBe BHUIA.

1. dPopmajibHasi IIOCTAHOBKA 3a1a41

[Iycrs C' = {cy,¢9,...,cn} — mHOKecTBO TepmunoB, D = {d;,ds,...,dy} — MHOKe-
CTBO onpejesennii, R — mapbl CeMAHTUYECKU CBI3aHHBIX TEPMUHOB.

Torpa 3a1a4eil aaropuTMa CIyXKAT 3312498 PACHO3HABAHUS MHOXKECTBA CEMAHTHYe-
CKHX OTHOIIEHNT, mpeacTaBieHubx B Buge R = {(¢;, ¢;), (Cit1,Cj+1)} U3 BCEBO3MOKHBIX
nap tepmunOB. T.e. HEoOxoauMO TocTponth dyHkmmio F @ R C C x C — {0,1} u
BLIOpATH Iapbl TEPMUHOB, I KOTOPBIX I = 1.

Kapsiera M. C.
JIMHrBOCTATUCTHYIECKU aHAIN3 T€PMUHOJIOIHI 837

2. Ncxonable JaHHBIE

2.1. DBa30Bblit TEpPMUHOJOTUYECKU CIIOBHUK

DKcreprTamMu IIpeaMeTHOR obyacTu OblLia paspaboraHa 0asa Te3aypyca, COCTOSINAs W3
CIIMCKa PA3/eJI0B U TEPMHUHOJOTHIECKOTO CJIOBHUKA, KOTOPBI HACUUTHIBaeT 1545 yHU-
KaJIbHBIX TEPMUHOB.

2.2. HcrouyHukmn TEPMMUHOJIOTTYECKUX JaHHbIX

B kagecTBe NCTOUYHUKOB JIJIsI N3BJI€TEHUS] CEMAHTUIECKNX OTHOIIEHNH U aBTOMAaTUIECKO-
r'o 3aIl0JIHEHUs TI0JIell TEPMUHOJIOITIECKUX CcTaTel Te3aypyca oludpoBaHbl U Ipeobpa-
30BaHbl B €JIMHYI0 MAIITHOYUTAEMYIO (DOPMY IIPEJICTABICHUS CJACTYIONNE UCTOUHUKN:

1. Kparkas qmreparypras sunukiaoneaus: B 9 ©. (KJI9) [11];
2. Jlureparyphas sunmkioneaus: B 11 . (JI9) [12];

3. CuoBapb jmreparypubix Tepmuaos: B 2-x r. (CJIT) [13];
4. Kparkosckuit A.IT. ITosruaecknii cioaps. (IICK) [14];

5. Bosbmas coserckas sunukiaoneaus: B 30 . (BCY) [15].

3. DBpiOop uHCcTpyMeHTapus JJjis aHAJN3a JJaHHBIX

WsBecren L[eJIbIﬁ P Ppa3/IMYHBIX IIPOICAYDP aHaJIn3a TEKCTa Ha €CTECTBEHHOM A3bIKE!

e rpadeMaTUuecKuil aHAIN3 ¢ PA3/IeJIEHUEM BXOJIHOTO TEKCTa Ha CJIOBA U Pa3eIu-
TEJIU U C BbIJICJIEHUEM TIPEJJIOXKEHNI, ab3a1eB, 3arojIOBKOB U IIPUMEYaHUII;

® JICKCHUIeCKHil aHam3 (TOKCHU3AIHsI) BXOJAHOIO TEKCTa C BBLIEJICHHEM U3 HETO JIEK-
ceM (TOKEHOB);

® YacTepedHad pasMeETKa, 3aﬂaqeﬁ KOTOpOIL/'I ABJIAETCA OlIpeJesjieHue 9aCTu pedn "
I'paMMaTHYIECKUX XapPaKTEPUCTUK CJIOB B TEKCTE;

e MOPGOJIOTHYECKUil aHaIu3 C paclioO3HaBaHUEM I'paMMaTHYECKOil (OpPMBI CJIOB 1
CJIOBOCOYETAHUN W CHATHEM OMOHUMWU;

e JleMMaTH3aIuUs CJI0Ba (cJ0BOGOPMBI), T.e. IPUBEJIEHNE CJOBOM3MEHUTEIBHON (hop-
MBI CJIOBA K JIeMMe — K €€ HOpMaJIbHOil (cstoBapHoii) dopme;

® CTEeMMUHI' — OTOpachbIBaHUE M3MEHSEMbIX JacTell CJIOB, MPEUMYINECTBEHHO OKOH-
YaHUI];

® CHHTAKCHYeCKUi aHaam3 (IIAPCUHT) ¢ PACIIO3HABAHUEM CHHTAKCUIECKOIO CTPOEHHST
IPEJIIOZKCHN;

® CeMaHTUYECKUil aHAIN3, C YCTAHOBJICHHEM CEMAHTUYIECKHX CBs3eill (OTHOIIEHMIA)
MEXKJTY dJIEMEHTaMH TEKCTa, KOTOPbIe MOI'YT BKJIIOYaThH OOJiee OJTHOIO CJIOBA.

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
838 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

ABromMaTusanys HA3BAHHBIX MPOIEAYD /I OOIBINX 0OBEMOB JAHHBIX Peaji3yer-
¢ MHOYKECTBOM CIIOCOOOB € TIOMOIIBIO PA3HOOOPA3HBIX MHCTPYMEHTOB M BCEBO3ZMOZKHBIX
AHAJIM3aTOPOB.

Nucrpyment aBromaTudeckoit obpaborku TekcToB 1o HaszBanuemM AOT copepkut
rpaeMaTrdecKuii, MOpOJIOrnIecKnil, CHHTAKCUIECKNN U CEMAHTUYIECKUN aHAIN3aTO-
pbl. Mopdonornyeckuit aHaJIM3aTOP MOCTPOEH C NCHOJIH30BAHUEM I'PAMMAaTIIECKOTO CJI0-
Bapsa A.A. Bamususka [16].

[Tporpamma or komnauun «Sugexe» Mystem [17| nossossier nponssoauTh Mopdo-
JIOTUYECKUii aHa/In3 TeKCTa Ha PYyCCKOM si3bike. Jlanublii anasmsarop [18] paspaboran ¢
UCII0JIb30BAHUEM CJIOBAps B BUJIE JIeCA MHBEPTUPOBAHHBLIX MPE(UKCHBIX JIEPEBBEB Cydh-
PpUKCOB 1 MHBEPTUPOBAHHOT'O MPEPUKCHOTO jepeBa ocHoB. Mystem mosBoJisieT ompeje-
JIATH HAYAJIBHYIO (DOPMY CJIOBA, T.€. IMPOU3BOJIUTH JIEMMATU3AIUIO, OIPEJIEIITh IpaM-
MaTHYecKe XapaKTePUCTUKU. [[OMOTHUTETHbHBIM IJIFOCOM JTAHHOTO ITPOJIYKTa SBJISETCS
BO3MOYKHOCTH TIOCTPOEHUS TUIIOTETUIEeCKUX Pa300POB JIJIsl CJIOB, He BXOJSIINX B CJIOBAPD.
st mannoro uucrpymenta cymecrByer wrapper (obeprka) PyMystem [19], ucnosb3ye-
Masl B KadecTBe OubmoTekn s si3bika Python.

pyroit anajm3aTop, KOTOPBI BO3MOXKHO nHTerpupoBaTh B Python-mnpoekT B Kate-
crBe 6uOIMOTEKN, HasbiBaeTcst Pymorphy?2 [20], ¢ moMoIpio KOTOPOro BO3MOKHO BBIOJI-
HATH JIEMMATH3AINIO U aHAJN3 CJIOB, OCYIIECTBJIATH CKJIOHEHUE 110 33/ JaHHBIM I'DaMMa-
THYECKUM XapaKTEePUCTUKAM cJIOB. B mporiecce paboThl ¢ pYCCKUM S3bIKOM UCIIOIB3YeTCs
ciosapb OpenCorpora [21]. Tuanazon ckopoctu pastopa 6osee 100 Toic. cioB/cek. Kpo-
Me Toro, y Pymorphy2, kak u y PyMystem, npeaycMorpena BO3MOKHOCTb UHTETDAITIN
¢ dpeiimBoprom Django [22].

Huxe npesicrasiien pazdop tepmuna «Cromay cpepcrsamu Mystem u PyMorphy?2.

Mopdomorsae crri aganHE: TepyuHEa: CToma
[Croma']
Mystem: [{'analvsis’: [{lex': 'cToma’, 'gr': 'S xem geon=m e], 'text’: 'Ctoma'}, {'text’: "n'}]

PyMorphy2: [Parse(word='crona’, tag=OpencorporaTag{ NOUN inan femn sing,nomn'),
normal _form='ctoma', score=1.0, methods_stack=({<DictionarvAnalvzer>, 'ctoma’, 55, 0).)]

B kadecrBe mHCTpYMEHTA JIJTs1 TPOBEJICHUS CC/IEIOBAHUI JIOCTATOYHO UCIIOIH30BATH BbI-
COKOYPOBHEBBII A3BIK HporpamMupoBanus Python. Peanuzarusa kakaoro Jiorugeckoro
mara IpeJicTaB/IeHa OTJe/bHbBIMU cKpulitaMu. [loydeHnbie pe3ysibTaTbl B BUJIE U3BJIE-
YeHHOI MHQOPMaIUN JTOCTATOIHO IPEJCTaBUTDh B daiiie ¢ (popMaToM .csv Jijisd yI00HOIM
3arpysKu B 6a3y JaHHBIX.

4. HOZ[I‘OTOBK& NCTOYHNKOB

ILJISI pa6OTbI ¢ 6OJIBIINM 00 BLEMOM JAaHHBIX B Ka9eCTBE KOPIIyCa JJId U3BJICUYECHUA CeMaH-
TUYIECKUX OTHOIIEHUNA HeO6XO,H,I/IMO IIPOBECTU aHaJIN3 HCCHG,B;yeMOfI JINTEepaTypPhbI.

Kapsiera M. C.
JIMHrBOCTATUCTHYIECKU aHAIN3 T€PMUHOJIOIHI 839

4.1. 3Bamaum yHUUKAINA JTAHHBIX NCTOYHUKOB

[Tocse onudpoBKM UCTOUYHUKOB KazKIOr0 JOKYMEHTa HeoOXOoauMa OTae/1bHasds 00paboTKa
J1s yHUUKAIIANA JTAHHBIX:

1. Koupepramnust uctrounuka B (popMaT ¢ pacmmpennem .txt.

2. ObbeuHeHNEe HECKOJBKIX TEKCTOBBIX (hailjioB UCTOUHUKA B OJUH (haiil.
3. Viajienue mycThIX CTPOK B haiie.

4. Ynajienve JTUAKPUTHUK, 3HAKOB U CUMBOJIOB C HENPABUIBLHON KOJIMPOBKOIA.

5. YjmajeHnue HOMEPOB CTPAHMUIL, CJIOTOB, MIOKA3BIBAIOIINX HAYAJIO TEPMUHOB, OIEYATOK
u Jp.

6. CxkpunTbl Hanucanbl Ha g3biKe Python, koropsrit nmomxoaut st 06paboTku pyc-
CKOI'O sI3bIKa 3a cUeT OOJIBIIOro BbIOOpa Ombmorek. B mamHOM ciydae, Oblia nc-
nosib3oBana 6ubsmoreka «re (Regular expression operations)s.

4.2. CooTHoleHnue TEPMMIHOB 1 OHpe,Z[e.TIeHI/Iﬁ B NCTOYHHNKAX

Nctounuk KJID+JID npepcrapisier codoit daiin ¢ pacmupennem .txt pasmepom 85 Mb
u KostmdecTBOM cTpok 295 928. [locse ounctku ObL10 ynaaero 64 889 cTpok, KOTOpbIe
COJIEPKAJIM CUMBOJIBI, 0003HAYAIONINE HOMEpa, CTPAHMUIL, CChIJIKU Ha, WLIIOCTpAIuu 1 6u0-
smorpacduio. Bubsmorpadus ObLta ymanena u3 onpejie/ieHni, MOCKOIbKY JaHHas WH-
dopmanysa He NPUTOANUTCS JIJIsT U3BJIEUYEHUs] OTHOIIEHUI MKy TEPMUHAMHU U MOZKET
[IOMEIaTh MIPOIEe/yPe aBTOMATHIECKOTO 3AII0THEHUS MTOJIei.

[Tocne amanuza CJIT 6bL10 ycTanoBieHo, 9TO 3 286 TEPMHUHOB, COBIAJIAOIIUX CO
ciosuukoM, 38 tepmunos CJIT we mmeror onpejesieHns, a UMEIOT OTCHIIKY Ha JIPYToOi
TEPMUH, Hampumep, «Yckopenme — cMm. [luppuxuiiy. OupeseseHus TepMUHOB B JIaH-
HOM HCTOYHUKE 3AIMCAHBbI B BHUJIE PA3BEPHYTOI'O OTBETA, CPEJIHSA JJINHA OIPE/IeIeHUS
cocrasyigeT 5 996 cuMBOJIOB, YTO 3aHUMAET MOPsAAKa 70 CTPOK.

B Tabmmre 1 mpejcraBieHbl XapaKTEPUCTUKH HCCIEyeMbIX UCTOYHUKOB, a UMEHHO:
Ha3BaHUe, I'0JI U3JIAHNS, KOJTUIECTBO YHUKAIbHBIX TEPMUHOB B UCTOYHUKE, KOJTUYECTBO
[IOJTHOIIEHHBIX OIpeJieieHuil 6e3 yueTa CChLIOK Ha JPYrue U KPATKOe OIUCAHME CaMOTO
UCTOYHUKA.

5. AHaan3 TepMHHOB

B ciioBHEKe, cocTaB/IeHHOM SKCIIEPTaMU MIPEJIMETHON o0J1acTu, mpejcrasieno 1 544 yuu-
KaJIbHBIX TEPMUHA, COCTABJIEHHBIX BPYYHYIO.

B Tabmuie 2 npuBeieHa CTATHCTUKA BCTPEYAEMOCTH TEPMUHOB U3 CJIOBHUKA B UCTOY-
HUKaX, 00bIBJIEHHBIX paHee. Takmm oOpa3oM, B KayKJIOM M3 UCTOYHUKOB BCTPETUJIOCDH
128 TepMUHOB, NIPEJICTABICHHBIX B CJIOBHUKE, JTAHHbIE TEPMUHBI SIBJIAIOTCH OOIIEYIOTPE-
ouTebHBIMU. 587 TEPMUHOB HE BCTPETUIOCH HU B ojHOM ucTounuke. V3 KJID 6but us-
BJIedeH 571 TepMuH, 9TO COCTAB/ISeT MOpsaAKa 3,7% Olpeae/eHnii, UCIIOJIb30BAHHBIX U3
Bcero ncroununka. 401 Tepmun Berpermica B JID, uro cocrasisier nopsiaka 8,3% ot Beero

840

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

Tabsmna 1. Onucanne n XapaKTEPUCTUKU UCCIICLYEMbIX UCTOYHUKOB

Ucrounuk

l'on wusna-
HUS

Kous-Bo
TEPMUHOB

Kou-Bo
ompe/iese-
HU

Kparkoe ommcanune

KJIS

1962-1978

15 228

14 755

Hanuamne 6oJibioro KoJu-
4ecTBa TEPMUHOB B UCTOY-
HUKEe TMOo/pa3yMeBaeT OT/a-
JIEHHOCTb OT IHPeJIMeTHON
obnactu. B manmoil sHINK-
Jonejiun cobpaH MaTepuaJ
[0 IEepCOHAJINAM U OoJee
o0IIKUM TepMHUHAM, YaCTUY-
HO CBA3aHHBIM C ITO3TOJIOTH-
en

JI9

1929-1939

4 782

4 276

WcTouHuK COMEep:KUT I10JI-
HbIE OIIpeJIe/ICHUs, TIOPsIKa
30-60 cTpok B cpejiHeM

CJIT

1925

739

679

CroBapb 1peJicTaBisgeT 00-
1eobpa3zoBaTeIbHOE
bue w3 obJjlacT TEopUH
JINTEpaTypbl, JIMHTBUCTUIE-
CKOIl IIO3TUKU, ICTETUKU U
COIIMOJIOTUU XYJIO2KECTBEH-
HOT'O TBOPYECTBA

II0CO-

I[ICK

1966

673

615

[TosTruaecknii CJIOBaphb
COIEPKHUT MAKCHUMAJBHO
HPUOJTMKEHHBIE — TEPMUHbI
K IpeJMETHON 0b6JiacTH.
Onpenenennst XapakTe-
pUBYIOTCs HEOOJIBITTUM
pasMepoM ¥ OYEBUIHBIM
CXOJICTBOM B IIOCTPOECHUN
onpeieaeHun

BC3

1969-1978

30 TomoB

McTounuK ucroab30BaJICd B
KadecTBe BCIIOMOI'aTeJIbHO-
1IN}

Kapsiera M. C.
JIMHrBOCTATUCTHYIECKU aHAIN3 T€PMUHOJIOIHI 841

Ta6III/ILLa 2. CrarucTuka 4acToThl OABJICHUA TEPpMHHa B CJIOBHUKE N B UCTOTYHHKaAX

HaszBanme ncrounmka Koangectso KomangectrBo CoorHorenune
TEPMHUHOB TEePMUHOB B HC-
13 CJIOBHUKA TOYHUKE

KJID 571 15 228 3,7%

JID 401 4 782 8,3%

CJIT 286 739 38%

IICK 601 673 89%

Hu B oxHOM MCTOYHHKE 587 - -

Bo Bcex ncrounukax 128 - -

Ta6JII/IHa 3. CraTucTuka CJIOB B TEPpMHHaX U3 CJIOBHUKA

Kommaectso cioB B Tep- | KonmmuecTso Coornorenue co
MHUHE TEPMHNHOB CJIOBHUKOM

1 996 64,5%

2 478 31%

3 60 3,9%

4 6 0,39%

) 3 0,2%

6 1 0,01%

obbema JI9. 286 repymunos 6b110 n3saedeno uz CJIT, uro cocrasiasger nopsaaka 38% ot
Bcero oobema CJIT. Haubosbmbv o obbemy n3BjiedeHHBIX TEPMUHOB U OIPEJIEIeHUT
okazaJjics ucrounuk [ICK — uzsieden 601 Tepmun u3 673, aro cocrasisier 89%.

B tabaune 3 ucciemoBaHbl TEPMUHBI U3 CJIOBHUKA HA KOJUYIECTBO CJIOB B TEPMUHE.
JlanHast KoJIMaecTBeHHAsT Mepa BayKHa, JJIA JAJbHEHIIero nceje0BaHus, MOCKOJIbKY aB-
TOMAaTUYIECKIe U3BJIEUeHNEe CEMaHTUIEeCKIX OTHOIIEHUN OOBIMHO MPOBEPSETC HA TEPMU-
HaX JIMHBI He OoJiee ueM 1. B jannom ciydae, KOJIMYECTBO OJIHOCJIOBHBIX TEPMUHOB
cocrasysger 64,5% or Bcero KoJM4ecTBa TEPMUHOB B CJIOBHUKE, BTOPOE MECTO 3aHUMAIOT
JIBYXCJIOBHBIE TepMHUHBI — 31%, Tperbe Mecto — 3,9% — TpexciioBHBIE TepMUHBLL. Kpome
TOTO, B CJIOBHUKE MPUCYTCTBYET IIECTUC/IOBHBIN TEPMUH B €IMHITHOM K3eMILIsIpe U 3
MSITUCJIOBHBIX TEPMUHA.

6. MeTOﬂI/IKa IIONCKa TepMHNHa 1 OlIpe/de/iIeHnA

Cute1y1oImuM maroM CJIyzKAT BbIJeJIeHIe TEDMUHA U €r0 OIIPeJIeJIeHNs U3 UCTOYHUKA. 3a-
Jlava, sIBJISeTCs HeTPUBUAJILHOMN, IIOCKOJIBKY KOMIIBLIOTED PA3/INYaeT MOCTYIAIONIil TEKCT
TOJIBKO B BUJi€¢ CTPOKH, HeO6XO,ZLI/H\IO HaJIO2KUTDB PAI IIPpaBUJI 1 yc.HOBI/Iﬁ JJ1gd KOPPEKTHOI'O
U3BJICHYCHUA TEPMUHOB U OHpe,Z[‘eJIeHI/H;.I.

st 3TOro HEOOXOMMO Pas3OUTh 3a/a4dy HAXOXKJICHUS TEPMUHA W OIPEJIe/ICHUS Ha
10/138/T1a%

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
842 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

1. ITouck Havasaa TepmMuHa;

2. Ilouck KoHIa TepMUHA;

3. llouck Havasa onpeenenns;
4. Ilouck KOHIIa OIIPeIe/IeHHsI.

Paszbuenue 3a1aun moncka TepMuHa Ha JiBe T0/3a1a49H ([TOMCK HAYAIA U [TOUCK KOHIA
TEPMUHA) CBSI3aHO C TeM, JIJIMHA TepMuHa He (PUKCHPOBAHA: TEPMUH MOXKET OBbITh OJIHO-
CJIOBHBIM, HO MOXKET COCTOSITh M U3 HECKOJbKHUX cjioB. Hauasio omnpejiesienns He Bcerja
COBIIAIAET C KOHIIOM TEePMUHA MJIM OITO3HABATEIbHBIM 3HAKOM, HCIIOJIB3YyEeMbIX B CJIOBa-
psIX, & UMEHHO Tupe. MexKIy TepMUHOM U OIpeIeIeHIneM MOKHO BCTPETHTH KOHCTPYK-
U B KPYIJIBIX /WM KBaJPATHBIX CKOOKAaX, B KOTOPBIX JI0OABJICHA JIOMOJTHUTEIbHAS
nHMOPMAITHS:

ABEPEBMATYPEI (utan. abbreviatura — cokpawenwe, ot nar. abbrevio — cokpawaw) — cnoea,

obpasoBaHHBIE W3 NEPBLIX BYKE WK COKPaLLEHHEBIX YACTEN CNOE...

OrmpeiesieHne MOYKeT COCTOATh W3 OJHON WM HECKOJbKHX CTPOK. TOYKa WM CHMBOJI
KOHIIA CTPOKH He SABJISIOTCS MOKa3aTeIsIMI OKOHYaHUs orpejenenns. MapkepoMm OKOH-
YaHUs ONIpeJIeSIeHNs] MOXKET CJIYyKUTh HA4daJIO CJIEYIONIEro TepMuHa. BaXHO TOHATH,
r/e HAYMHAETCd CJIEYIONNN TePMUH, TaK KaK TEPMHUH MOYKET BCTPETUTHCA U B CAMOM
OIIpesIeJIEHUN B POJIU TOSICHSAIONIEr0 MOHATUA. B omnpejiesiennn 4acToO MOYXKHO BCTPETHUTD
B KavIeCTBe MPUMEPOB CTUXOTBOPEHUSsI, IIUTATHI, OTCHIIKU Ha JApyrue TepMuHbl. Omupee-
JIEHUsI MOTYT COCTOSATH KaK W3 OJIHOTO TPEJIOXKEeHUs, TaK W N3 HECKOJIBKUX JIECSITKOB
ctpok. Hurke mposeMoHCTpUpPOBAHO JBa TepMUHA ¢ olpejeneHusMu. [lepBoiii Tepmun
COCTOUT M3 TPEX CJIOB M B KadecTBe ONIpeJle/ieHns] UMeeT OTCBLJIKY Ha JIpYroil TepMUH.
Bropoit TepMmuH cocTOUT U3 ABYX CJIOB U UMEET B OIPEJIC/ICHUN BUIbI AJIKeeBO cTPOdBI
U IpuMep — OTPBIBOK m3 nipoussejienus «llonparkanme ['oparmrios.

[Ipexye gem paszpaborarhb IHpaBua JJid ajJrOpUTMa aBTOMATHYECKOTO U3BJICUEHUS
TEPMUHOB U OIPEJIe/ICHU, HCOOXOIMMO U3YUIUTH UCCTIEyeMble HCTOTHUKU. KazK 1bit ¢J1o-
Bapb UMeEeT CBOIO YHUKAJBHYIO CHEIu(UKY UHTEPIpeTarun TepMuta. BaxkHo paspabo-
TaTh COBOKYITHOCTD IIPABUJI, KOTOPbIE TIO3BOJIMIH OBl ¢ OOJIBIION TOUYHOCTHIO W TTOJTHOTOM
OTIpeJIe/IATh HAYaJIO0 U KOHEIl TEPMUHOB U ompejiesieHuii. JIis tanHol 3a/1a91 HET CMBbIC-
JIa IIOAKJ/IIO9aTh ME€TOAbI MaIlllMHHOI'O O6y‘{eHI/IH, TaK KaK IIPpHU UCIIOJIb3OBaHUM Hla6.HOHOB
C peryjdpHbIMU BbIPpaKCHUAMMN W PdAa IITPpaBUJI ITIOJIYYIUJICA KadeCTBEHHBIN pPe3yJIbTaT,
KOTOPBIA CTaJT JOCTUZKUM 34 HECKOJBKO UTEPAI.

Kapsiera M. C.
JIMHrBOCTATUCTHYIECKU aHAIN3 T€PMUHOJIOIHI 843

HASAHCHO-TATAPCKAA NMTEPATYPA — cm. «TaTapCHMe AWT-peI».

ANKEEBA CTPOMA — GHTMYHEA YETBIPEXCTHUWHAEA CcTpodad, W30BpeTEHHEA ANKEEM; COCTOMT M3 CTMXKOE TREX
EMO0E:

1) BEBATHCACHHEIA AMBMUECHMA cTux | || |~»

2) pecatvcnomiein cTix |||

3) ogMHHagUaTMCAOMHBIA cTux ||].

B Cneayowem oTpRIERE B. BRHOCOE MMWTHMPOEAN HE PYCCHOM AZLIKE PUTM A. C., MPWYEM NERERIE OEE CTROHM
COOTEETCTEYHIT TPETEEMY EMOY A. C., TOETEA CTROKE — NEREOMY EMOY M YUETEEPTAA CTPOKE — ETOPOMY BMOY:
He Tem rop#yce A, | ©ebom oTMEUYEHHBIN,

YTO CTUX MOM SEOHKMIA | PMMCHWME HOHOWM

Ha WwyMHOM NWpe NOETORAKT,

PUTM EGIOMEGR YSOPHON YaWen.

[«Mogpamarue Mopauymio:)

AAHPY[MaHc [Hans Aanrud, 1863—] — HOPEEMCKWMA NO3T W APEMETYPT, AWT-BIM PYHOEOOWTENE
HBUMOHANEHOrD TESTPE B XPUCTMEHMKM. HENWCan HECHONEBHD #MAYTOECKMX® W GPMEOAEHEIX HOMEOMN W
NOBECTEN O ©4ETAX M NOOPOCTHEXN .

BENbXABEH (Welhaven), HOxaH CebacTeAH (22 XIL1E07, Bepred, — 21 X 1873, XpWCTUEHWA) — HOPE.
294
MO3T W KPWTHH.

Takum 06pa30M, MO2KHO BBIJICJINTH HECKOJILKO IIPpaBUJI, BBIBCACHHDBIX IMIIMPUICCKUM ITYy-
TeM, KOTOPbI€ ITIOMOI'YT M3BJIEYb U3 MCTOYHUKa TEPMHH 1 €r'o OlIpeJdeJICHUE:

1. HoBag cTpoka MOKeT HaYMHATBHCSI C TEPMUHA.
2. Tepmun MOXKeT OBITH HAIMCAH 3arIABHBIMU OyKBAMHU.

3. Tepmun MoxkeT OBITH Pa3/ie/ieH CUMBOJIAME U 3HAKAMU, HE OTHOCATIUMUCS K CAMOMY
TEPMUHY.

4. CioBa (u/m €JI0BO), BXOJAIIEE B TEDMUH, HMeET HadalbHyto (GopMy (CTOUT B HM.IL.,
eJ1.4.)

5. Tepmun MoxKeT OBITH OTJIeJIEH OT IPUIAraTeJIbHONO 3HAKOM THUPEe, PaBHO WU IIPO-
OesIoM.

6. Mex1y TepMUHOM U OIpPeeJIEHUEM MOYKET CTOATbh B KPYIJIBIX CKOOKaX IMEPEBOJL
TEpMHUHA C APYTOTO A3bIKA.

7. Mexj1y TEpPMUHOM U OIPEJIEIEHIEM MOXKET CTOATH B KBaJIpATHBIX CKOOKaX IOsIC-
HslfoIas HHMOPMaIIUs.

8. Tepmun moxkeT 0603HAYATH JIMYHOCTH, T.€. B Ka4eCTBe TepMHUHA OyJjieT haMuns,
OTJIeJIEHHAS 3alATONl OT UMEHHM WJIM JIPYroil nHMOPMAINU, KOTOpas MOXKET ObITh
pacIoioXKeHa B CKOOKaX.

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
844 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

Ta6ﬂ1/ma 4. CraTucTUKa CJIOB B TeEpMHHaX U3 CJIOBHHUKAQ

Konu4ecrso onpejiestennit | Kosmdecrso TepMuHOB
446

249

134

118

1

Y | W N~

9. B mcnob3yeMbIXx UCTOUYHUKAX TEPMUH, CMBIC/T KOTOPOI'O PACKPBIBACTCS, B OIIpe/ie-
JICHUM BCTPEYaeTCs B BUJIE COKPAIEHUsI MEepPBOIl OYKBBI ¢ TO4KO. Ecian tepmun
COCTOUT U3 JIBYX WJIU OOJiee CJIOB, TOIJAa COKpAIeHHe UMeeT BHUJI ITePEedHCICHUs
HEePBBIX OYKB pa3JeJIeHHBIX TOYKOi u mpobesiom (Hampumep, AJikeeBa cTpoda =

A c.).

B Tabsmrie 4 mpuBeieHbI KOTMYECTBEHHbIE XaPAKTEPUCTHKI TTOCTIE U3BJIEUEHUS BCEX
OIIpe/IeJIEHUI U3 UCCJIE/lyeMbIX UCTOYHUKOB, TaKUM 00pa3oM, 446 TepMIUHOB UMEIOT TOJIhb-
ko 1 ompenenenne, 249 TepMUHOB UMEIOT 1O 2 ompejesenus, 134 TepMuHa UMEOT 110 3
olpesiesIeHus U TaK JlaJlee.

7. Pacno3sHaBaHHe ceMaHTHYECKIX OTHOMICHU

JITou UMeoT YHUKAJIbHYIO CIIOCOOHOCTH OIPEJIE/ISITh B3aUMOCBI3b MEXKIY JBYMS JIEKCH-
YECKUMU €JIMHUIIAME, OJIHAKO OIEHUTH OJIM30CTH JBYX TEPMUHOB C IIOMOIIBIO TPOTPAMM-
HOTO KOMILIEKCa BO3MOXKHO C IIOMOIIBIO METPUK CEeMaHTUIeCKOo# Om3octu. MeTpukm
CEMaHTUIECKON OJIM30CTHU SABJIAIOTCA HEKUM WHIUKATOPOM JIJISd OTIPEJICTICHUsT B3ANMMOCBSI-
31 MeXKJly TepMHHAME Ha OCHOBe 3ajiaBaeMoro npasuia. B pabore [19] pacemorpenbr
MEeTPUKN OJU30CTH JIjIsI YCTAHOBKU OTHOINEHUI MEXKIy cJoBaMu U3 crareil Bukureanm.

7.1. Merpuka «KosmdecTBo 00MIX CJIOB B ONpeJieJIEHUN »

Merpuka (1) mcmoab3yer Mepy CeMaHTHYECKON OJIM30CTH HA OCHOBE OOIUX CJIOB OIIpe-
JIeJIeHNIT BYX T€PMUHOB.

2|(d; N d;)/stopwords| 1)
|di| + |d;]

Yucmure1b Ipodu paBeH KOJUYECTBY OOIMUX CJIOB, MPUBEICHHBIX B HAYAJIBHYIO (hOp-
MY, B BLIOpAHHBIX OIPEJIEJICHUIX C YIETOM CITHCKA, CJIOB, OIPE/IE/IIeMbIX KaK CTOI-CJIOBA.
SHaMeHaTe/ b JIpOOM COOTBETCTBYET CYMMeE BCEX CJIOB B KaKJIOM M3 JIByX BBIOPAHHBIX
olpeJleIeHU.

B kauecTBe ncTOUYHMKA CTOI-CJIOB ObLI BHIOpaH «JacTOTHBIN CJI0Baph COBPEMEHHOI'O
PYCCKOTO si3biKay [23]. ViasieHne CTom-CJI0B IIOMOraeT CHIZKATh YPOBEHD IIyMa, JPYTUMI
CJIOBAMHU, TIOBBIIIAETCS Ka9eCTBO BHIOPAHHON METPUKH, ITOCKOJIbKY, HAIIPUMED, COI03 «U»

similarity(t;, t;) =

Kapsiera M. C.
JIMHrBOCTATUCTHYIECKU aHAIN3 T€PMUHOJIOIHI 845

He HeceT HUKAKOU CMBICJIOBOM HAT'PY3KHU B OIPEJIEJIEHUN JIJIsi HAXOXKJIEHUST B3aUMOCBSI3U
JIByX TEPMUHOB, OJTHAKO MOYKET BCTPETUTLCA B 000MX OIPEJIE/IEHUIX.

O Hako maHHAsT METPUKA HE YINTBIBAET JJINHY OIPeIe/IeHNi. DTO sIBJIAETCS TJIABHBIM
HEJOCTaATKOM METPUKH, TIOCKOJIbKY JIJTMHA HEKOTOPBIX OIPee/IeHNN MOXKET JIOCTUTATh JI0
CTa CTPOK U UMETH OOJIBINOE KOJMIECTBO OOIMIEyTOTPEOUTE/IHHBIX TEPMUHOB, KOTOPbIE HE
OTHOCSATCS K CIHUCKY CTOII-CJIOB, HAITPUMEDP: CUCTEMA, COBOKYITHOCTD, PSAJI, KOJUIECTBO U

T.I.

7.2. Metrpuka «KocunycHass Mmepa CXOJICTBay,
i «KocuHyc yria MexKay BeKTopaMu OnpeaesIeHUuil»

st Toro 4ToOBI KOMIIEHCUPOBATD BJIMSHUE JIJIMHBI OIPE/IeIeHUN Ha CBA3HOCTH MEKTy
TepMUHAMHU, ITPUMEHSAETCA METPHKa I10J] Ha3BaHMEeM KOCHHYCHas Mepa cxojcTBa. Otmpe-
JieJieHre TpeJicTaBisieTcsd Kak N-MepHbIl BEKTOP, U Jlajiee ITPOUCXOUT OIIeHKA TePMUHOB
C HUCIIOJIb3OBaAHUEM IIOJIYICHHBIX BEKTOPOB.

PasmepHocTb BeKTOpa OIpeJiesisieTcss B 3aBUCUMOCTH OT XapaKTepa MCC/IeyeMOoil 3a-
Jgagu. g manHoro ciaydasd pa3MepHOCTH BEKTOPa OIPEJIC/ICHUS COBIIQJIACT ¢ KOJIMYe-
CTBOM CJIOB B CJIOBHHKe, a nMeHHO 1554. Taxum obOpasoM, BEKTOP OIpejie/ieHusd Oy/IeT
BKJIIOYATH TOJIHLKO TEPMHUHBI U3 CJIOBHUKA. FCM TEPMUH M3 CJIOBHUKA HE BCTPETHJICH B
OIIpeJIe/IEHNN, TO ODO3HAYEHHBIN 3/IEMEHT CTAHOBUTCS PABHBIM HYJIIO, B JIPYTUX CJIydasix
QJIEMEHT CTaHOBUTCA PaBHbBIM KOJIMNYCCTBY IIOSIBJICHUI TepMHHa B OIIPpCAC/ICHUN.

B dopmysne kocuHycHON Mepbl cxojicTBa (2) YHCAUTENb MpeJCcTaBigeT coboil CKa-
JIAPHOE TTPOU3BeJIeHe BEKTOPOB JIBYX PacCMaTpPUBAEMbIX OIpeesIeHnil, a 3HaMeHaTe b
paBeH IPOU3BEIEHUIO €BKJINJIOBBIX HOPM 3THUX BEKTOPOB. 3JHaMeHATe/Ib B (hopMyJie HOP-
MUPYET 10 JIJTHHE BEKTOPBI, TAKMM 00pa30M, Pe3y/IbTaT MOYKHO MHTEPIPETUPOBATH KaK
CKaJIAPpHOE IIPOU3BEJCHNEC HOPMUPOBaHHBIX BEKTOPOB, COOTBETCTBYIOIIUX JABYM OIIDE/Ie-
JICHUAM.

st peasim3anuu METPUKKA HEOOXOIUMO ITPOBECTU IIPEIBAPUTEIbHBIE ITPOIIE/LY PhI:

1. Hopmanuzanus omnpenejieHul — IpUBEIeHUE KaXKJIOr0 CJIOBA OIpelesieHusl B Ha-
JaJabHyI0 hopMmy;
2. Hopmasnmzamug cJIoBHUKa — HPUBEIEHNIE KaXKJIOrO CJIOBa TEePMHUHA U3 CJIOBHUKA B

HAYATBHYIO (DOPMY;

3. Ilomck TEPMHNHOB B OIIpeJe/IeHUN (HOI/ICK IIPOU3BOAUTCA C YIETOM BCEX CJIOB B TEP-
MHHaX M3 CJIOBHI/IKa);

4. @opMupoBaHUE BEKTOPOB ONPeJIe/IEHNT PA3MEPHOCTHU, PABHOM KOJIMYECTBY TEPMU-
HOB B CJIOBHUKE.

MunaumaJsibHass OJIM30CTH TEPMHUHOB COOTBETCTBYET KOJUYECTBEHHOMY ITOKA3aTeJII0
0.0, a makcumaabHasg — 0.99.

stmilarity(t;, t;) Jiodi 2t Sl (2)

MAIEITE o oS £

rje fix — JacToTa JIeMMBbI ¢ B onpejesennn d; [8].

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
846 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

8. Ommcanue ajaropurMa

BxogabiMu TaHHBIME CJIY?KAT MHOXKECTBO TEPMHHOB 1', MEXKJIy 3JeMEHTaMU KOTOPOTO
HEOOXOIMMO YCTAHOBUTH CEMaHTUIECKUE OTHOIIIEHN TI0 UX OIPeIeIeHIAM U3 MHOYKECTBA
D. Takum obpazom, 3ajiatua CBOJIUTCS K 3aJiave PACIIO3HABAHUS MHOYKECTBA CEMAHTHU'IE-
CKUX OTHoIIeHnuit R 3 Bcex BO3MOXKHBIX 1ap TepMuHoB. Hampumep:

T = {crona,HoBesLIa,eIMHOHAYATHE, AMO anadopa}

R = {<crona,smb6>,<equHoHauaTne,anadopa> }

9. CpaBHeHHe MeTPUK

J11s1 mHTEpIIpeTAINT TIOJIY YeHHBIX Pe3yJIbTaTOB, HEOOXOINMO HCII0JIH30BATh PYIHYIO OIIE€H-
Ky. Bt BeIOpanbl ciaydaitnbiM oOpaszom 26 map TepMuHoB. B KadecTBe aceccopa BbI-
CTyIaeT dKCIePT IpeaMeTHo obactr. Huke nmpuBeieHbl HOpMUPOBAHHBIE PE3YJIHTATHI
METPHUKHU «KOJUYIEeCTBO OOIIUX CJI0B B omupenenernuns — «Merpuka 1» m MeTpUKH <«Ko-
cuHycHas Mepa yriay» — «Merpuka 2», amama3oH pe3yabTaToB II0 JIBYM MeTPUKAM U
oreHKe 3Kciepra cocrapiger or 0 o 0.99. B tabsmie 5 npecraBieHo cpaBHEHHE JIBYX
METPUK OJIM30CTU TEPMUHOB C PYUHON OIEHKON SKCIIEPTA.

10. 3akJjrouyeHue

B pabore mpejicraBiieHbl METOBI 110 aBTOMATUYECKOMY PACIIO3HABAHUIO B3aUMOCBSI3H
TEPMUHOB TIyTEM CO3JaHUs aJrOpUTMa Ha OCHOBE CEMAHTHUICCKUX METPUK OJIM30CTH.
Metpuka «Komu1aecTBo 00mux CJI0B B OIPeEJIe/IEHUN» SIBJISIETCS YHUBEPCAJbHBIM U HAU-
60s1ee OYEBHJIHBIM CITIOCOOOM YCTAHOBJICHUS B3aMMOCBS3M TEPMHUHOB TI0 OIIPEJICTICHUSIM,
OJTHAKO JIAHHBIN METOJI 3aBUCUT OT JIJIMHBI ONPEJIETICHUIN, U9TO SIBJISIETCA BayKHBIM (haK-
TopoM BBy crenuduku npeavernoit obsactu. Hanporus, merpuka «Kocunyc yriia
MEYKJTy BEKTOPAMU OIIPEJIC/IEHUIT» HE YINTBIBAET JJIMHY OIPEJIeICHIl, TAK KAK B OCHOBY
3aJI07KeH HAbOP CJIOB, 3a/[aBaeMbIX B KadeCTBE BEKTOPHOI'O IpejcTaBieHud. B ranHoM
ciIydae JIJTMHA BEKTOpPa COBIAJAJA ¢ KOJTUIECTBOM TEPMUHOB CJIOBHHUKA, UTO TTO3BOJIAIO
JIETEKTUPOBATH OOIIME TEPMUHBI U3 CJIOBHUKA B PACCMATPUBACMBIX Ompe/ienennsx. [
dopMupoBanus JAHHBIX ObLIa MPOBejeHa 00paboTKa coBapeil MMpeIMeTHONl 00IaCTH.

Kapsiera M. C.
JIuHrBOCTATHUCTHYECKUT aHAJIN3 TEPMUHOJIOTUN

847

Tabauna 5. CpaBHeHne JByX METPUK OJIM30CTH TEPMHUHOB C PYYHOI OIEHKO 9KCIepTa

Ne | Tepmunbt Merpuka 1 | Merpuka 2 | Onenka
9KCIIEPTa
1 | AHTUBAKXWU, YKEJB/JINPME
1. AaTugnbIii pazmep. 0.00 0.00 0.00
2. Kazaxcknit pazmep.
2 | IATUJIOJIBHUK, SITNT'PAD
1. Ilarucnoxuauk, cuniabd.-ronndeck. | 0.01 0.00 0.00
pas3mep.
2. 72Kanp smureparypshl.
3 | XOPEl, KAHTUJIEHA
1. CTuxoTBOPHLII pa3mep. 0.01 0.22 0.05
2. My3bIKaJIbHO-TTOSTHIECKHI YKaHpP.
4 | JOXMUH, KPATA
1. AaTuunsrii pazmep. 0.01 0.32 0.00
2.006001eHMe PaBHOCTIOXKH. CTOI B
cu11ab0-TOHUIECKUX Pa3Mepax.
5 | TEKBAMETP, KOB3APH
1. AnTuanblii pasmep, B pycckoit merpu- | 0.02 0.00 0.00
K€ UMATUPYETCs 6-CTOIMHBIM JTAKTUJIEM.
2. [leBerr HAPOIHBIX YKPAUHCKUX IECEH.
6 | [IHECTNAOJIbHUK, TOHNYE-
CKOE CTUXOCJIOZKEHUE
1. 6-ciioxxknast 2-aknentHass crona B | 0.03 0.22 0.20
cn11ab0-TOHUKE.
2. NsznavyajpbHOoe Ha3BaHUE CHJLIA00-
TOHUKH.
7 | JOJITUN CJIOT, APY3
1. B anTnunoit nu nekotopbix coppemen- | 0.04 0.72 0.50
HBIX METPHUKAaX.
2. Merpuka Ha ocHOBe depeIOBaHUS
JIOJITUX ¥ KPATKUX CJIOTOB.
8 | BBIJIMHBI, MAKAPOHUYECKWE
CTUXU
1. ZKanp pycckoro mapoHoro smoca. 0.05 0.81 0.10
2. 7Kanp caTupuydecKux CTUXOB.
9 | HACTVIIKA, ITOCJIOBUIIA
1. 2Kanp mupuueckoit mostuueckoii | 0.06 0.60 0.50
dopmbl dosibKIIOpA.
2. 2Kanp kpaTkoil mostudeckoit ¢dhop-
MbI (DOJIBKJIOPA.
10 | [TAVBHUK, 9BPUTMUIA
1. Cruxu ¢ wnenosnocnoxkuoit 3- | 0.07 0.77 0.05
CJIOZKHOM CTONOMA.
2. bnarozsyume cruxa.

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)

848 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)
Ne | Tepmunbr Metpuka 1 | Merpuka 2 | Onenka
IKCIIEPTa

11 | AHA®OPA, HEHTOH
1. 3BykoBoii, jekcndeckuii, cunrakcu- | 0.08 0.99 0.00
YECKUil IOBTOP B HAYAJIE CMEYKHBIX CTHU-
XOB HJTU CTPOD.

2. CocraB/ieHre CTUXOTBOPEHUI 13 pa3-
JINYHBIX M3BECTHBIX CTUXOB.

12 | CTOIIA, II50H

1. B curabo-tonuke moBTopsemas | 0.13 0.76 0.95
I'PYIIIa CJIOrOB C AKIIEHTOM Ha 3aJIaH-
HOM MecTe (pon).

2. B ciytabo-Tonuke 4-caoyKHas cToma
C aKIEHTOM Ha 3aJIAHHOM MecTe (BH).
14 | INPPUXWU, MOJIOCC

1. Ilpomyck ynaperuss B 2-cjioxknoit | 0.15 0.36 0.10
cTOIle, HAPYIIAIONIUN [PABUJILHOCTD
PUTMHUYECKON CXEMEL.

2. 3 yaapenusi (2 CBEPXCXEMHBIX) B 3-
CJIOXKHOIT cTore (TpuMaKp).

15 | UTIOCTACA, INMACTOJIA

1. Purmuaeckas moaudukanusa metpu- | 0.29 0.62 0.00
YEeCKON CTOIIBI.

2. B anTuvnoit MeTpuke 3amMeHa JI0JI0-
r'o CJIOTa KPATKUM.

16 | TPOXEN, JOXMUIT

1. ArTuuHas crora. 0.33 0.49 0.10
2. AHTHUYHBII pa3Mmep.
17 | QIIUTPUT, MOHUK
1. Aurnanas 4-cioxkuas crona (3 gou- | 0.42 0.82 0.50
rux u 1 Kparkwuii).

2. Auruunas 4-cjioxkHas crona (2 71071
IUX 1 2 KPATKUX).

18 | IUXOPEN, TPUMETP

1. JTutiomus, gerbipexcioxkuasg croma ¢ | 0.46 0.90 0.50
yJapeHueM Ha 3-M uiu 4-M cjiore (50H
3-it mim 4-it) ("gacTs).

2.B anTuvnoit MmeTpuke pasmep us 3 Jiu-
ot (1estoe).

19 | AHTUBAKXNI, BPAXUXOPEN

1. Antuanas 3-cioxkuag crona (2 gos- | 0.53 0.18 0.50
rux u 1 Kparkwuii).

2. 3-cokHas cTona (KpaTKUil, JO0JITHit
U KpaTkwuii), ambudpaxuii.

Kapsiera M. C.

JIMHIBOCTaTUCTUYECKUNA aHaJIN3 TEPMUHOJIOTUH 849
Ne | Tepmunb Metpuka 1 | Merpuka 2 | Onenka
KCIEPTA
20 | IEHTAMETP, INCTUX

1.B pycckoit merpuke antuunbiii H- | 0.68 0.96 0.80
CTOITHBIA JIAKTUJIMNYECKUA CTUX UMUTHU-
pyeTcst 6-CTOITHBIM ¢ MYZKCKOM 11e3ypoit
(gacrb).

2. DJieruvecKuii IMCTUX, JIBYCTUIIINE U3
rek3aMmerpa u mneHramerpa (Iesioe).

21

JINAMB, TNXOPEN
1. Jpoiinas smbudaeckas crona (mumo- | 0.99 0.86 0.70
st).
2. JlpoitHasi xopendeckas crona (Jumo-
st).

Crnucok auteparypbl / References

[
2l
3]

4]

[5]

[6]
7]

8]

19]
[10]

[11]

Jluareucrudeckast onrosorusi «Tesaypyc Pyres», http://www.labinform.ru/pub/ruthes/.
Tezaypyc WordNet, http://wordnet.princeton.edu//.

Boiikor B.H. u gp., “Tesaypyc kak mHCTpYMeHT mostosorun’, Modeauposarue u ana-
au3 ungopmavuonnor cucmem, 17:1 (2010), 5-24; [Boikov V.N. et al., “Thesaurus as a
poetological tool”, Modeling and Analysis of Information Systems, 17:1 (2010), 5-24, (in
Russian).|

Boiikos B.H., “CeMaHTHYECKAS MO/IEJTh «Tezaypyca 110 IIO3TOJIOT U »
B cocTaBe HH(POPMAIMOHHO-AHATUTUIECKON cucTeMbI, Mamepuaivt HaywHotl KoHnpepernyuy
«Unmeprem u cospemennoe obwecmsos, 2013, 273-279; [Boikov V. N., “Semanticheskaya
model «Tezaurusa po poehtologii» v sostave informacionno-analiticheskoj sistemy”,
Materialy nauchnoj konferencii «Internet i sovremennoe obshchestvos, 2013, 273-279, (in
Russian).|

Boiikos B. H., “IIpeaMeTHo-0pueHTHPOBAHHBIN Te3aypyc B OTKPLITOW HMHMOPMAIMOHHO-
anaymTA4eckoii cucreme’, RCDL’2018 «Daexmpornnvie bubsuomeru. Nepenexmuesl, Mme-
modvl u METHOAO2UY, dINeKMPOHHbIE Koasrekuuus, 2013, 70-76; [Boikov V. N., “Predmetno-
orientirovannyj tezaurus v otkrytoj informacionno-analiticheskoj sisteme”, RCDL’2013
«Ehlektronnye biblioteki: perspektivy, metody i tekhnologii, ehlektronnye kollekciis, 2013,
70-76, (in Russian).|

Tezaypyc mo nosrostorun, http://wikipoetics.ru/.

Hearst M. A., “Automated discovery of WordNet relations”, WordNet: an electronic lexical
database, 1998, 131-153.

ITanuenko A.IU., “V3Biedyenne ceMaHTHUYECKUX OTHOIIEHMHE u3 crareil Bukuiemum c mo-
MOIIBIO AJrOPUTMOB Oumkaiimux coceneit”, Omxpoimoie cucmemn, 16 (2012), 18-27;
[Panchenko A.I., “Izvlechenie semanticheskih otnoshenij iz statej Vikipedii s pomoshchyu
algoritmov blizhajshih sosedej”, Otkrytye sistemy, 16 (2012), 18-27, (in Russian).|

Serelex: ITouck cemaHTHYECKH CBSI3HBIX CJIOB, http://serelex.org/ru.

Kucenes 0. A., “Mero usBjiedeHns! PoIOBUIOBLIX OTHOIIEHUNA MEXKIY CYIIECTBUTEIbLHbBI-
MU U3 OIpeJeeHuii TOJKOBBIX cioBapeil”, [Ipoepammnasn unorcenepus, 10 (2015), 38-48;
[Kiselev YU. A., “Metod izvlecheniya rodovidovyh otnoshenij mezhdu sushchestvitelnymi iz
opredelenij tolkovyh slovarej”, Programmnaya inzheneriya, 10 (2015), 3848, (in Russian).|

Kpamxaa aumepamypraa onyukasonedus, Co. Duiuka., 1962-1978; | Kratkaya
literaturnaya ehnciklopediya, Sov. Ehncikl., 1962-1978, (in Russian).|

850

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

[12]
[13]
[14]
[15]
[16]
[17]
[18]

[19]
[20]
[21]
[22]
[23]

JTumepamyprasn snyuraionedus, Kom. akam., 1929-1939; | Literaturnaya ehnciklopediya,
Kom. akad., 1929-1939, (in Russian).|

Caosapv aumepamyproi mepmunos, Uzn-so JI. 1. @penkens, 1925; | Slovar literaturnyh
terminov, Izd-vo L. D. Frenkel, 1925, (in Russian).]

Kearkoeckuit A.Il., Hosmuueckut caosapo, Cos. Duuuki, 1966; [Kvyatkovskij A.P.,
Poehticheskij slovar, Sov. Ehncikl, 1966, (in Russian).|

Boavwas cosemckasn snyuraonedus, Cos. suiuki., 1969-1978; | Bolshaya sovetskaya
ehnciklopediya, Sov. ehncikl, 1969-1978, (in Russian).]

SBammsasak A.A., 'pammamuneckutl crosapsv pycckozo sasvika, CiioBousmenenue, 1980;
[Zaliznyak A.A., Grammaticheskij slovar russkogo yazyka, Slovoizmenenie, 1980, (in
Russian).]

Mystem, https://tech.yandex.ru/mystem/.

Segalovich 1., “A Fast Morphological Algorithm with Unknown Word Guessing Induced
by a Dictionary for a Web Search Engine”, MLMTA, 2003, 273-280.

PyMystem, https://pypi.python.org/pypi/pymystem3/0.1.1.
PyMorphy?2, https://pymorphy2.readthedocs.org/en/latest/.
OpenCorpora, http://opencorpora.org/.

FrameWork Django, https://www.djangoproject.com/.

Jsmesckass O.H., Yacmomnwvili carosapb cospementozo pycckozo a3vika (Ha mamepua-
ez Hayuonaavnozo xopnyca pycckozo aswka), Asdykosuuk, 2009; [Lyashevskaya O.N.,
Chastotnyj slovar sovremennogo russkogo yazyka (na materialah Nacionalnogo korpusa
russkogo yazyka), Azbukovnik, 2009, (in Russian).]

Kapsiera M. C.
JIMHrBOCTATUCTHYIECKU aHAIN3 T€PMUHOJIOIHI 851

DOI: 10.18255/1818-1015-2015-6-834-851

Linguistic and Statistical Analysis of the Terminology
for Constructing the Thesaurus of a Specified Field

Karyaeva M.S.!
Received May 15, 2015

The paper is devoted to the analysis of the body of terms and terminological sources for further
automation of constructing the thesaurus of a subject area, which is regarded as poetics in our work.
Preliminary systematization of terminology with a linguistic and statistical approach forms the body
of semantically related concepts to automate extraction of semantic relationships between terms that
define the structure of the thesaurus of the specified field.

Keywords: thesaurus, semantic similarity metrics, data mining, computer linguistics

For citation: Karyaeva M. S, "Linguistic and Statistical Analysis of the Terminology for Constructing the Thesaurus of
a Specified Field", Modeling and Analysis of Information Systems, 22:6 (2015), 834-851.

On the authors:

Karyaeva Maria Sergeevna, orcid.org/0000-0003-4466-1735, graduate student,
P.G. Demidov Yaroslavl State University,

Sovetskaya str., 14, Yaroslavl, 150000, Russia, e-mail: mari.karyaeva@gmail.com

Acknowledgments:

IThis work was supported by Russian Foundation for Basic Research RFBR. Project 13-06-00448

Modeauposarue u anaius ungpopmavyuorroir cucmem. T.22; Ne6 (2015), c. 852-861
Modeling and Analysis of Information Systems. Vol. 22, No 6 (2015), pp. 852-861

©Hockos A. A., Hukurunckuit M. A., Anekcees 1. B., 2015
DOTI: 10.18255/1818-1015-2015-6-852-861

VIIK 004.415.25

Pa3zpaboTka aKTHBHOTIO BHEIIHErO0 MO/IYJis CETEeBOIi
TOMOJIOTUN AJId KOHTPOJLIEPA

nporpamMMHo-KoHpurypupyemoii cetu Floodlight

Hockos A. A., Hukurunckuit M. A., Anekcees U. B.

noayvwena 15 dexabpsa 2015

TpaaunuonHast apXUTEKTYpPa CETHU IIepeIadn JAHHBIX sIBJISeTCs] HernOKOoI u cyioxkHoii. /lanHoe 0bcTo-
ATEJILCTBO IPUBEJIO K MOFBJICHUIO TTapaIurmMbl mporpammuo-koudurypupyemoii ceru (ITKC), B koTopoii
YPOBEHB YIIPABJIEHUS CETHIO OT/EJIEH OT YPOBHS MEPEIAdn JAHHBIX. DTO CTAJIO BO3MOXKHO 33 CUET Iepe-
HOCA TIJIOCKOCTH YIIPABJIEHUSI ¢ KOMMYTAIIMOHHOTO 00OPYI0BAHUS B IIPOIPAMMHEbBIE MOJLYJIH, KOTOPBIE pPa-
GOTAIOT HA BBIJIEJIEHHOM CEPBEpE, HA3BIBAEMOM KOHTPOJIEPOM (MM CETEBOI OMEPAIMOHHON CHCTeMOiH),
W B CETEBbIE IIPUJIOYKEHUSI, KOTOPbIe PADOTAIOT ¢ 9TUM KOHTpOoJIIepoM. CIIocoDb! IIpe icTaB/IeHus], Xpa-
HeHUsi 1 UHTep@eChl B3anMOIEHICTBHS C 9JIEMEHTAMU CETEBOU TOITOJIOTUH, JOCTYITHBIE MTOJIB30BaTE IsIM
rorTposutepa IIKC, sBisitorcst omanMu 3 Hanbosiee BaXKHBIX ACIIEKTOB CETEBBIX OIEPAITMOHHBIX CHCTEM.
Hammoe obCTOATETHCTBO OOYCIOBIEHO TEM, 9TO (PYHKITHOHHPOBAHUE HEKOTOPBIX KJIIOUEBBIX MOJLYJIeit
KOHTPOJLJIEPA B CYIIECTBEHHON CTENEHN OCHOBAHO HA BHYTPEHHEM IPEJICTABICHUN CETEBOU TOIOJIOTUU.
Takumu MOIyJIsIME, K IPUMEPY, SIBJISIIOTCS MOAYyJIb firewall, Momyss MapripyTusanuu u T.0. B naHHOM
CTAaThe PACCMOTPEHbI IIPUMEHsIEMbIE CIIOCOOBI IIPEJICTABIEHUSI U XPAHEHUsI CETEBOI TOIOJIOTUU, & TaK-
2Ke mHTep@EeiCchl B3auMOIEHCTBUS C COOTBETCTBYIOMMMEI Moty isiMu KoHTposutepa Floodlight. Tlpemto-
2K€H U Pa3paboTaH aJbTePHATUBHBIN aJIrOPUTM 0OMEHa COODIEHNSIMEI 00 M3MEHEHUN CETEBOIl TOIOIOTUN
MeK/Ty KOHTPOJJIEPOM U CETEBBIMU MPHUJIOXKEHUSIMU, TO3BOJIAIONIII PeAN30BaTh OMOBEIEHIe HA OCHOBE
[IOJITACKU HA COOTBETCTBYOMME coObiTust. Paszpaboran API st Mosry/ist B3auMOJIeiicTBUS ¢ IPUKJIAIHbI-
MU [TpOrpaMMaMi KOHTPOJIIEpa IPporpaMMHO-KOH(MUTYpupyeMmoit cetu. Ha ocHOBe JTaHHOTrO ajropurMa u
API pazpatboran moxyns Topology Tracker, criocoGHBINH B aKTUBHOM PEKUME COOBIATH CETEBBIM TPUIIO-
KEHUSM O TIPOU3OIIEINNX U3MEHEHUSIX B TOIIOJIOTUHU CETH U XPAHSIIII ee KOMIAKTHOE IPEICTABICHUE
JIJIsT YCKOPEHUSI MIPOIECCa B3aNMOIEHCTBHUSI.

KiroueBsbie ciioBa: mporpaMMHO-KOHpUrypupyemas ceTsb, KonrpoJurep Floodlight, Brenmuuit Mmomyss,
cepsuc, IIKC, cererast Tonosiorust, Topology Tracker, DEventBus, Link Discovery
s murupoBanusi: Hockos A. A., Hukuruackuit M. A.; Anekcees U. B., "PaspaboTka aKTUBHOI'O BHEIIHETO MOLYJIS

CeTeBOU TOIOJIOTUU [JIsi KOHTPOJLIepa IporpaMMHO-KoHurypupyemoii cetu Floodlight", Modeauposarue u anaaus um-
Popmavyuornor cucmem, 22:6 (2015), 852-861.

O6 aBTOpax:
Hockoe Angapeii Anekcanaposud, orcid.org/0000-0002-2268-4912, nrxkeHep,
OO0 «dueprus-NMudos, ya. CowosnHas, 144, r. Apocnasib, 150008 Poccusi, e-mail: naa@a-real.ru

Hukuruncknit Muxaunsn Asekcanaposnd, orcid.org/0000-0001-8830-8613, mporpaMMucT-aHATUTHK,

OO0 «ueprusi-Nudo», yia. Corwsnas, 144, r. dpocinasas, 150008 Poccusi, e-mail: man@a-real.ru

Aunekcees Urops Bagumosuu, orcid.org/0000-0001-8321-2399, kaux. dbus.-Mat. HayK, JTUpeKTOp nenTpa UaTepHer,
Apocnasckuit rocymapcrBennblii yausepcurer um. 11.I. Jlemumosa,
ya. Coserckasi, 14, r. fdpocaasib, 150000 Poccus, e-mail: aiv@yars.free.net

BuiarogapHocTu:
Pabora semosinena 8 PT'BOY BIIO "fpocnasckuii rocymapcrsernblit yuusepcurer uM. I1.I. Jemugosa" npu douHaHcoBOM

nojiep:kke MuHucrepcrsa obpasoBanusi u Hayku Poccuiickoit @enepanuun B pamkax CoryiamieHusi O HpeIoCTaBIeHUN

cy6enmuu (ID RFMEFI57414X0036).

852

Hockos A. A., Huknruuckuit M. A., Anekcees U. B.
PazpaboTka aKTUBHOrO BHEIIHETO MOYJis ceTeBoii Tonosiorun s Kourpossepa [TKC Floodlight 853

BBenenue

OpHoit m3 HamboJiee 3aMETHBIX TEHJIEHINI B PA3BUTHU CETEBBIX TEXHOJOTUN B HAIIN
JIHU SIBJIAETCS TIOJXOJ pa3jie/ieHus YPOBHEH yIpaB/IeHUs CEThbIO U IepeJiadn JaHHBIX 34
CUeT epeHOCa YIIPABJISIIONIIX BO3IEHCTBIIT ¢ KOMMYTAIHOHHOTO 000py/I0BaHus (gateway,
switch, router, hub u T.11.) B porpammMHubie MOIyJIH, KOTOPbIE pabOTAIOT HA BBIIEJIECHHOM
cepBepe, Ha3bIBAEMOM KOHTPOJIJIEPOM, UJIN B CETEBbIE ITPHUJIOYKEHUsI, KOTOPbIe paboTaIoT C
KOHTpoOJIIepoM. Pasziesienune ypoBHEi ylipaB/IeHUS U Iepe/iadul B KOMMYTAITMOHHOM 000-
PYJIOBAHUM CBA3AHO C TE€M, UYTO 000PY/IOBaHUE, BBIITYCKAEMOE PA3JIMIHBIMUA KOMITAHUSIMH,
SIBJISIETCSI 3aKPBITHIM C TOYKHU 3PEHUs pean3alun u opranu3anuu. [l pakrudeckn Kazxioe
YCTPOUCTBO — 3TO OIpEJIeJIeHHAs] CUCTEMa, B KOTOPOI eCTh (DU3UUECKAs COCTABJISIONIASI,
€CTh KOH(pUTYpaIlMOHHAS CUCTEMa U eCTh Habop npuioxkenuil. Jlannas opranuzarms ce-
TEBBbIX YCTPONCTB YCJIOXKHACT UX B3aUMOEUCTBUE, a BBEJCHUE HOBOI'O yCTPOHCTBa WUJIN
IIPUJIOYKEHUS B CETEBYIO HHPPACTPYKTYPY HOPOIt SABJIAETCA BeChbMa HeTPUBUAJIBLHOIM 3a/1a-
veit [1]. [ljist pererust JaHHOMN POGIEMBI OBLIT IPE/JIOKEH HOBBIH MOJIX0/] K OPraHU3aI[iK
B3anMoieiicTBus cereBoro obopyposanns — moaxon IIKC [2]. OcnoBras miest Takoro
o/1xo/1a ObLIa chopMyInpoBana crenuaauctamMmn yausepcureroB Craudopaa u bepkiu
B 2006 rojy. [Ipousse ienHbIe MU UCC/IEIOBAHUS HAILIN TOJJIEPZKKY HE TOJIBKO B YHUBEP-
CUTETax 10 BCEMY MHUPY, HO U ObLIN ITO3UTHBHO BOCHPUHATHI 60JI€€ YeM YeThIPbMS JIeCAT-
KaMU BeIyIIUX ITPOU3BouTeel ceTeBoro obopymopanusi, Takumu kak CISCO SISTEMS,
International Business Machines, Hewlett-Packard, Nippon Electronics Corporation.

Kommynukanuonnasi cerb nHasbiBaercs [IKC, eciin comep:kutT Kak MUHUMYM OJIMH
KOHTPOJLJIEP CeTH, C YCTAHOBJIEHHOHN ceTeBOH olepallMOHHON CUCTEMOM, U KaK MUHUMYM
O/INH ammapaTHbIil win BupryasbHbiii OpenFlow-koMMyTaTop, mpu 3TOM B COCTaB ce-
TH MOTYT BXOJWTH JIpDyTHe KOMMYTAIIMOHHBIE yCTPOUCcTBa. B OOJIbIIMHCTBE CirydaeB pu
opraumzarun [IKC pazpaboTumky cBA3BIBAIOT KOHTPOJLIEP C KOMMYTAIMOHHBIM 00O0-
pysoBarueM ¢ momoripio mporokoia OpenFlow [3], mepenocst jiorudeckyio cocrabiisiio-
YO ¢ KOMMYTAIIMOHHBIX YCTPOiicTB HAa KoHTpOosuiep. Konrposutep yupasiser OpenFlow-
KOMMYTATOPAMU I10 BBIJIEJICHHOMY 3alllUINeHHOMY KaHaJly cBs3u. Ha mero Bozjaraercs
OTBETCTBEHHOCTH 3a PEIIeHns 110 MapIIPYTU3AIlNN CETEBOTO TpaduKa, yIpaBjeHne Oes-
OIIACHOCTBIO, Pa3BEJIKy TOIOJOruu ceTu u npoduee. JlaHHbBI QyHKIIMOHAT peaTn3yercs
[IpU TIOMOIIIM BHYTPEHHUX MOJYJIell KOHTPOJIIEPa WU CETEBBIX MPUJIOKEHU, ycTaHaB-
JINBAEMbIX Ha, HETO.

Yro KacaeTcs CeTeBBIX NMPUJIOXKEHU, TO PAa3pabOTINKU OTMEYAIOT 3/1eCh ITPOOIeMY
OTCYTCTBUSI eIHHOTO cTaHaprusupoBanHoro A PI (application programming interface [4])
MeZK]Ty CEeTEeBBIMU MPUJIOXKEHUAMI W KOHTPOJIJIEPOM, & TaKyKe HEBO3MOYKHOCTH HCIIOJb-
30BaTh MPUJIOKEHUE OJHOTO KOHTPOJLIepa Ha JAPYroM [5]. DTo ¢Bs3aHO ¢ TeM, U4TO KOH-
TPOJLIEPHI HAIIUCAHBI HA PA3JIMYHBIX SI3bIKAX MMPOIPAMMUPOBAHUS U UMEIOT Pa3IUIHBII
6azoBbIil dpyukImonas. [Ipu sTom mpuioxKenus, 3amylieHHble Ha OJJHOM KOHTPOJLIEPE,
paboTaloT KOHCUCTEHTHO — OHM PACIIOJIAraloT OJNHAKOBOW WHMOPMAIel 0 COCTOSHUN
cetu. Takum obpa3oMm, 3ajiada yIPaBJIEHUs CETHIO Teleph BO3JIOXKEHA Ha PaspadoTIu-
KOB KOHTPOJLIEPOB U TPUJIOXKEHUIT JIJIs HUX, 9TO (PaKTHIECKU CO3/Ia€T HOBBIN PBIHOK —
PBIHOK CETEBBIX MPUJIOYXKEHU Jjisi KOHTPOJLIepoB. Harpumep, psily NpuioKeHuii Tpe-
Oyercs perarh 3a/ady MPOKJIAJIKA ONTUMAIBHBIX MAaPIIPYTOB MEXKTy KOHEUHBIMU Y3-
JaMu B ceTr. Tak Kak ceTb MOXKeT ObITh IpeJICTaBjIeHa B BUje rpada, B KOTOPOM ped-
pa — CoeMHEHNE MEeXK/Iy CETEBBIMU Y3JIaMU, & BEPIIUHBI COOTBETCTBYIOT STUM y3J1aM, TO

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
854 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

JIJIS TIONCKa ONTHUMAJILHOTO IIYTH MEK/Iy KOHEUHBIMHU y3JIaMUi MOXKET ObITh IIPUMEHEHa
Teopust rpados. g mocTpoenus: onTUMAIBEHOTO MAPIIPYTa MOYXKET ObITh UCIIOJIb30BAH
anroput™ Jlefikerper [6], HO eciu Beca pebep M3MEHSIFOTCS IaCTO MM HEOOXOJANMO YU~
THIBATH JOTIOJHUTEIbHBIE TapaMeTphl ceTn (Takue Kak noautuku Quality of Service |7|
win TpeboBaHns HE30MACHOCTH), TO UCHOJIb30BaHue aaropuT™Ma JIefKeTphl Jijisd MOJTHOTO
nepepacyera KpaTdyaiinmx myTeii Moxker ObITh Herenecoobpasubim [8]. TIpumep pasiu-
YUl B peaIn3aIiaX CeTEBBIX ONEPAIMOHHBIX CUCTEM MOXKHO HAWTHU U B criocobax oOMeHa
nHpOpPMAIeil ¢ CeTeBBIMU TPUIOKEHIAMEI. KIaccuIecKuil moIxo/1 B OpraHn3aiui B3a-
MMOCBSI3M TaKOro pojia TpejrosaraeT ucrnoab3oBanne mporokoiaa TCP [9], B kauecrBe
AJIBTEPHATHBHOI'O TIOJIX0/a ObLIO MPEJIJIOKEHO HCIIOIb30BaHUE aCUMMETPUIHOTO MPOTO-
koJa |10, 11].

OpauMmu u3 HanboJiee BOCTPeOOBaAHHBIX MOJLY/Iell KOHTPOJLIEPa, B JTIOOOM CYIIECTBYIO-
IeM Ha cerojHsIHmit JeHb KouTposiepe [TKC, gaBistiores MOy in MOCTPOSHUST CETEBOI
tTonoiorun. Jlanabie Moy i cOOMpAIOT MHMOPMAIUIO O KOMMYTATOPaX, XOCTaX U CBA3M
MEKJTy HUMU, & TaKKe OTBEYAIOT 3a IEePUOIMIECKOe OOHOBJIEHNE NHMOPMAIUU O TOTIOJIO-
run. OOBIYHO pa3pabOTINKKM KOHTPOJLIEPOB HA3BIBAIOT ITH MOy discovery u topology,
peske OHU O0bEIMHEHBI B OJIMH MOY/Ib. CeTeBble NMPUIOKEHUsI, PaboTaloNe ¢ KOHTPOJI-
sgepoMm ITKC, moryr 3amnparmuBarh HHGOPMAINIO O TEKYIIEM COCTOSTHUM CETH, HO, KakK
MPABUJIO, HE UMEIOT BO3MOXKHOCTHU TIO/ITUCHIBATHCS HA Oy YeHHe COOOIIEeHMIT O JTMHAMU-
IeCKOM U3MeHeHnH TOonoioruu. Jlanaoe 006CcToATe TbCTBO TPUBOINT JTHOO K HEKOPPEKTHOM
paboTe TpUIOXKEHN, 00 K HEOOXOUMOCTH IEPUOINTIECKN 00paIlaThCs CeTEBhIM IIPH-
JIOXKEHUSM K KOHTPOJLIEPY.

1. KourpoJsuiep Floodlight

OpauM u3 HamboJIee JUHAMUYHO PA3BUBAIONINXCA KOHTPOJIIEPOB, HOJIEPKUBAEMBIX CO-
obrecTBOM pa3paboOTIMKOB BO BCeM Mupe, siBisiercs Koutposutep Floodlight [12]. Flood-
Light — xkonTpoOJIIEP KOPIIOPATUBHOIO YPOBHS, HAIMCAH Ha sA3bIKe Java, UMeeT JIMIeH-
suto Apache, paspabarbiBaercs kommanueit Big Switch Networks m siBiistercs sipom
Jutst mtaraoro kKouTposutepa Big Cloud Fabric SDN controller. Ha momenT namucanust
cTaTbhu TeKymas Bepcus KourpoJuiepa FloodLigth 1.1. Konrposutep numeer MOMyIbHYIO
CTPYKTYPY, 3a CUeT KOTOPOil 00JierdaeTcs mporece paciiupeHnsi 1 BHECEHUsT N3MEHEHMIT,
MIO/I/IEPXKUBACT ITUPOKUN CIIEKTP BUPTYATBHBIX U (DU3UIECKUX KOMMYTATOPOB, CIIOCODEH
moitepkuBaTh cMmermanabie OpenFlow cern u cetn TpagumuonHo apxuTeKTyphl. [Ipn
OIMUCAHUK apXUTEKTYPbl KOHTPOJLIEPA UCIOJIb3YIOT YeThIPe OCHOBHBIX IMOHATHUS: CEPBH-
Cbl, BHYTPEHHIE W BHENIHUE MOJLYJIH, ceTeBble mpuioxkenus. CepBuc — 1o nHTEpdeiic,
KOTOPBI{l 9KCIIOPTUPYET COCTOsIHNE U reHepupyer codbitus. [lorpeburesnn cepsuca MOTyT
[OJIy9aTh /yCTaHABIMBATH COCTOSTHUE U TIOJUCHIBATHCS UM OTIIUCHIBATHCST OT COOBITHIA.
[Ipm sTOM JTOTTyCKAeTCsT MHOMKECTBO PeaJIm3aIliii OIHOTO M TOTrO Ke cepBuca. KarK bt
MOJIY/Ib MOXKET HCIIOJIb30BaTh HEKOTOPBINT HADODP CEPBUCOB I peasu3allii HEKOTOPOI
dyuKImoHaIbHOCTH. MOIYIb MOMXKET IPEIOCTaBIATh COOTBETCTBEHHO HOJIL MM OoJiee
cepBucoB. Bee moayimn B FloodLight umeror MuHHMAIBHOE KOJIMYIECTBO 3aBUCHMOCTEIH
MeXKJ1y cODOil, ITO ylpomiaeT pa3padboTKy IpuioxKeHuii. Pazinaune MexK 1y BHEITHUMUA U
BHYTPEHHUME MOJIYJISIMU 3aK/TI0YAeTCS B TOM, 9TO 0€3 BHEITHUX MOJIyJIell KOHTPOJLIED
cMOKeT paboraThb, a 6e3 BHyTpeHHHX HeT. CeTeBoe NMPUJIOKEHNE — 9TO IMPOrpaMma, Ko-

Hockos A. A., Huknruuckuit M. A., Anekcees U. B.

PazpaboTka aKTUBHOrO BHEIIHETO MOYJis ceTeBoii Tonosiorun s Kourpossepa [TKC Floodlight

855

topag 110 REST API [13] B3aumoseiicTByeT ¢ BHYTPEHHUME ¥ BHEIIHUMHU MOJLYJIAMH,
MOXKET YCTAHABJIUBATHCA KaK HA CAMOM KOHTPOJLIEpE, Tak u yjaajgeHHo. OOIas cTpyk-
typa koutrposiepa Floodlight mpencrasnena na puc. 1.

GUI glllrschlt:l; ngf :;rlstglcli(in Network Network Network
(JavaScript) (Python) (Python) g application application application
A A A A A A
A\ 4 \ 4 A\ 4 \ 4 A 4 \ 4
| Northbound REST API
Module application Floodlight Controller
R R ®) (R)
VNE Static Module Thread Packet Python Web Unit
Flow manager pool streamer Server Ul Test
Entry —
(R) | pusher = —®) (R) R ®)
Firewall o Device Topology manager/ Link Flow Storage
m@ R Manager Routing discovery cache NoSQL
R Down OpenFlow Services
Hub Recon- (R) R R =
ciliation Switches Controller Perfom.'iance Trace Counter
memory monitor store
Southbound OpenFlow API ‘
A A A A
\ 4 \ 4 \ 4 A\ 4
OpenFlow OpenFlow EEE OpenFlow OpenFlow
Switch Switch Switch Switch

Puc. 1. O6mas crpykrypa koutrposuiepa Floodlight

Kontposiep Floodlight ucrionb3yer jjtst pazseakun Tomnosioruu Mmoyib Link Discovery.
Hawnubrii Mmoxynb paboraer ¢ nporokosiom LLDP (Link Layer Discovery Protocol) [14].
LLDP sBiisiercs mpoTOKOJI0M KaHAJIBHOI'O YPOBHS, KOTOPBIi TIO3BOJIIET CETEBOMY 000PY-
JIOBAHWIO YBEJIOMJISATH O CBOEM CYIIIECTBOBAHUU JIPYTUE Y3JIbl CETU, & TaKxKe 00padaThi-
BaTh IMO/I00HBIE COODIEHUsI, TTPUXOJIAIINE OT JPYTUX YCTPOHCTB.

Nudopmarus, nosnydennas kourposuiepom Floodlight us LLDP Data Unit coobrre-
HUIl, cOXpaHsieTcsi Ha ycrpoiictse B Buze management information base (MIB) [15-17].
Takum obpazom, obIas TOMOJIOTU CETU IMOJIydaeTcsd IIyTeM cbopa U o0beIMHEeHUs WH-
dopmarnun co Beex yerpoiicTs. CobupaeMast nHGOPMAIIHS MOXKET CO/IEPIKATH CJIE Ty IOIITIe
JIaHHBIE:

® 1IMs YCTPOHCTBA M €ro ONUCAHNUE,

® VM IIOPpTa U €10 OlIMCaHue,

nvs VLAN,

[P-anpec yupasiienust ycrpoiictBoMm depes mporokos SNMP,

e (yHKIUU, KOTOPbIE MOXKET BBIMIOJHATH YCTPONCTBO,

nadopmarusg o MAC/PHY,

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
856 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

e undopmarus o nuranun depe3 Ethernet (Power over Ethernet),
e undopmalus 06 00beIMHEHNN KAHAJIOB.

Ucnonb3ys LLDP, kouTposiep Floodlight, npu Brfouennn nosrygaer nudopMaIimio
060 Bcex OF-kommyraropax [18|, mpucyTcTByOIMUX B CeTH, U IPH ITOM HE WUMEET WH-
dopmaIy 0 KOHEUHBIX y3/aX CeTH. DTa NH(MOPMAIHS MOSIB/ISETCS 110 Mepe PabOThI KO-
HEYHBIX Y3JI0B, KAK TOJIBKO OHI HAYMHAIOT IIePeChlIaTh KaKoi-1rn00 Tpaduk depes ceTb,
nadopMalsi 0 HuX 3amnucbiBaercs B MIB.

Oprako momyas Link Discovery He MoxKeT OTHPaBIATH JUHAMHYIECKNE W3MEHEHW,
IIPOUCXOJIAIINE B CETU, CETEBbIM IPUIOKeHusIM. JlanHas 0coOeHHOCTh OKa3bIBAET CEPhe3-
HOe BMsHME Ha paboTy ceTeBbIX mpuioxkenunii. Hampumep, 3a rpacdudeckoe orobpazke-
Hue B web-Opaysepe Tonosiorun [IKC B korTposiepe Floodlight orBedaer cereBoe mpu-
snoxenne GUI. s orobpakenust akryanbaoro cocrogaus [IKC B mpunoxennn GUI
HEOOXOIUMO JIMOO JIaTh KOMAaH/Iy aKTyaJu3upoBaTbh MHMOPMAIUIO HA JAHHBIH MOMEHT,
JIMOO YCTAHOBUTH TpeOOBAHME IOCTOSHHO OOHOBIATH MH(OPMAIIUIO O COCTOSHUU CETH,
IIPA 9TOM BpeMsi obpallleHns K KOHTPOJLIEPY (PUKCHPOBAHO, HEM3MEHHO M PaBHO TPEM
CEKYHJIaM.

2. Ilpunimunsl GyHKIIMOHNPOBaHMS BHEITHErO MOYJIS
Topology Tracker

[Ipu msmenenun cereBoit cTpykTypbl [IKC B Momyns Link Discovery mocrymator coobire-
HUs, cojiepsKalre nHMOPMAIo 00 UCTOYHNKE U HapaMeTpax MPOU3OIIE/IIero m3MeHe-
Hus. BHyTpeHnHne Moay/in KOHTPOJLIEpa 00padaThiBAIOT UX, COOTBETCTBYIOMIUM 00PA30M
U3MeHsdAs BHYTpEHHee IIpeJicTaB/ienne cetn. 3areM depe3 Java API moamumcannbiM BHEII-
HUM MOJIYJISIM KOHTPOJIIEpa mepeaaeTcs WHGOPMAIdsg O ITPOU3OIIEIINX N3MEHEeHUSIX.
Buerraue Moty MoryT (hbopMUpPOBATH HEKOTOPYIO PEAKITHIO HA 9TH COOBITHSI.

B crarne [19] aBropamu ObLT HPEJIOKEH MEXaHU3M B3aUMOCBSI3U CETEBBIX MPUJIO-
xennit ¢ kouTpostepom [IKC. Jlannabiii MexaHnnsM obecriednBaeT ceTeBble MPUIOKEHUS
BO3MOYKHOCTBIO OCYIIECTBJIATD MOJINUCKY Ha MPEIOCTaB/IsA€MbIe CEPBUCHI KAK KOHTPOJI-
JIEPOM, TaK ¥ JIDYTUMU CETEBBIMU TPUIOKEHUSIMI.

Taxk Kak BHeNIHWE MOJYJIM MOTIYT OBbITh IOJIUCAHBI HA U3MEHEHUS, TPOUCXO/ISIIIIE
B ceTeBOil mHMPACTPYKType, a u3MeHenne sjpa koutposuiepa Floodlight moxer mpu-
BECTU K KPUTUYECKHUM OINMMOKaM, ObLT paspadboraH BHemrHuil Moay/ib Topology Tracker.
OcHoBHBIMU (DYHKIUAME JAHHOTO MOJIYJISI sIBJISIETCS COOCTBEHHOE IPEJICTAB/IEHNE CeTe-
BOIl TomoJIOruN U repejiaia nHOPMaIUU CETEBbIM IIPUIOKEHUAM, KOTOPBIE MTOIITICAHBI
na upowusomeamue n3Mmererns B IIKC. Topology Tracker dopmupyer mpeacraBiieHme
CeTeBOil TOIOJIOTHH B BHUJE TPEX ACCONMMATUBHBIX MACCHUBOB I XpaHeHWsd WHMOpMa-
A O MapIIPyTU3aTOPaX, KOHEYHBIX YCTPOWCTBAX U COEJIMHEHUSX COOTBETCTBEHHO. B
HEPBBIX JBYX CIydasdX KJIOYOM siBJIsieTcs uieHTudukaTop ycrpoiictsa (B mpocreiinem
ciryaae — MAC-azpec yerpoiicrsa). Kirodaom jij1st MaccuBa coeIMHEHW SIBJISIETCS CTPOKA,
obpazoBaHHasT KOHKATEHAINEH CTPOKOBBIX IIPEJICTAB/ICHNN WJICHTU(MUKATOPOB KOHETHBIX
YCTPONCTB. SHAYEHUSIME, BO BCEX CJIYUAX, SIBJISTIOTCS CIEIHATbHBIE KJIACCHI TIPeICTaBIe-
HUIi, OPraHU30BAHHBIE TAKUM 00pa30M, UTOOBI YMEHBIIUTH BPEMS ITOUCKA 3allpaIliBaeMO-

Hockos A. A., Huknruuckuit M. A., Anekcees U. B.
PazpaboTka aKTUBHOrO BHEIIHETO MOYJis ceTeBoii Tonosiorun s Kourpossepa [TKC Floodlight 857

ro yCTPOHCTBA M ero mapamMeTpoB. MUHYCOM Takoll CTPYKTYPbI ABJIAETCA OTHOCUTETHHO
MeJIJIeHHOe JT00aB/IeHrne U yJajaeHue 3JIeMEHTOB MaCCUBOB.

Mouyns Topology Tracker moxker B3amMojeficTBOBATDL ¢ BHYTPEHHUME MOJLYJISIME
kouTpoJutepa Floodlight wepes Java API myist BocctanoBienust undOpMaIuu O COCTOSHUN
ceTu Ipu OOHAPYKEHUN HEKOPPEKTHBIX JIAHHBIX, & TAKXKE B CJIydae OCTAHOBKU U BO300-
HOBJIeHUS paboThl. Korma mponcxoiuT n3MeHenne B TOMOJIOTUN CETH, KOHTPOJLIEP 0 Ove-
pesu IpeocTaBisgeT JaHHYI0 WHMOpMaInio BHyTpeHHIM MomyiaaMm. Momayns Topology
Tracker monywaer mamubie mociie obpaborkm ux Mmosyiaem Link Discovery. O6paboran
nocTynusInyo uadopmanuio, Moayab Topology Tracker ornpasisier chopmupoBannbie
JlaHHble Ha BHyTpeHHUI cokeT KouTposutepa Floodlight. /lanubiit coker mnpociyimBaer
JIOKaJIbHOEe ceTeBoe puyiokenne DEventBus, KoTopoe BBICTYIIAET B POJIM CETEBOW IITMHBI
C MEXaHM3MOM PErUCTPAIMK COOBITHI OT MOJIyJIell M TMPUJIOKEHUH, 8 TaKyKe ¢ BO3MOXK-
HOCTBIO IIOJIINCKK Ha JgaHHble coObiTus. [Ipmioxkenne DEventBus Obu10 paspaborano B
COOTBETCTBHU C JIOTHKOi, onmcanuoil B [19]. Ecin npuioxennio DEventBus neobxonnmo
nepeiaTh JaHHbIE Ha Y/aJeHHOe YCTPOMCTBO, Ha KOTOPOM HAXOIUTCS IOJIUCAHHOE Ha
cobbITHE cereBoe mpuioxkenne, npuioxkenne DEventBus cBasbiBaeTcsi ¢ aHAJIOTTIHBIM
MIPUJIOZKEHUEM Ha CTOPOHE IIPUeMa U depe3 Hero nepejaer JaHHbe. Eein cereBoe mpuio-
JKeHIe HaXOUTCA JIOKAIbHO, TO oT Moyist DEventBus emy nepenatorcs nannasre. Cxema
obmena coobienusgmu 06 naMenenusax ceresoit Tonosiornn [IKC npejicraBiena na puc. 2.
CrtomHoit inHueit 0603HavYeH Mpe/jIaraeMbliit MeTo 1, 0OMeHa COODIEHUMU, Ty HKTUPHOI
JIMHUeH — MeTo1 oOMeHa, coobIeHnsaAME, IpuMeHsembiii B KoaTpoJsuiepe Floodlight B Ha-
crosiee Bpemd. ITpux-nmyHKTUpHON JuHMel oO03HAYEHA 3aIUINEHHAasd cXeMa oOMeHa
coo0ITeHnaAME TIpu 3ampoce, agapecoBanroM depe3 REST API paspaborannomy Motystio.
Bo Bcex ciaydasix cTpesikamu 0003HaYEHO HAIIPABJICHUE TIEPEIadn COOOIICHMIA.

Floodlight controller \ (External network

applications
‘ DEventBus | "| DEventBus
- -‘.\
i
I . S
[Unix Socket } [Northbound REST API }4— -t - GUI
) A 4
4 1
v _&
Topology 5 | Floodlight core :
Tracker < Link
k] Discovery we

2 N/

Puc. 2. Cxema obmena coobieHusaMu 06 n3MeHeHusx cerepoil Tonosoruu ITKC

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
858 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

3. Cpasaenne moxayJeii Topology Tracker
n Link Discovery

Ananmms pazpaboranroro BHerraero mojyisi Topology Tracker mossosisier mpoBecTu va-
CTUYIHOE CPaBHEHMeE 0 KJII0UEBBIM ITapaMeTpaM ¢ aHajaornaabiM MojrysteM Link Discovery,
KOTOPBIH B JIAHHBII MOMEHT UCIOJIL3YI0TCd B KOHTposuiepe Floodlight.

C Toukm 3peHusi obecrieueHusi Oe3zonacHocTu KoHTpoJsuiepa. Obparenne K
BHyTpenHeMy Mojyio KouTposuiepa Floodlight mpoucxomur mo REST API 3ampocy c
JIIODOTO yCTPORCTBA CETH, IPHU 9TOM OH MOYKET IIPOUCXOINTh KaK C YKa3aHUEeM JIOTUHA U
mapoJist, Tak n 6e3 Hux. B3ammoeiicTBre ¢ paspaboTaHHBIM MOJIYJIEM MOTYT OCYIIEeCTB-
JIATH CeTeBble NMPUJIOKeHus, 3aperucrpupoBannbie B DEventBus. OrBercTBeHHOCTD 32
PErUCTPAINIO CETEBBIX MIPUJIOKEHNH BO3/IOYKEHA HA aIMAHUCTPATOPA CETH.

C To4YKu 3peHus UCIOJIb3yEMbIX PECypPCOB KOHTpoJLIepa. Paspaborantas cu-
creMa MPOTPAMMHBIX PENIeHUil WCIoJb3yeT COOCTBEHHYIO — 0a3y JIaHHBIX,
KoTOopasg opMupyercs B OINEPATUBHOW MaAMATH 110 Mepe pPabOThl KOHTPOJLIEPA
Floodlight mapaJiiensno ¢ ero cobcrBennoit. Takoii OIX0 1MO3BOJIAET OBICTPO (hOPMHU-
poBaThb OTBET Ha 3aIPOC O MPEIOCTABJICHUN TOJTHON WU YaCTHIHON MH(MOPMAIUU O Te-
KYIIeM COCTOSIHUM CeTeBoil Tomojiorun. Kpome Toro, pazpaboranHasi CTPYKTYpa UMeeT
MEHBINNI pa3mep, deM coOCTBeHHasi 06a3a KOHTpOJuepa (pacroJioKeHHast
$floodlight _path$ /net/floodlightcontroller/storage), Tak Kax COIEPKUT TOJBKO HHPOP-
MAIMIO O XOCTAaX, CETEBOM ODOPYIOBAHUN M CBA3M MEXKJIy HUMU. TeXHUIECKU CO3/IaHHAA
6a3a JaHHBIX sBJIsieTcs java-koJutekimedn tTuira HashMap, uro obecrieanBaeT B JrydriineMm
ciydae kKoucranTHoe (O(1)) Bpems moucka, BCTaBKU U yJlajleHUs 3jIeMeHTa. B Xyjimem
cJlydae 9TH OIEPAINU BBIIOIHSIOTCs 3a jmHeiinoe Bpems (O(n)). Tak xkak HashMap B
Java mcrmosib3yer MeToj| Ienodek i pas3penteHus KOJIIN3Ui, cpejHee BpeMsl MOWCKA
ssieMenta cocrapisier O(14), rie « — koaddurment sanonnenus Tabdauipt [20]. Crout
OTMETHUTh, 9TO cOOCTBeHHas 0Oas3a jJJaHHbIX KoHTpoJsuiepa Floodlight Tak:ke pacroaraer-
cs B OIEPATUBHON MaMsTH U MMeeT PsiJi BJIOKEHHBIX cTpyKTyp Tuna HashMap, dro B
XYJUIeM CIydae JaeT CJI0KHOCTh OCHOBHBIX omepanuit ©(n*), rie k — yposeHb BIIOMKeH-
noctu. Takum obpazom, Tpu HEOOIBINON WU ITPOCTON TOMOJOTUN BPEMEHA BBITIOTHEHUS
3AIIPOCOB OYJLYT COMOCTABUMBI, a MIPU CJIOYKHON Wi OOJIBIION TOIOJIOTUN OYEBUIHO ITPe-
UMYIIECTBO PAa3pabOTAHHOrO MTPOIPAMMHOTO DEIICHUS.

C ToYKu 3peHusi 3arpyrKEHHOCTU KAHAJIOB CBSA3U IIPU YCJIOBUHM, YTO KOH-
TPOJJIEPp U CeTeBble IIPUJIOXKEHUsI HAXOJSATCH Ha Pa3JIMYHBbIX (PU3UIECKUX
ycTpoiicTBax. B jjaHHOM cilydae TP UCIOIB30BAHUE Pa3pabOTAHHOTO MeXaHW3Ma, 3a-
I'Py3Ka BXOJAIIET0 KaHaja Ha KOHTPOJLIED OT CETEBBIX MPUJIOXKEHUI CTAHOBUTCA PAaBHA
HYJTIO.

SaKJII0UYeHue

KadecrBenubim oryinaneM pazpaboTaHHOM CUCTEMBI SIBJISIETCS BO3MOXKHOCTH CBOEBPEMEH-
HO¥ JT0CTABKY MH(MOPMAIIMH O ITPOU3OIIIE/IIINX B CETEBON TOIOJIOTMH U3MEHEHUAX OT KOH-
tpoJutepa Floodlight k cereBbim npuiokenusam. Kpome TOro, BEICBOOOXK TAIOTCS CETEBBIE
U [IPOIIECCOPHBIE PECYPCHI, KOTOPBIE, UCIIOIB30BAIUCH 1 00paboTku Bxosanux REST-

Hockos A. A., Huknruuckuit M. A., Anekcees U. B.
PazpaboTka aKTUBHOrO BHEIIHETO MOYJis ceTeBoii Tonosiorun s Kourpossepa [TKC Floodlight 859

3aI1pocoB. B KadecTBe HeJ0CTATKA CJIe/lyeT OTMETUTH Y3KYIO CIEIHAIU3AIUI0 Pazpado-
TAHHOI 0A3bI TAHHBIX.

Paspaboranubie aqropuTMbl U CO37aHHAs HA UX OCHOBE CHCTEMa OOMeHa COOOIeHM-
sIMH, ABJISIETCS YHUBEPCAJLHBIM CPEJICTBOM B3auMojieiicTBusg Koutposuiepa Floodlight u
ceTeBbIX NpuIozKeHnil. OHa MOXKeT OBITh MCIIOJIb30BaHA /I PA3pa00TKU MHBIX CETEBBIX
HPUJIOZKEHU, JIJIsi KOTOPBIX KPUTHIHBIM (PaKTOPOM SIBJISIETCS CBOEBPEMEHHOCTD OCTYII-
nenus nadopmarun ot kourposuiepa Floodlight.

[Io ommcanHbIM B cTaTbe ajropuT™MaM ObLIN pa3pabOTaHbl CETEBbIE IPHUIOYKEHUS
Topology Tracker uw DFEventBus nns koutrposiepa Floodlight, a Takke ObLn mosryde-
HBbI CBHJIETEILCTBA O IOCY/IapPCTBEHHON peructparuu nporpamm s 9BM Poccuiickoit
Qeneparun N2015618629 n Ne2015660514 cOOTBETCTBEHHO.

Modeauposanue u anaausd ungopmavyuornoz cucmem. T.22, Ne6 (2015)
860 Modeling and Analysis of Information Systems. Vol. 22, No6 (2015)

Cuucok simreparypbl / References

[1] V. Sokolov et al., “A network analytics system in the SDN”, SDN&NFV: The Next
Generation of Computational Infrastructure: 2014 International Science and Technology
Conference “Modern Networking Technologies (MoNeTec)” (Moscow, October 27-29, 2014),
160-162.

[2] N. McKeown et al., “OpenFlow: Enabling Innovation in Campus Networks”, ACM
SIGCOMM Computer Communication Review, 38:2 (2008), 69-74.

[3] Open Networking Foundation, https://www.opennetworking.org/.

[4] David Orenstein, “Application Programming Interface”, Computerworld, 2010,
http://www.computerworld.com /article /2593623 /app-development /application-
programming-interface.html.

[5] Sally Johnson, “Do SDN northbound APIs need standards?”’, SearchSDN (January,
2013), http://searchnetworking.techtarget.com/feature/Do-SDN-northbound-APIs-need-
standards.

[6] Dijkstra E. W., “A note on two problems in connexion with graphs”, Numer. Math, 1:1
(1959), 269-271.

[7] Ryan Wallner and Robert Cannistra, “An SDN Approach: Quality of Service using Big
Switch’s Floodlight Open-source Controller”, Proceedings of the Asia-Pacific Advanced
Network, 35 (2013), 14-19.

[8] C. Demetrescu, G.F. Italiano, “A new approach to dynamic all pairs shortest paths”’, 51:6
(2004), 968-992.

[9] Transmission Control Protocol. DARPA Internet Program. Protocol Specification,
RFC793,September, 1981, www.rfc-editor.org.

[10] M. Nikitinskiy, I. Alekseev., “A stateless transport protocol in software defined networks”,
SDN&NFV: The Next Generation of Computational Infrastructure: 2014 International
Science and Technology Conference “Modern Networking Technologies (MoNeTec)”
(Moscow, October 27-29, 2014), 108-113.

[11] M.A. Nikitinskiy and I.V. Alekseev, “Analyzing the Possibility of Applying Asymmetric
Transport Protocols in Terms of Software Defined Networks’, Automatic Control and
Computer Sciences, 49:2 (2015), 94-102.

[12] Floodlight SDN OpenFlow Controller, https://github.com/floodlight /floodlight.

[13] Pautasso C., Wilde E., Alarcon R., REST: Advanced Research Topics and Practical
Applications, Springer-Verlag New York, 2014, ISBN: 978-1-4614-9298-6.

[14] IEEE 802.1AB (LLDP) Specification,
http://standards.ieee.org/geticee802/download/802.1AB-2005.pdf.

[15] M. Rose and K. McCloghrie, Structure and Identification of Management Information for
TCP/IP-based Internets, RFC1155, May, 1990, www.rfc-editor.org.

[16] M. Rose and K. McCloghrie, Management Information Base for Network Management of
TCP/IP-based internets: MIB-1I, RFC1213, March, 1991, www.rfc-editor.org.

[17] J. Case et al., A Simple Network Management Protocol (SNMP), RFC1157, May, 1990,
www.rfc-editor.org.

[18] OpenFlow Switch Specification, Version 1.3.4, March, 2014, OF switch v.1.3.4.

[19] Alekseev I. and Nikitinskiy M., “EvenetBus Module for Distributed OpenFlow Controllers”,

Proceedings of the 17th Conference of Open Innovations Association FRUCT (Yaroslavl,
Russia, 20-24 April 2015), 3-8.

[20] Thomas H. Cormen et al., Introduction to Algorithms, 3rd., MIT Press, 20009,
ISBN: 0-262-03384-4.

https://www.opennetworking.org/
http://www.computerworld.com/article/2593623/app-development/application-programming-interface.html
http://www.computerworld.com/article/2593623/app-development/application-programming-interface.html
http://searchnetworking.techtarget.com/feature/Do-SDN-northbound-APIs-need-standards
http://searchnetworking.techtarget.com/feature/Do-SDN-northbound-APIs-need-standards
www.rfc-editor.org
https://github.com/floodlight/floodlight
http://standards.ieee.org/getieee802/download/802.1AB-2005.pdf
www.rfc-editor.org
www.rfc-editor.org
www.rfc-editor.org
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.4.pdf

Hockos A. A., Huknruuckuit M. A., Anekcees U. B.
PazpaboTka aKTUBHOrO BHEIIHETO MOYJis ceTeBoii Tonosiorun s Kourpossepa [TKC Floodlight 861

DOI: 10.18255/1818-1015-2015-6-852-861

Development of Active External Network Topology Module
for Floodlight SDN Controller

Noskov A. A., Nikitinskiy M. A., Alekseev 1. V.
Received December 15, 2015

Traditional network architecture is inflexible and complicated. This observation has led to a
paradigm shift towards software-defined networking (SDN), where network management level is sep-
arated from data forwarding level. This change was made possible by control plane transfer from the
switching equipment to software modules that run on a dedicated server, called the controller (or network
operating system), or network applications, that work with this controller. Methods of representation,
storage and communication interfaces with network topology elements are the most important aspects
of network operating systems available to SDN user because performance of some key controller modules
is heavily dependent on internal representation of the network topology. Notably, firewall and routing
modules are examples of such modules. This article describes the methods used for presentation and
storage of network topologies, as well as interface to the corresponding Floodlight modules. An alter-
native algorithm has been suggested and developed for message exchange conveying network topology
alterations between the controller and network applications. Proposed algorithm makes implementation
of module alerting based on subscription to the relevant events. API for interaction between controller
and network applications has been developed. This algorithm and API formed the base for Topology
Tracker module capable to inform network applications about the changes that had occurred in the
network topology and also stores compact representation of the network to speed up the interaction
process.

Keywords: software-defined network, Floodlight controller, external module, service, SDN, network
topology, Topology Tracker, DEventBus, Link Discovery

For citation: Noskov A. A., Nikitinskiy M. A., Alekseev 1. V., "Development of Active External Network Topology Module
for Floodlight SDN Controller", Modeling and Analysis of Information Systems, 22:6 (2015), 852-861.

On the authors:
Noskov Andrey Aleksandrovich, orcid.org/0000-0002-2268-4912, engineer,
A-Real Group, Energiya-Info Inc., Souznaya str., 144, Yaroslavl, 150008, Russia, e-mail: naa@a-real.ru

Nikitinskiy Mikhail Aleksandrovich, orcid.org/0000-0001-8830-8613, system analyst, programmer,
A-Real Group, Energiya-Info Inc., Souznaya str., 144, Yaroslavl, 150008, Russia, e-mail: man@a-real.ru

Alekseev Igor Vadimovich, orcid.org/0000-0001-8321-2399, Director of the Internet Center, Ph.D.,

P.G. Demidov Yaroslavl State University, Sovetskaya str., 14, Yaroslavl, 150000, Russia, e-mail: aiv@yars.free.net
Acknowledgments:

This work was performed in the Yaroslavl State University with support of the Ministry of Education and Science of the

Russian Federation in the framework of the Subsidy Agreement (ID RFMEFI57414X0036).

	End-to-end Security Model for SDN
	An Example of the Model Application
	Conclusion
	References
	Model based technologies
	Drawbacks of models usage
	Levels of behavioral models development
	Data structures conversion
	Overall scheme of conversion
	Templates
	Conclusion
	References
	Problem Statement
	Code Execution in a Controlled Environment
	Modeling register operations
	Modeling memory operations
	Modeling global state
	Handling external functions
	Checking code contracts

	Implementation details
	Evaluation
	Related work
	References
	Definite Iteration over Unchangeable DataStructures and Replacement Operation
	The Inference Rule and Its Implementation
	Example
	Conclusion
	References
	Course Background
	Course Objectives
	Topics and Lecture Plan
	One Puzzle for Many Formalisms
	Puzzle in Petri nets
	Puzzle in CCS
	Puzzle in CTL
	Parallel Programming Paradigm
	References
	Introduction
	Lax-Darboux scheme for the Nonlinear Schrödinger equation
	Lax structure of the Nonlinear Schrödinger Equation
	Darboux and Bäcklund transformations for NLS
	Bianchi commutativity of Darboux maps and integrable PEs
	Adjacent Lax structure

	Formal diagonalisation of the Lax-Darboux Scheme
	Formal diagonalisation of the Lax structure for NLS (L,Ak)
	Formal diagonalisation of the Darboux matrices M, Nh
	Diagonalisation of adjacent Lax structure
	Summary

	References
	Experience report
	Log and Tools
	Log traces ``normalization'' with an RDBMS approach
	Process mining specific tools

	Example 1: Architectural Violations
	Model in Disco
	Generalization in SQL
	Benefits

	Example 2: Antipattern ``Unnecessary repeating calls''
	Example 3: Antipattern ``Cross-cutting concern''

	Releated work
	Future work and conclusion
	Acknowledgment
	References
	Формальная постановка задачи
	Исходные данные
	Базовый терминологический словник
	Источники терминологических данных

	Выбор инструментария для анализа данных
	Подготовка источников
	Задачи унификации данных источников
	Соотношение терминов и определений в источниках

	Анализ терминов
	Методика поиска термина и определения
	Распознавание семантических отношений
	Метрика <<Количество общих слов в определении>>
	Метрика <<Косинусная мера сходства>>, или <<Косинус угла между векторами определений>>

	Описание алгоритма
	Сравнение метрик
	Заключение
	Список литературы / References
	Контроллер Floodlight
	Принципы функционирования внешнего модуля Topology Tracker
	Сравнение модулей Topology Tracker и Link Discovery
	Список литературы / References

