On a Segment Partition for Entropy Estimation
https://doi.org/10.18255/1818-1015-2020-1-40-47
Abstract
\(
\begin{array}{l}
Q_1 =\{0,q^2,q,1\}.
\\
Q_{n+1}' = qQ_n \cap q^2Q_n, \ \
Q_{n+1}'' = q^2+qQ_n \cap qQ_n, \ \
Q_{n+1}'''= q^2+qQ_n \cap q+q^2Q_n,
\\
Q_{n+1} = Q_{n+1}'\cup Q_{n+1}'' \cup Q_{n+1}''',
\end{array}
\)
where \(q^2+q=1\).
The sequence \(d= 1,2,1,0,1,2,1,0,1,0,1,2,1,0,1,2,1,\dots\) defines as follows.
\(
\begin{array}{l}
d_1=1, \ d_2=2,\ d_4 =0;
d[2F_{2n}+1 : 2F_{2n+1}+1] = d[1:2F_{2n-1}+1];\\
\quad n = 0,1,2,\dots;\\
d[2F_{2n+1}+2 : 2F_{2n+1}+2F_{2n-2}] = d[2F_{2n-1}+2:2F_{2n}];\\
d[2F_{2n+1}+2F_{2n-2}+1 : 2F_{2n+1}+2F_{2n-1}+1] = d[1:2F_{2n-3}+1];\\
d[2F_{2n+1}+2F_{2n-1}+2 : 2F_{2n+2}] = d[2F_{2n-1}+2:2F_{2n}];\\
\quad n = 1,2,3,\dots;\\
\end{array}
\)
where \(F_n\) are Fibonacci numbers (\(F_{-1} = 0, F_0=F_1=1\)).
The main result of this paper.
\({\bf Theorem.}
\\
Q_n' = 1 - Q_n''' =\left \{ \sum_{i=1}^k q^{n+d_i}, \ k=0,1,\dots, m_n\right\},
\\
Q_n'' = 1 - Q_n'' = \left\{q^2 + \sum_{i=m_n}^k q^{n+d_i}, \ k=m_n-1,m_n,\dots, m_{n+1} \right\},
\\\)
where \(m_{2n} = 2F_{2n-2}, \ m_{2n+1} = 2F_{2n-1}+1\).
About the Author
Evgeniy Alexandrovich TimofeevRussian Federation
Sc.D., professor
References
1. E. Timofeev, “Existence of an unbiased consistent entropy estimator for the special Bernoulli measure”, Modeling and Analysis of Information Systems, vol. 26, no. 2, pp. 267–278, 2019.
Review
For citations:
Timofeev E.A. On a Segment Partition for Entropy Estimation. Modeling and Analysis of Information Systems. 2020;27(1):40-47. (In Russ.) https://doi.org/10.18255/1818-1015-2020-1-40-47