Preview

Modeling and Analysis of Information Systems

Advanced search

Continuous Flattening of a Regular Tetrahedron with Explicit Mappings

https://doi.org/10.18255/1818-1015-2012-6-127-136

Abstract

We proved in [10] that each Platonic polyhedron P can be folded into a flat multilayered face of P by a continuous folding process of polyhedra. In this paper, we give explicit formulas of continuous functions for such a continuous flattening process in R³ for a regular tetrahedron.

The article is published in the author’s wording.

About the Authors

Jin-ichi Itoh
Kumamoto University
Japan
профессор факультета образования


Chie Nara
Tokai University
Japan
профессор Образовательного центра свободных искусств


References

1. A. D. Alexandrov, “ Convex Polyhedra,” Springer-Verlag, Berlin, 2005. Monographs in Mathematics. Translation of the 1950 Russian edition by N. S. Dairbekov, S. S. Kutateladze, and A. B. Sossinsky.

2. T. Banchoff, “Nonrigidity theorem for tight polyhedra,” Arch. Math. 21, 416–423, 1970.

3. D. Bleecker, “Volume increasing isometric deformations of convex polyhedra,” J. Differential Geom. 43, 505–526, 1996.

4. A. Cauchy, “Sur les polygons et les polyedres,” J. Ecole Polytech. 9, 87, 1813.

5. R. Connelly, “A counterexample to the rigidity conjecture for polyhedra,” Inst. Hautes Etudes Sci. Publ. Math. 47, 333–338, 1978.

6. R. Connelly, “The rigidity of polyhedral surface,” Math. Mag. 52, 275–283, 1979.

7. E. D. Demaine, M. D. Demaine and A. Lubiw, “Flattening polyhedra,” Unpublished manuscript, 2001.

8. E. D. Demaine and J. O’Rourke, “ Geometric folding algorithms, Lincages, Origami, Polyhedra,” Cambridge University Press, 2007.

9. K. Hirata, Private communication, 2011.

10. J. Itoh and C. Nara, “Continuous flattening of Platonic polyhedra,” Proceedings of the international conference “Computational geometry, graphs and applications,” LNCS 7033, 108–121, Springer, 2011.

11. J. Itoh, C. Nara and C. Vîlcu, “Continuous flattening of convex polyhedra,” XIV Spanish meeting on computational geometry, EGC 2011 “Computational Geometry,” LNCS 7579, 85–97, Springer, 2012.

12. A. Milka, “Linear bendings of regular convex polyhedra,” Matematicheskaya Fizika, Analiz, Geometriya 1, 116–130, 1994.

13. I. Pak, “Inflating the cube without stretching,” Amer. Math. Monthly 115, 443–445, 2008.

14. I. Sabitov, “The volume of polyhedron as a function of its metric,” Fundam. Prikl. Mat. 2(4), 1235–1246, 1996.

15. I. Sabitov, “The volume as a metric invariant of polyhedra,” Discrete Comput. Geom. 20, 405–425, 1998.

16. I. Sabitov, “On some recent results in the metric theory of polyhedra,” Rend. Circ. Mat. Palermo (2) Suppl. No. 65, part II, 167–177, 2000.


Review

For citations:


Itoh J., Nara Ch. Continuous Flattening of a Regular Tetrahedron with Explicit Mappings. Modeling and Analysis of Information Systems. 2012;19(6):127-136. https://doi.org/10.18255/1818-1015-2012-6-127-136

Views: 1556


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)