Preview

Modeling and Analysis of Information Systems

Advanced search

InnoChain: a Distributed Ledger for Industry with Formal Verification on all Implementation Levels

https://doi.org/10.18255/1818-1015-2020-4-454-471

Abstract

The extent of formal verification methods applied to industrial projects has always been limited. The proliferation of distributed ledger systems (DLS), also known as blockchain, is rapidly changing the situation. Since the main area of DLSs' application is the automation of financial transactions, the properties of predictability and reliability are critical for implementing such systems. The actual behavior of the DLS is determined by the chosen consensus protocol, which properties require strict specification and formal verification. Formal specification and verification of the consensus protocol is necessary but not sufficient. It is required to ensure that the software implementation of the DLS nodes complies with this protocol. The verified software implementation of the protocol must run on a fairly reliable operating system. The so-called “smart contracts”, which are an important part of the applied implementations of specific business processes based on DLSs, must be verifiable as well. In this paper, we describe an ongoing industrial project that will result in a DLS verified at least at the four technological levels described above. We then share our experience with the formal specification and verification of HotStuff, a leader-based fault-tolerant protocol that ensures reaching distributed consensus in the presence of Byzantine processes.

About the Authors

Vladimir Aleksandrovich Kukharenko
Moscow Institute of Physics and Technology
Russian Federation

Bachelor student



Kirill Viktorovich Ziborov
Lomonosov Moscow State University
Russian Federation

Bachelor student



Rafael Faritovich Sadykov
Lomonosov Moscow State University; Innopolis University
Russian Federation

Ph.D. student



Alexandr Vladimirovich Naumchev
Innopolis University
Russian Federation

Assistant professor, Ph.D



Ruslan Maratovich Rezin
Innopolis University
Russian Federation

MSc.



Leonid Albertovich Merkin-Janson
Innopolis University
Russian Federation

Professor at Innopolis University, Doctor of Mathematics, Delft University of Technology, Dr.



References

1. M. Fazlali, S. M. Eftekhar, M. M. Dehshibi, H. T. Malazi, and M. Nosrati, «Raft Consensus Algorithm: an Effective Substitute for Paxos in High Throughput P2P-based Systems», CoRR, vol. abs/1911.01231, 2019.

2. S. Nakamoto, «Bitcoin: A peer-to-peer electronic cash system», Manubot, Tech. Rep., 2019.

3. G. Wood et al., «Ethereum: A secure decentralised generalised transaction ledger», Ethereum project yellow paper, vol. 151, no. 2014, pp. 1-32, 2014.

4. E. Elrom, «EOS. IO Wallets and Smart Contracts», in The Blockchain Developer, Springer, 2019, pp. 213-256.

5. F. Muratov, A. Lebedev, N. Iushkevich, B. Nasrulin, and M. Takemiya, «YAC: BFT Consensus Algorithm for Blockchain», CoRR, vol. abs/1809.00554, 2018.

6. E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, et al., «Hyperledger fabric: a distributed operating system for permissioned blockchains», in EuroSys, ACM, 2018, 30:1-30:15.

7. T. Gauthier, C. Kaliszyk, and J. Urban, «TacticToe: Learning to Reason with HOL4 Tactics», in LPAR, ser. EPiC Series in Computing, vol. 46, EasyChair, 2017, pp. 125-143.

8. G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood, «seL4: formal verification of an OS kernel», in SOSP, ACM, 2009, pp. 207-220.

9. L. Lamport, R. Shostak, and M. Pease, «The Byzantine Generals Problem», ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382-401, 1982.

10. M. Castro and B. Liskov, «Practical Byzantine Fault Tolerance», in OSDI, USENIX Association, 1999, pp. 173-186.

11. A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, «The honey badger of BFT protocols», in Proceedings of the 2016 ACMSIGSAC Conference on Computerand Communications Security, 2016, pp. 31-42.

12. J. Baek and Y. Zheng, «Simple and efficient threshold cryptosystem from the Gap Diffie-Hellman group», in GLOBECOM, IEEE, 2003, pp. 1491-1495.

13. M. Ben-Or, B. Kelmer, and T. Rabin, «Asynchronous secure computations with optimal resilience», in Proceedings of the thirteenth annual ACM symposium on Principles of distributed computing, ACM, 1994, pp. 183-192.

14. A. Mostefaoui, M. Hamouna, and M. Raynal, «Signature-Free Asynchronous Byzantine Consensus with t < n/3 and O(n2) Messages», in Proceedings of the 2014 ACM symposium on Principles of distributed computing, ACM, 2014, pp. 2-9.

15. G. Golan-Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas, M. K. Reiter, D.-A. Seredinschi, O. Tamir, and A. Tomescu, «SBFT: a Scalable Decentralized Trust Infrastructure for Blockchains», CoRR, vol. abs/1804.01626, 2018.

16. D. Boneh, B. Lynn, and H. Shacham, «Short signatures from the Weil pairing», Journal of cryptology, vol. 17, no. 4, pp. 297-319, 2004.

17. E. Buchman, J. Kwon, and Z. Milosevic, «The latest gossip on BFT consensus», CoRR, vol. abs/1807.04938, 2018.

18. M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham, «Hotstuff: Bft consensus with linearity and responsiveness», in Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, 2019, pp. 347-356.

19. Y. G. Karpov, MODEL CHECKING. Verification of parallel and distributed software systems, 2010.

20. L. C. Paulson, Isabelle: A generic theorem prover. Springer Science & Business Media, 1994, vol. 828.

21. B. Barras, S. Boutin, C. Cornes, J. Courant, Y. Coscoy, D. Delahaye, D. de Rauglaudre, J.-C. Filliatre, E. Gimenez, H. Herbelin, et al., «The Coq proof assistant reference manual», INRIA, version, vol. 6, no. 11, 1999.

22. V. Rahli, I. Vukotic, M. Volp, and P. Esteves-Verissimo, «Velisarios: Byzantine Fault-Tolerant Protocols Powered by Coq», in ESOP, ser. Lecture Notes in Computer Science, vol. 10801, Springer, 2018, pp. 619-650.

23. I. Konnov, Model Checking Tendermint, 2020. [Online]. Available: https://github.com/informalsystems/verification/tree/igor/fork/spec/fork-cases.

24. V. Kukharenko, K. Ziborov, and R. Rezin, HotStuff TLA+ Specifications. [Online]. Available: https://github.com/RZRussel/hotstuff-model-checking.

25. K. Ziborov, HotStuff TLA+ Specifications, 2020. [Online]. Available: https://github.com/RZRussel/hotstuff-model-checking/blob/master/HotStuffAlpha.tla.

26. V. Kukharenko, HotStuff TLA+ Specifications, 2020. [Online]. Available: https://github.com/RZRussel/hotstuff-model-checking/blob/master/ApalacheHotStuffCutted.tla.


Review

For citations:


Kukharenko V.A., Ziborov K.V., Sadykov R.F., Naumchev A.V., Rezin R.M., Merkin-Janson L.A. InnoChain: a Distributed Ledger for Industry with Formal Verification on all Implementation Levels. Modeling and Analysis of Information Systems. 2020;27(4):454-471. (In Russ.) https://doi.org/10.18255/1818-1015-2020-4-454-471

Views: 2423


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)