Autotuning Parallel Programs by Model Checking
https://doi.org/10.18255/1818-1015-2021-4-338-355
Abstract
About the Authors
Natalia Olegovna GaraninaRussian Federation
Sergei Petrovich Gorlatch
Russian Federation
References
1. J. Ansel, S. Kamil, K. Veeramachaneni, and et al., “OpenTuner: An extensible framework for program autotuning,” in Proceedings of the 23rd international conference on Parallel architectures and compilation, 2014, pp. 303-316.
2. J. Beckingsale, O. Pearce, I. Laguna, and T. Gamblin, “Apollo: Reusable models for fast, dynamic tuning of input-dependent code,” 2017.
3. C. Chen, J. Chame, and M. Hall, “CHILL: A framework for composing high-level loop transformations,” Technical Report 08-897. Los Angeles, CA, pp. 136-150, 2008.
4. M. Christen, O. Schenk, and H. Burkhart, “PATUS: A code generation and autotuning framework for parallel iterative stencil computations on modern microarchitectures,” 2011.
5. R. C. Whaley and J. J. Dongarra, “Automatically tuned linear algebra software,” 1998.
6. M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,” IEEE, vol. 93(2), 2005.
7. G. Fursin, Y. Kashnikov, A. W. Memon, and et al., “Milepost GCC: machine learning enabled self-tuning compiler,” Int J Parallel Prog, vol. 39(3), pp. 296-327, 2011.
8. C. Nugteren and V. Codreanu, “CLTUne: A generic auto-tuner for OpenCL kernels,” 2015.
9. A. Rasch and S. Gorlatch, “ATF: A Generic, Directive-Based Auto-Tuning Framework,” Concurrency and Computation: Practice and Experience, vol. 31(5), 2018.
10. C. Tapus, I. H. Chung, and J. K. Hollingsworth, “Active harmony: towards automated performance tuning,” 2002.
11. R. Vuduc, J. W. Demmel, and K. A. Yelick, “OSKI: A library of automatically tuned sparse matrix kernels,” 2005.
12. E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, Handbook of Model Checking. Springer International Publishing, 2018, pp. 1-13.
13. T. C. Ruys and E. Brinksma, “Experience with Literate Programming in the Modelling and Validation of Systems,” in Proc. of the 4th Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’98), 1998, pp. 393-408.
14. T. C. Ruys, “Optimal Scheduling Using Branch and Bound with SPIN 4.0,” 2003.
15. E. Brinksma, A. Mader, and A. Fehnker, “Verification and optimization of a PLC control schedule,” International Journal on Software Tools for Technology Transfer, vol. 4, pp. 21-33, 2002.
16. A. Wijs, J. V. D. Pol, and E. M. Bortnik, “Solving scheduling problems by untimed model checking: The clinical chemical analyser case study.,” in Proceedings of the 10th international workshop on Formal methods for industrial critical systems, 2005, pp. 54-61.
17. R. Malik and P. N. Pena, “Optimal Task Scheduling in a Flexible Manufacturing System using Model Checking,” IFAC-PapersOnLine, vol. 51, no. 7, pp. 230-235, 2018.
18. K. O. C. L. working group, The OpenCL Specification. Khronos OpenCL working group, 2021.
19. G. J. Holzmann, The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley Professional, 2003.
20. C. A. R. Hoare, Communicating sequential processes. Prentice-Hall, 1985.
21. M. Gaspari and G. Zavattaro, “An Algebra of Actors,” 1999.
22. A. Cimatti, S. Edelkamp, M. Fox, D. Magazzeni, and E. Plaku, “Automated Planning and Model Checking (Dagstuhl Seminar 14482),” Dagstuhl Reports, vol. 4, no. 11, pp. 227-245, 2015, doi: 10.4230/DagRep.4.11.227.
23. P. N. Glaskowsky, NVIDIA’s Fermi: The First Complete GPU Computing Architecture. NVIDIA Corporation, 2009.
Review
For citations:
Garanina N.O., Gorlatch S.P. Autotuning Parallel Programs by Model Checking. Modeling and Analysis of Information Systems. 2021;28(4):338-355. (In Russ.) https://doi.org/10.18255/1818-1015-2021-4-338-355