Preview

Modeling and Analysis of Information Systems

Advanced search

Some Residual Properties of Finite Rank Groups

https://doi.org/10.18255/1818-1015-2014-2-50-55

Abstract

The generalization of one classical Seksenbaev theorem for polycyclic groups is obtained. Seksenbaev proved that if G is a polycyclic group which is residually finite p-group for infinitely many primes p, it is nilpotent. Recall that a group G is said to be a residually finite p-group if for every nonidentity element a of G there exists a homomorphism of the group G onto a finite p-group such that the image of the element a differs from 1. One of the generalizations of the notation of a polycyclic group is the notation of a finite rank group. Recall that a group G is said to be a group of finite rank if there exists a positive integer r such that every finitely generated subgroup in G is generated by at most r elements. We prove the following generalization of Seksenbaev theorem: if G is a group of finite rank which is a residually finite p-group for infinitely many primes p, it is nilpotent. Moreover, we prove that if for every set π of almost all primes the group G of finite rank is a residually finite nilpotent π-group, it is nilpotent. For nilpotent groups of finite rank the necessary and sufficient condition to be a residually finite π-group is obtained, where π is a set of primes.

About the Author

D. N. Azarov
Ivanovo State University
Russian Federation
канд. физ.-мат. наук, доцент, старший научный сотрудник, Ermaka str., 39, Ivanovo, 153025, Russia


References

1. Мальцев А. И. О группах конечного ранга // Мат. сб. 1948. Т. 22(2). С. 351–352. [Malcev A. I. O gruppah konechnogo ranga // Mat. sb. 1948. T. 22(2). S. 351–352 (in Russian)].

2. Lubotzki. A., Mann A. Residually finite groups of finite rank // Math. Proc. Comb. Phil. Soc. 1989. V. 106(3). P. 385–388.

3. Сексенбаев К. К теории полициклических групп // Алгебра и логика. 1965. Т. 4. Вып. 3. С. 79–83. [Seksenbaev K. K teorii policiklicheskih grupp // Algebra i logika. 1965. T. 4. Vyp. 3. S. 79–83 (in Russian)].

4. Robinson D. Intersections of primary powers of a group // Mathematische Zeitschrift. 1972. V. 124(2). P. 119–132.

5. Мальцев А. И. О гомоморфизмах на конечные группы // Учен. зап. Иван. гос. пед. ин-та. 1958. Т. 18(5). С. 49–60. [Malcev A. I. O gomomorfizmah na konechnye gruppy // Uchen. zap. Ivan. gos. ped. in-ta. 1958. T. 18(5). S. 49–60 (in Russian)].


Review

For citations:


Azarov D.N. Some Residual Properties of Finite Rank Groups. Modeling and Analysis of Information Systems. 2014;21(2):50-55. (In Russ.) https://doi.org/10.18255/1818-1015-2014-2-50-55

Views: 948


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)