Features of the Computational Implementation of the Algorithm for Estimating the Lyapunov Exponents of Systems with Delay
https://doi.org/10.18255/1818-1015-2019-4-572-582
Abstract
Keywords
About the Author
Vladimir E. GoryunovRussian Federation
postgraduate student
References
1. Kuptsov P. V., “Computation of Lyapunov Exponents for Spatially Extended Systems: Advantages and Limitations of Various Numerical Methods”, Izv. VUZ. Applied Nonlinear Dynamics, 18:5 (2010), 93–112, (in Russian).
2. Oseledets V. I., “A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems”, Trans. Moscow Math. Soc., 19 (1968), 197–231.
3. Bylov B. F., Vinograd R. E., Grobman D. M., Nemytskiy V. V., Teoriya pokazateley Lyapunova i ee prilozheniya k voprosam ustoychivosti, Nauka, 1966, (in Russian).
4. Balyakin A. A., Ryskin N. M., “Peculiarities of Calculation of the Lyapunov Exponents Set in Distributed Self-Oscillated Systems with Delayed Feedback”, Izv. VUZ. Applied nonlinear dynamics, 15:6 (2007), 3–21, (in Russian).
5. Balyakin A. A., Blokhina E. V., “Peculiarities of Calculation of the Lyapunov Exponents Set in Distributed Self-Oscillated Systems with Delayed Feedback”, Izv. VUZ. Applied Nonlinear Dynamics, 16:2 (2008), 87–110, (in Russian).
6. Koloskova A. D., Moskalenko O. I., Koronovskii A. A., “A Method for Calculating the Spectrum of Lyapunov Exponents for Delay Systems”, Technical Physics Letters, 44:5 (2018), 374–377.
7. Aleshin S. V., “The Numerical Evaluation of Attractors Exponents of Delay Differential Equations System”, Comp. Technologies in Sciences. Methods of Simul. on Supercomputers, 2014, 10–17, (in Russian).
8. Farmer J. D., “Chaotic Attractors of an Infinite-Dimensional Dynamical System”, Physica D: Nonlinear Phenomena, 4:3 (1982), 366–393.
9. Hairer E., Nørsett S. P., Wanner G., Solving Ordinary Differential Equations I: Nonstiff Problems, Springer-Verlag Berlin Heidelberg, 2008.
10. Cheney W., Kincaid D., Linear Algebra: Theory and Applications, Sudbury, Mass: Jones and Bartlett Publishers, 2009.
11. Nussbaumer H. J., Fast Fourier Transform and Convolution Algorithms, Springer-Verlag Berlin Heidelberg, 1981.
12. Glyzin D. S., Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “The Dynamic Renormalization Method for Finding the Maximum Lyapunov Exponent of a Chaotic Attractor”, Differ. Equ., 41:2 (2005), 284–289.
13. Aleshin S. V., Glyzin D. S., Glyzin S. D., Goryunov V. E., “Estimation of Lyapunov Exponents for Quasi-Stable Attractors of Dynamical Systems with Time Delay.”, Journal of Physics: Conference Series, 1163 (2019), 012045.
14. Kuptsov P. V., Kuznetsov S. P., “Violation of Hyperbolicity in a Diffusive Medium with Local Hyperbolic Attractor”, Phys. Rev. E., 80 (2009), 01620513.
15. Hutchinson G. E., “Circular Causal Systems in Ecology”, Ann. N.Y. Acad. Sci., 50 (1948), 221–246.
16. Hale J., Theory of Functional Differential Equations, Springer-Verlag New York, 1977.
17. Wright E. M., “A Non-Linear Difference-Differential Equation”, J. Reine Angew. Math., 194 (1955), 66–87.
18. Kakutani S., Markus L., “On the Nonlinear Difference-Differential Equation y'(t) = (A — By(t — t))y(t)”, Contributions to the Theory of Nonlinear Oscillations, 4 (1958), 1-18.
19. Kaschenko S. A., “K voprosu ob otsenke v prostranstve parametrov oblasti global’noy ustoychivosti uravneniya Khatchinsona”, Nelineynye kolebaniya v zadachakh ekologii. Yaroslavl: YarGU, 1985, 55–62, (in Russian).
20. Kaschenko S. A., “Asymptotics of Solutions of the Generalized Hutchinson’s Equation”, Modeling and Analysis of Information Systems, 19:3 (2012), 32–62, (in Russian).
Review
For citations:
Goryunov V.E. Features of the Computational Implementation of the Algorithm for Estimating the Lyapunov Exponents of Systems with Delay. Modeling and Analysis of Information Systems. 2019;26(4):572-582. (In Russ.) https://doi.org/10.18255/1818-1015-2019-4-572-582