Preview

Modeling and Analysis of Information Systems

Advanced search

Online Testing of Dynamic Reconfigurations w.r.t. Adaptation Policies

https://doi.org/10.18255/1818-1015-2021-1-52-73

Abstract

Self-adaptation of complex systems is a very active domain of research with numerous application domains. Component systems are designed as sets of components that may reconfigure themselves according to adaptation policies, which describe needs for reconfiguration. In this context, an adaptation policy is designed as a set of rules that indicate, for a given set of configurations, which reconfiguration operations can be triggered, with fuzzy values representing their utility. The adaptation policy has to be faithfully implemented by the system, especially w.r.t. the utility occurring in the rules, which are generally specified for optimizing some extra-functional properties (e.g. minimizing resource consumption). In order to validate adaptive systems’ behaviour, this paper presents a model-based testing approach, which aims to generate large test suites in order to measure the occurrences of reconfigurations and compare them to their utility values specified in the adaptation rules. This process is based on a usage model of the system used to stimulate the system and provoke reconfigurations. As the system may reconfigure dynamically, this online test generator observes the system responses and evolution in order to decide the next appropriate test step to perform. As a result, the relative frequencies of the reconfigurations can be measured in order to determine whether the adaptation policy is faithfully implemented. To illustrate the approach the paper reports on experiments on the case study of platoons of autonomous vehicles.

About the Authors

Frederic Dadeau
University Bourgogne Franche-Comte, CNRS, FEMTO-ST Institute
France

Associate professor, Ph.D in Computer Science

15B avenue des Montboucons, 25030 Besanc¸on, Cedex



Jean-Philippe Gros
University Bourgogne Franche-Comte, CNRS, FEMTO-ST Institute
France

Ph.D. candidate

15B avenue des Montboucons, 25030 Besanc¸on, Cedex



Olga Kouchnarenko
University Bourgogne Franche-Comte, CNRS, FEMTO-ST Institute
France

Ph.D. in Computer Science

15B avenue des Montboucons, 25030 Besanc¸on, Cedex



References

1. J. Dormoy, O. Kouchnarenko, and A. Lanoix, “Using Temporal Logic for Dynamic Reconfigurations of Components”, in FACS, ser. LNCS, L. Barbosa and M. Lumpe, Eds., vol. 6921, Springer Berlin Heidelberg, 2012, pp. 200–217, isbn: 978-3-642-27268-4. doi: 10.1007/978-3-642-27269-1_12.

2. O. Kouchnarenko and J.-F. Weber, “Decentralised Evaluation of Temporal Patterns over Component-Based Systems at Runtime”, in Formal Aspects of Component Software, I. Lanese and E. Madelaine, Eds., ser. LNCS, vol. 8997, Bertinoro, Italy: Springer, Sep. 2015, pp. 108–126.

3. F. Dadeau, J.-P. Gros, and O. Kouchnarenko, “Testing Adaptation Policies for Software Components”, Software Quality Journal, no. 28, pp. 1347–1378, 2020. doi: 10.1007/s11219-019-09487-w.

4. O. Kouchnarenko and J.-F. Weber, “Adapting Component-Based Systems at Runtime via Policies with Temporal Patterns”, in FACS, 10th Int. Symp. on Formal Aspects of Component Software, ser. LNCS, J. L. Fiadeiro, Z. Liu, and J. Xue, Eds., vol. 8348, Springer, 2014, pp. 234–253, isbn: 978-3-319-07601-0. doi: 10.1007/978-3-319-07602-7_15.

5. M. Kim, I. Lee, U. Sammapun, J. Shin, and O. Sokolsky, “Monitoring, checking, and steering of real-time systems”, ENTCS, vol. 70, no. 4, pp. 95–111, 2002. doi: 10.1016/S1571-0661(04)80579-6.

6. R. A. Kowalski and M. J. Sergot, “A Logic-based Calculus of Events”, New Gener. Comput., vol. 4, no. 1, pp. 67–95, 1986. doi: 10.1007/BF03037383. [Online]. Available: https://doi.org/10.1007/BF03037383.

7. R. Miller and M. Shanahan, “‘e Event Calculus in Classical Logic - Alternative Axiomatisations”, Electron. Trans. Artif. Intell., vol. 3, no. A, pp. 77–105, 1999. [Online]. Available: http://www.ep.liu.se/ej/etai/1999/016/.

8. F. Chauvel, O. Barais, I. Borne, and J.-M. Jez´equel, “Composition of Qualitative Adaptation Policies”, ´ in 23rd IEEE/ACM Int. Conf. on Automated So‡ware Engineering (ASE 2008), IEEE Computer Society, 2008, pp. 455–458, isbn: 978-1-4244-2187-9.

9. A. Bauer and Y. Falcone, “Decentralised LTL monitoring”, in FM 2012: Formal Methods, ser. LNCS, vol. 7436, Springer, 2012, pp. 85–100.

10. K. Larsen and B. Thomsen, “A Modal Process Logic”, in LICS’88, 1988, IEEE Computer Society, 1988, pp. 203–210. doi: 10.1109/LICS.1988.5119.

11. R. Milner, Communication and concurrency, ser. PHI Series in computer science. Prentice Hall, 1989, isbn: 978-0-13-115007-2.

12. B. Jonsson and K. Larsen, “Specification and Refinement of Probabilistic Processes”, in Proc. LICS’91, IEEE Computer Society, 1991, pp. 266–277, isbn: 0-8186-2230-X. [Online]. Available: https://ieeexplore.ieee.org/xpl/conhome/360/proceeding.

13. J. A. Whi‹aker and M. G. Thomason, “A Markov chain model for statistical software testing”, IEEE Trans. on Software Engineering, vol. 20, no. 10, pp. 812–824, 1994, issn: 0098-5589.

14. G. H. Walton, J. H. Poore, and C. J. Trammell, “Statistical testing of software based on a usage model”, Software: Practice and Experience, vol. 25, no. 1, pp. 97–108, 1995.

15. G. Dupont, Y. A¨ıt Ameur, M. Pantel, and N. Singh, “Proof-Based Approach to Hybrid Systems Development: Dynamic Logic and Event-B”, in Int. Conf. Abstract State Machines, Alloy, B, TLA, VDM, and Z (ABZ 2018), M. Butler, A. Raschke, and K. Reichl, Eds., ser. LNCS, vol. 10817, Springer-Verlag, 2018, pp. 155–170.

16. A. Sinclair, Algorithms for Random Generation and Counting: A Markov Chain Approach. Basel, Switzerland, Switzerland: Birkhauser Verlag, 1993, isbn: 0-8176-3658-7.

17. D. Romero, C. Quinton, L. Duchien, L. Seinturier, and C. Valdez, “SmartyCo: Managing Cyber-Physical Systems for Smart Environments”, in Software Architecture – 9th European Conference, ECSA 2015, 2015, pp. 294–302. doi: 10.1007/978-3-319-23727-5_25.

18. R. De Lemos, H. Giese, H. A. Muller, M. Shaw, J. Andersson, M. Litoiu, B. Schmerl, G. Tamura, N. M. Villegas, and T. Vogel, “Software engineering for self-adaptive systems: A second research roadmap”, in Software Engineering for Self-Adaptive Systems II, Springer, 2013, pp. 1–32.

19. R. De Lemos, D. Garlan, C. Ghezzi, H. Giese, J. Andersson, M. Litoiu, B. Schmerl, D. Weyns, L. Baresi, and N. Bencomo, “Software engineering for self-adaptive systems: Research challenges in the provision of assurances”, in Software Engineering for Self-Adaptive Systems III. Assurances, Springer, 2017, pp. 3–30.

20. S. Gupta, A. Ansari, S. Feng, and S. A. Mahlke, “Adaptive online testing for effcient hard fault detection”, in 27th Int. Conf. on Computer Design, 2009, pp. 343–349. doi: 10.1109/ICCD.2009.5413132.

21. B. H. C. Cheng, K. I. Eder, M. Gogolla, L. Grunske, M. Litoiu, H. A. Muller, P. Pelliccione, A. Perini, ¨ N. A. Qureshi, B. Rumpe, D. Schneider, F. Trollmann, and N. M. Villegas, “Using Models at Runtime to Address Assurance for Self-Adaptive Systems”, in Models@run.time: Foundations, Applications, and Roadmaps, N. Bencomo, R. France, B. H. C. Cheng, and U. Aßmann, Eds. Cham: Springer International Publishing, 2014, pp. 101–136, isbn: 978-3-319-08915-7. doi: 10.1007/978-3-319-08915-7_4.

22. E. M. Fredericks, A. J. Ramirez, and B. H. C. Cheng, “Towards run-time testing of dynamic adaptive systems”, in Proc. Int. Symp. on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), May 2013, pp. 169–174. doi: 10.1109/SEAMS.2013.6595504.

23. E. Mahe, C. Gaston, and P. L. Gall, “Revisiting Semantics of Interactions for Trace Validity Analysis”, in FASE 2020, Proceedings, ser. LNCS, vol. 12076, Springer, 2020, pp. 482–501. doi: 10.1007/978-3-030-45234-6_24.

24. F. Alvares, E. Rutten, and L. Seinturier, “Behavioural Model-Based Control for Autonomic Software Components”, in IEEE Int. Conf. on Autonomic Computing, ICAC’15, IEEE Computer Society, 2015, pp. 187–196. doi: 10.1109/ICAC.2015.31.

25. M. Greiler, H.-G. Gross, and A. van Deursen, “Evaluation of online testing for services: a case study”, in Proc. Int. Workshop on Principles of Engineering Service-Oriented Systems, PESOS 2010, 2010, pp. 36–42. doi: 10.1145/1808885.1808893.

26. M. Camilli, C. Bellettini, A. Gargantini, and P. Scandurra, “Online Model-Based Testing under Uncertainty”, in 29th IEEE International Symposium on Software Reliability Engineering, ISSRE 2018, 2018, pp. 36–46. doi: 10.1109/ISSRE.2018.00015.

27. M. Helvensteijn, “Dynamic delta modeling”, in 16th International Software Product Line Conference, SPLC’12, E. S. de Almeida, C. Schwanninger, and D. Benavides, Eds., ACM, 2012, pp. 127–134, isbn: 978-1-4503-1095-6. doi: 10.1145/2364412.2364434. [Online]. Available: http://dl.acm.org/citation.cfm?id=2364412.

28. F. Trollman, J. Fahndrich, and S. Albayrak, “Hybrid adaptation policies: towards a framework for ¨ classification and modelling of different combinations of adaptation policies”, in Proc. Int. Conf. SEAMS@ICSE 2018, Gothenburg, Sweden, May 28-29, 2018, 2018, pp. 76–86. doi: 10.1145/3194133.3194137.

29. J. O. Kephart and W. E. Walsh, “An Artificial Intelligence Perspective on Autonomic Computing Policies”, in 5th IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY 2004), 7-9 June 2004, Yorktown Heights, NY, USA, 2004, pp. 3–12. doi: 10.1109/POLICY.2004.1309145.

30. V. Poladian, D. Garlan, M. Shaw, M. Satyanarayanan, B. R. Schmerl, and J. P. Sousa, “Leveraging Resource Prediction for Anticipatory Dynamic Configuration”, in Proc. Int. Conf. on Self-Adaptive and Self-Organizing Systems, SASO 2007, IEEE Computer Society, 2007, pp. 214–223, isbn: 0-7695-2906-2. doi: 10.1109/SASO.2007.35. [Online]. Available: https://ieeexplore.ieee.org/xpl/conhome/4274871/proceeding.


Review

For citations:


Dadeau F., Gros J., Kouchnarenko O. Online Testing of Dynamic Reconfigurations w.r.t. Adaptation Policies. Modeling and Analysis of Information Systems. 2021;28(1):52-73. (In Russ.) https://doi.org/10.18255/1818-1015-2021-1-52-73

Views: 625


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)