Preview

Modeling and Analysis of Information Systems

Advanced search

Orthogonal projection and minimal linear interpolation on a n-dimensional cube

Abstract

Let H be the orthogonal projection onto polynomials of n variables of degree < 1 and \\ \\ be the norm of an operator from C ([0,1]n) to C ([0,1]n). In this paper we show that C1On <= \\H\\ <= C2On, n G N. Here On denotes the minimal norm of a projection dealing with the linear interpolation on the cube [0,1]n. The proofs make use of certain properties of the Eulerian numbers and the central B-splines and also some previous results of the author.

About the Author

M. V. Nevskij
Ярославский государственный университет
Russian Federation


References

1. Невский, М. B. Геометрические методы в задаче о минимальном проекторе / М. В. Невский // Моделирование и анализ информационных систем. - 2006. - Т. 13, № 2. - C. 16 - 29.

2. Невский, М. B. Минимальные проекторы и максимальные симплексы / М. В. Невский // Моделиро¬вание и анализ информационных систем. - 2007. - Т. 14, № 1. - C. 3 - 10.

3. Butzer, P. L. Observations on the history of central B-splines / P. L. Butzer, M. Schmidt, E. L. Stark // Archive for History of Exact Sciences. - 1988. - V. 39, № 2. - P. 137 - 156.

4. Comtet, L. Permutations by number of rises; Eulerian numbers / L. Comtet // Advanced Combinatorics: The Art of Finite and Infinite Expansions. - Dordrecht, Netherlands: Reidel. - 1974. - P. 51, 240 - 246.

5. Ehrenborg, R. Mixed volumes and slices of the cube / R. Ehrenborg, M. Readdy, E. Steingrimsson // Journal of Combinatorial Theory. - Series A. - 1998. - V. 81. - P. 121 - 126.


Review

For citations:


Nevskij M.V. Orthogonal projection and minimal linear interpolation on a n-dimensional cube. Modeling and Analysis of Information Systems. 2007;14(3):8-28. (In Russ.)

Views: 461


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)