Preview

Modeling and Analysis of Information Systems

Advanced search

On a Segment Partition for Entropy Estimation

https://doi.org/10.18255/1818-1015-2020-1-40-47

Abstract

Let \(Q_n\) be a partition of the interval \([0,1]\) defines as
\(
\begin{array}{l}
Q_1 =\{0,q^2,q,1\}.
  \\
Q_{n+1}' = qQ_n \cap q^2Q_n, \ \
Q_{n+1}'' = q^2+qQ_n \cap qQ_n, \ \
Q_{n+1}'''= q^2+qQ_n \cap q+q^2Q_n,
  \\
Q_{n+1} = Q_{n+1}'\cup Q_{n+1}'' \cup Q_{n+1}''',
  \end{array}
\)
where \(q^2+q=1\).
The sequence  \(d= 1,2,1,0,1,2,1,0,1,0,1,2,1,0,1,2,1,\dots\) defines as follows.
\(
\begin{array}{l}
  d_1=1, \ d_2=2,\ d_4 =0;
 d[2F_{2n}+1 : 2F_{2n+1}+1] = d[1:2F_{2n-1}+1];\\
 \quad  n = 0,1,2,\dots;\\
d[2F_{2n+1}+2 : 2F_{2n+1}+2F_{2n-2}] = d[2F_{2n-1}+2:2F_{2n}];\\
d[2F_{2n+1}+2F_{2n-2}+1 : 2F_{2n+1}+2F_{2n-1}+1] = d[1:2F_{2n-3}+1];\\
d[2F_{2n+1}+2F_{2n-1}+2 : 2F_{2n+2}] = d[2F_{2n-1}+2:2F_{2n}];\\
 \quad n = 1,2,3,\dots;\\
  \end{array}
\)
where \(F_n\) are Fibonacci numbers (\(F_{-1} = 0, F_0=F_1=1\)).
The main result of this paper.
\({\bf Theorem.}
\\
Q_n' = 1 - Q_n''' =\left \{ \sum_{i=1}^k q^{n+d_i}, \ k=0,1,\dots, m_n\right\},
\\
Q_n'' = 1 - Q_n'' = \left\{q^2 + \sum_{i=m_n}^k  q^{n+d_i}, \ k=m_n-1,m_n,\dots, m_{n+1} \right\},
\\\)
where \(m_{2n} = 2F_{2n-2}, \ m_{2n+1} = 2F_{2n-1}+1\).

About the Author

Evgeniy Alexandrovich Timofeev
P. G. Demidov Yaroslavl State University
Russian Federation
Sc.D., professor


References

1. E. Timofeev, “Existence of an unbiased consistent entropy estimator for the special Bernoulli measure”, Modeling and Analysis of Information Systems, vol. 26, no. 2, pp. 267–278, 2019.


Review

For citations:


Timofeev E.A. On a Segment Partition for Entropy Estimation. Modeling and Analysis of Information Systems. 2020;27(1):40-47. (In Russ.) https://doi.org/10.18255/1818-1015-2020-1-40-47

Views: 708


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)