Fractal and Computational Geometry for Generalizing Cartographic Objects
https://doi.org/10.18255/1818-1015-2012-6-152-160
Abstract
We present an algorithm for simplifying linear cartographic objects and results obtained with a computer program implementing this algorithm.
About the Authors
O. R. MusinUnited States
Texas, USA;
научный сотрудник
A. U. Ukhalov
Russian Federation
научный сотрудник
H. Edelsbrunner
Austria
Клостенойбург, Австрия;
руководитель
O. P. Yakimova
Russian Federation
научный сотрудник
References
1. Берлянт А. М., Мусин О. Р., Собчук Т. В. Картографическая генерализация и теория фракталов. М., 1998.
2. Fritsch Emmanuel. Use of Whirlpool algorithm for ADBS data generalization // ADBS meeting. 1999.
3. Douglas D. H., Peucker T. K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature // Canadian Cartographer. 1973. Vol. 10, N 2. P. 112–122.
4. Bin Jiang, Xintao Liu, Tao Jia. Scaling of Geographic Space as a Universal Rule for Mapping or Cartographic Generalization. 2011. http://arxiv.org/abs/1102.1561v1
5. Кроновер Р.М. Фракталы и хаос в динамических системах. Основы теории. М.: Постмаркет, 2000.
Review
For citations:
Musin O.R., Ukhalov A.U., Edelsbrunner H., Yakimova O.P. Fractal and Computational Geometry for Generalizing Cartographic Objects. Modeling and Analysis of Information Systems. 2012;19(6):152-160. (In Russ.) https://doi.org/10.18255/1818-1015-2012-6-152-160