Continuous Flattening of a Regular Tetrahedron with Explicit Mappings
https://doi.org/10.18255/1818-1015-2012-6-127-136
Abstract
We proved in [10] that each Platonic polyhedron P can be folded into a flat multilayered face of P by a continuous folding process of polyhedra. In this paper, we give explicit formulas of continuous functions for such a continuous flattening process in R³ for a regular tetrahedron.
The article is published in the author’s wording.
About the Authors
Jin-ichi ItohJapan
профессор факультета образования
Chie Nara
Japan
профессор Образовательного центра свободных искусств
References
1. A. D. Alexandrov, “ Convex Polyhedra,” Springer-Verlag, Berlin, 2005. Monographs in Mathematics. Translation of the 1950 Russian edition by N. S. Dairbekov, S. S. Kutateladze, and A. B. Sossinsky.
2. T. Banchoff, “Nonrigidity theorem for tight polyhedra,” Arch. Math. 21, 416–423, 1970.
3. D. Bleecker, “Volume increasing isometric deformations of convex polyhedra,” J. Differential Geom. 43, 505–526, 1996.
4. A. Cauchy, “Sur les polygons et les polyedres,” J. Ecole Polytech. 9, 87, 1813.
5. R. Connelly, “A counterexample to the rigidity conjecture for polyhedra,” Inst. Hautes Etudes Sci. Publ. Math. 47, 333–338, 1978.
6. R. Connelly, “The rigidity of polyhedral surface,” Math. Mag. 52, 275–283, 1979.
7. E. D. Demaine, M. D. Demaine and A. Lubiw, “Flattening polyhedra,” Unpublished manuscript, 2001.
8. E. D. Demaine and J. O’Rourke, “ Geometric folding algorithms, Lincages, Origami, Polyhedra,” Cambridge University Press, 2007.
9. K. Hirata, Private communication, 2011.
10. J. Itoh and C. Nara, “Continuous flattening of Platonic polyhedra,” Proceedings of the international conference “Computational geometry, graphs and applications,” LNCS 7033, 108–121, Springer, 2011.
11. J. Itoh, C. Nara and C. Vîlcu, “Continuous flattening of convex polyhedra,” XIV Spanish meeting on computational geometry, EGC 2011 “Computational Geometry,” LNCS 7579, 85–97, Springer, 2012.
12. A. Milka, “Linear bendings of regular convex polyhedra,” Matematicheskaya Fizika, Analiz, Geometriya 1, 116–130, 1994.
13. I. Pak, “Inflating the cube without stretching,” Amer. Math. Monthly 115, 443–445, 2008.
14. I. Sabitov, “The volume of polyhedron as a function of its metric,” Fundam. Prikl. Mat. 2(4), 1235–1246, 1996.
15. I. Sabitov, “The volume as a metric invariant of polyhedra,” Discrete Comput. Geom. 20, 405–425, 1998.
16. I. Sabitov, “On some recent results in the metric theory of polyhedra,” Rend. Circ. Mat. Palermo (2) Suppl. No. 65, part II, 167–177, 2000.
Review
For citations:
Itoh J., Nara Ch. Continuous Flattening of a Regular Tetrahedron with Explicit Mappings. Modeling and Analysis of Information Systems. 2012;19(6):127-136. https://doi.org/10.18255/1818-1015-2012-6-127-136