Preview

Modeling and Analysis of Information Systems

Advanced search

“VTMine for Visio”: Graphical Tool for Modeling in Process Mining

https://doi.org/10.18255/1818-1015-2020-2-194-217

Abstract

Process-Aware Information Systems (PAIS) is a special class of the IS intended for the support the tasks of initialization, end-to-end management and completion of business processes. During the operation such systems accumulate a large number of data that are recorded in the form of the event logs. Event logs are a valuable source of knowledge about the actual behavior of a system. For example, there can be found information about the discrepancy between the real and the prescribed behavior of the system; to identify bottlenecks and performance issues; to detect anti-patterns of building a business system. These problems are studied by the discipline called “Process Mining”.

The practical application of the process mining methods and practices is carried out using the specialized software for data analysts. The subject area of the process analysis involves the work of an analyst with a large number of graphical models. Such work will be more efficient with a convenient graphical modeling tool. The paper discusses the principles of building a graphical tool “VTMine for Visio” for the process modeling, based on the widespread application for business intelligence Microsoft Visio. There are presented features of the architecture design of the software extension for application in the process mining domain and integration with the existing libraries and tools for working with data. The application of the developed tool for solving various types of tasks for modeling and analysis of processes is demonstrated on a set of experimental schemes.

About the Author

Sergey A. Shershakov
National Research University Higher School of Economics
Russian Federation

researcher

20 Myasnitskaya st., Moscow 101000



References

1. W. M. P. Van Der Aalst, Process Mining - Discovery, Conformance and Enhancement of Business Processes. Springer, 2011, pp. I–XVI, 1–352, isbn: 978-3-642-19344-6.

2. M. A., K. A., S. S., and W. M. P. Van Der Aalst, “Using process mining for the analysis of an e-trade system: A case study”, Business Informatics, vol. 29, no. 3, pp. 15–27, 2014.

3. V. Rubin, L. I., and W. M. P. Van Der Aalst, “Agile Development with Software Process Mining”, in In proceedings: ICSSP 2014, Nanjing, Jiangsu, China, ACM, 2014, pp. 70–74.

4. V. Rubin, A. A. Mitsyuk, I. A. Lomazova, and W. M. P. Van Der Aalst, “Process Mining Can Be Applied to Software Too!”, in Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, NY: ACM, 2014.

5. R. S. Mans, M. H. Schonenberg, M. Song, W. M. P. Van Der Aalst, and P. J. M. Bakker, “Application of Process Mining in Healthcare – A Case Study in a Dutch Hospital”, in Biomedical Engineering Systems and Technologies, A. Fred, J. Filipe, and H. Gamboa, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 425–438, isbn: 978-3-540-92219-3.

6. R. S. Mans, W. M. P. Van Der Aalst, R. J. B. Vanwersch, and A. J. Moleman, “Process Mining in Healthcare: Data Challenges When Answering Frequently Posed Qestions”, in ProHealth/KR4HC, R. Lenz, S. Miksch, M. Peleg, M. Reichert, D. Ria˜no, and A. ten Teije, Eds., ser. Lecture Notes in Computer Science, vol. 7738, Springer, 2012, pp. 140–153, isbn: 978-3-642-36437-2. [Online]. Available: htp://dx.doi.org/10.1007/978-3-642-36438-9_10.

7. Visio Website. [Online]. Available: htps://products.ofce.com/en-us/visio/fowchart-sofware.

8. M. Kebede and M. Dumas, “Kebede, M. and Dumas, M”, University of Tartu, 2015.

9. U. Celik and E. Akc¸etin, “Process mining tools comparison”, Online Academic Journal of Information Technology, vol. 9, pp. 97–104, 2018.

10. H. Verbeek, J. Buijs, B. Van Dongen, and W. Van Der Aalst, “ProM 6: The Process Mining Toolkit”, in Proc. of BPM Demonstration Track, ser. CEUR Workshop Proceedings, vol. 615, 2010, pp. 34–39.

11. R. Mans, W. M. P. Van Der Aalst, and H. Verbeek, “Supporting Process Mining Workflows with RapidProM”, in Proceedings of the BPM Demo Sessions 2014, vol. 56, 2014.

12. S. Shershakov, “DPMine/P: modeling and process mining language and ProM plugins”, in Proceedings of the 9th Central & Eastern European Software Engineering Conference in Russia, ACM New York, NY, USA, 2013, isbn: 978-1-4503-2641-4. doi: 10.1145/2556610.2556622. [Online]. Available: htp://dl.acm.org/citation.cfm?id=2556622&CFID=415147702&CFTOKEN=35395117.

13. Fluxicon. [Online]. Available: htp://fuxicon.com/disco.

14. Celonis. [Online]. Available: www.celonis.com.

15. Minit. [Online]. Available: www.minit.io.

16. J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev, “Petrify: a tool for manipulating concurrent specifications and synthesis of asynchronous controllers”, IEICE Transactions on Information and Systems, vol. E80-D, no. 3, pp. 315–325, 1997.

17. J. Cortadella, M. Kishinevsky, A. Kondratyev, and L. Lavagno, “Introduction to asynchronous circuit design: specification and synthesis (tutorial)”, in Proceedings of 6th. Int. Symp. on Advanced Research in Asynchronous Circuits and Systems, Eilat (Israel), 2000.

18. M. Solé and J. Carmona, “Rbminer: A Tool for Discovering Petri Nets from Transition Systems”, in Automated Technology for Verification and Analysis, Springer Berlin Heidelberg, 2010, pp. 396–402, isbn: 978-3-642-15643-4.

19. J. Carmona, J. Cortadella, and M. Kishinevsky, “Genet: A Tool for the Synthesis and Mining of Petri Nets”, in 2009 Ninth International Conference on Application of Concurrency to System Design, 2009, pp. 181–185.

20. J. Carmona Vargas and M. Solé, “PMLAB: An Scripting Environment for Process Mining”, in Proceedings of the BPM Demo Sessions’14, 2014, pp. 16–16.

21. A. Berti, S. J. Van Zelst, and W. M. P. Van Der Aalst, “Process Mining for Python (PM4Py): Bridging the Gap Between Process-and Data Science”, Tech. Rep., 2019.

22. G. Janssenswillen and B. Depaire, “bupaR: Business Process Analysis in R”, in BPM, 2017.

23. E. W. Dijkstra, “Cooperating Sequential Processes”, in TR EWD-123. 1965.

24. W. Reisig, Understanding Petri Nets, Modeling Techniques, Analysis Methods, Case Studies. Springer, 2010. doi: 10.1007/978-3-642-33278-4.

25. Visio documentation. [Online]. Available: htps://docs.microsof.com/en-us/ofce/dev/add-ins/visio/.

26. S. A. Shershakov, “DPMine graphical language for automation of experiments in process mining”, Automatic Control and Computer Sciences, vol. 50, no. 7, pp. 477–485, 2016, issn: 1558-108X. doi: 10.3103/S014641161607018X. [Online]. Available: htp://dx.doi.org/10.3103/S014641161607018X.

27. P. Kim, O. Bulanov, and S. Shershakov, “Component-based VTMine/C Framework: Not Only Modelling”, in Proceedings of the 8th Spring/Summer Young Researchers’ Colloquium on Software Engineering, SYRCoSE, ISP RAS, 2014, pp. 102–107. [Online]. Available: htp://syrcose.ispras.ru/2014/fles/SYRCoSE2014_Proceedings.pdf.

28. DPModel Official Website. [Online]. Available: htps://prj.xiart.ru/projects/dpmodel.

29. S. Shershakov, “Multi-Perspective Process Mining with Embedding Cofigurations into DB-based Event Logs”, in Communications in Computer and Information Science, In Press, Springer, 2020.

30. LDOPA Official Website. [Online]. Available: htps://prj.xiart.ru/projects/ldopa.

31. S. Shershakov, “Enhancing Efficiency of Process Mining Algorithms with a Tailored Library: Design Principles and Performance Assessment”, National Research University Higher School of Economics, Tech. Rep., 2018. doi: 10.13140/RG.2.2.18320.46084. [Online]. Available: htps://www.researchgate.net/publication/332869308_Enhancing_Efciency_of_Process_Mining_Algorithms_with_a_Tailored_Library_Design_Principles_and_Performance_Assessment_Technical_Report.

32. S. A. Shershakov, A. A. Kalenkova, and I. A. Lomazova, “Transition Systems Reduction: Balancing Between Precision and Simplicity”, in Transactions on Petri Nets and Other Models of Concurrency XII. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017, pp. 119–139, isbn: 978-3-662-55862-1. doi: 10.1007/978-3-662-55862-1_6. [Online]. Available: htps://doi.org/10.1007/978-3-662-55862-1_6.

33. J.Cortadella,M.Kishinevsky,L.Lavagno,andA.Yakovlev,“DerivingPetriNetsfromFiniteTransition Systems”, IEEE Trans. Comput., vol. 47, no. 8, pp. 859–882, 1998, issn: 0018-9340. doi: 10.1109/12.707587. [Online]. Available: htp://dx.doi.org/10.1109/12.707587.

34. W. M. P. Van Der Aalst, V. Rubin, H. M. W. Verbeek, B. F. Dongen, E. Kindler, and C. W. Günther, “Process mining: a two-step approach to balance between underfitting and overfitting”, Software & Systems Modeling, vol. 9, no. 1, pp. 87–111, 2010, issn: 1619-1374. [Online]. Available: htp://dx.doi.org/10.1007/s10270-008-0106-z.


Review

For citations:


Shershakov S.A. “VTMine for Visio”: Graphical Tool for Modeling in Process Mining. Modeling and Analysis of Information Systems. 2020;27(2):194-217. (In Russ.) https://doi.org/10.18255/1818-1015-2020-2-194-217

Views: 1000


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)