Современные методы детектирования и классификации токсичных комментариев с использованием нейронных сетей
https://doi.org/10.18255/1818-1015-2020-1-48-61
Аннотация
Ключевые слова
MSC2020: 68T50
Об авторе
Сeргей Владимирович МоржовРоссия
аспирант
Список литературы
1. Toxic Comment Classification Challenge. [Online]. Available: https://www.kaggle.com/c/jigsaw-toxiccomment-classification-challenge/overview.
2. S. V. Georgakopoulos, S. K. Tasoulis, A. G. Vrahatis, and V. P. Plagianakos, “Convolutional neural networks for toxic comment classification”, in Proceedings of the 10th Hellenic Conference on Artificial Intelligence, 2018, pp. 1–6. arXiv: https://arxiv.org/pdf/1802.09957.pdf.
3. M. Kohli, E. Kuehler, and J. Palowitch, Paying attention to toxic comments online. [Online]. Available: https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/reports/6856482.pdf.
4. T. Chu, J. K., and M. Wang, Comment Abuse Classification with Deep Learning. [Online]. Available: https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1174/reports/2762092.pdf.
5. K. Khieu and N. N., Detecting and Classifying Toxic Comments. [Online]. Available: https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/reports/6837517.pdf.
6. S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.
7. K. Cho, B. Van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, ¨“Learning phrase representations using RNN encoder-decoder for statistical machine translation”, arXiv preprint arXiv:1406.1078, 2014.
8. J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for word representation”, in Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), 2014, pp. 1532–1543.
9. A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for efficient text classification”, Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, vol. 2, pp. 427–431, 2017.
10. J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent neural networks on sequence modeling”, arXiv preprint arXiv:1412.3555, 2014.
11. D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to align and translate”, arXiv preprint arXiv:1409.0473, 2014.
12. Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, “Hierarchical attention networks for document classification”, in Proceedings of NAACL-HLT, 2016, pp. 1480–1489. [Online]. Available: hps://www.cs.cmu.edu/%5C%20./hovy/papers/16HLT-hierarchical-attention-networks.pdf.
13. M. Hughes, I. Li, S. Kotoulas, and T. Suzumura, “Medical text classification using convolutional neural networks”, Stud Health Technol Inform, vol. 235, pp. 246–50, 2017.
14. K. Kowsari, K. Jafari Meimandi, M. Heidarysafa, S. Mendu, L. Barnes, and D. Brown, “Text classification algorithms: A survey”, Information, vol. 10, no. 4, p. 150, 2019.
Рецензия
Для цитирования:
Моржов С.В. Современные методы детектирования и классификации токсичных комментариев с использованием нейронных сетей. Моделирование и анализ информационных систем. 2020;27(1):48-61. https://doi.org/10.18255/1818-1015-2020-1-48-61
For citation:
Morzhov S.V. Modern Approaches to Detect and Classify Comment Toxicity Using Neural Networks. Modeling and Analysis of Information Systems. 2020;27(1):48-61. (In Russ.) https://doi.org/10.18255/1818-1015-2020-1-48-61