Preview

Modeling and Analysis of Information Systems

Advanced search

Reducibility of the Moduli Space of Stable Rank 2 Reflexive Sheaves with Chern Classes c1 = −1, c2 = 4, c3 = 2 on Projective Space P³

https://doi.org/10.18255/1818-1015-2014-2-90-96

Abstract

We prove the reducibility of the moduli space Mref(2; −1, 4, 2) of stable rank 2 re- flexive sheaves with Chern classes c₁ = −1, c₂ = 4, c₃ = 2 on projective space P³. This gives the first example of a reducible space in the series of moduli spaces of stable rank 2 reflexive sheaves with Chern classes c₁= −1, c₂ = 4, c₃ = 2m, m = 1, 2, 3, 4, 5, 6, 8. We find two components of the expected dimension 27 of this space and give their geometric description via the Serre construction.

About the Authors

A. S. Tikhomirov
Yaroslavl State Pedagogical University named after K.D. Ushinsky
Russian Federation

научный сотрудник ,

Respublikanskaya st., 108, Yaroslavl, 150000, Russia



M. A. Zavodchikov
Yaroslavl State Pedagogical University named after K.D. Ushinsky
Russian Federation

старший преподаватель кафедры геометрии и алгебры,

Respublikanskaya st., 108, Yaroslavl, 150000, Russia



References

1. Hartshorne R. Stable reflexive sheaves // Math. Ann. 1980. 254. P. 121–176.

2. Chang M.-C. Stable rank 2 reflexive sheaves on P³ with small c₂ and applications // Trans. Amer. Math. Soc. 1984. 284, No. 1. P. 57–89.

3. Hartshorne R. Stable vector bundles of rank 2 on P₃// Math. Ann. 1978. 238. P. 229–280.

4. Okonek C., Schneider M., Spindler H. Vector Bundles on Complex Projective Spaces. Progress in Math., Bd. 3, Birkhäuser, 1980.

5. Hartshorne R. Algebraic geometry. Springer. New York, 1977.


Review

For citations:


Tikhomirov A.S., Zavodchikov M.A. Reducibility of the Moduli Space of Stable Rank 2 Reflexive Sheaves with Chern Classes c1 = −1, c2 = 4, c3 = 2 on Projective Space P³. Modeling and Analysis of Information Systems. 2014;21(2):90-96. (In Russ.) https://doi.org/10.18255/1818-1015-2014-2-90-96

Views: 798


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)