Preview

Моделирование и анализ информационных систем

Расширенный поиск

Алгоритм углового сверхразрешения с использованием разложения Холецкого и его реализация на основе технологии параллельных вычислений

https://doi.org/10.18255/1818-1015-2022-1-6-19

Полный текст:

Аннотация

Предложен алгоритм углового сверхразрешения на основе разложения Холецкого, представляющий собой модификацию алгоритма Кейпона. Показано, что предложенный алгоритм позволяет отказаться от обращения ковариационной матрицы входных сигналов. Проведено сравнение предложенного алгоритма с алгоритмом Кейпона по числу операций. Установлено, что предложенный алгоритм при большой размерности задачи обеспечивает некоторый выигрыш как при реализации на однопоточном, так и на многопоточном вычислителе. Получены численные оценки быстродействия предложенного и исходного алгоритма с использованием технологии параллельных вычислений CUDA NVIDIA. Установлено, что предложенный алгоритм обеспечивает экономию вычислительных ресурсов GPU и способен решать задачу построения пространственного спектра при увеличении размерности ковариационной матрицы входных сигналов почти в два раза.

Об авторах

Сергей Евгеньевич Мищенко
ФГУП “Ростовский научно-исследовательский институт радиосвязи”
Россия


Николай Витальевич Шацкий
Радиотехнический институт имени академика А. Л. Минца
Россия


Список литературы

1. R. Klemm, Principles of Space-Time Adaptive Processing. London: IEE, 2002.

2. M. Parker, Radar Basics-Part 4: Space-time adaptive processing, 2011. [Online]. Available: https://www.eetimes.com/design/programmable-logic/4217308/Radar-Basics-Part-4-Space-time-adaptive-processing.

3. W. Bürger, Space-Time Adaptive Processing: Algorithms, 2006. [Online]. Available: http://ftp.rta.nato.int/public//PubFullText/RTO/EN/RTO-EN-SET-086///EN-SET-086-07.pdf.

4. S. Nefedov, I. Kruchkov, M. Noniashvili, G. Lesnikov, and N. Soloviev, “A Review of the Signal Space-Time Adaptive Processing (STAP) Basic Techniques in Space-Based Radars with Synthetic Aperture)”, Vestnik MGTU im N.E. Baumana. Ser. ”Priborostroenie”, no. 8, pp. 251-258, 2012.

5. M. Ratynskij, Adaptation and Superresolution in Array Antennas. Moscow: Radio i svyaz, 2003.

6. S. Tulenev, A. Savinkov, and V. Vereitin, “Application of CUDA Parallel Programming Technology to Increase the Speed Of Calculation of Superresolution Algorithms in Direction Finding”, Vestnik Voronezhskogo instituta MVD Rossii, no. 2, pp. 196-203, 2021.

7. Developing a Linux Kernel Module using GPUDirect RDMA. [Online]. Available: https://docs.nvidia.com/cuda/gpudirect-rdma/index.html.

8. V. Voevodin, Numerical Methods of Algebra. Moscow: Nauka, 1966.

9. A. Novikov, D. Gabriel’yan, E. Novikova, and N. Shatskiy, Device to Covariance Matrix of Interference Sygnals Inversion, Rus. Patent 2 562 389, Sept. 2015.

10. M. Zvezdina, O. Komova, N. Shatskiy, and A. Shokov, “Hermitian matrix inversion algorithm”, Vestnik Donskogo gosudarstvennogo universiteta, no. 2(81), pp. 78-84, 2015.

11. F. Gantmacher, The Theory of Matrices. New York: Chelsea Publishing Company, 1959.

12. T. Shoup, A Practical Guide to Computer Methods for Engineers. New York: Prentice-Hall, Inc., Englewood Cliffs, 1979.

13. C. Lomont, “Fast Inverse Square Root”, vol. 32, 2003. [Online]. Available: http://www.lomont.org/papers/2003/InvSqrt.pdf.

14. N. Shilov, D. Kondratyev, I. Anureev, E. Bodin, and A. Promsky, “Platform-independent Specification and Verification of the Standard Mathematical Square Root Function”, Modeling and Analysis of Information Systems, vol. 25, no. 6, pp. 637-666, 2018. doi: 10.18255/1818-1015-2018-6-637-666.


Рецензия

Для цитирования:


Мищенко С.Е., Шацкий Н.В. Алгоритм углового сверхразрешения с использованием разложения Холецкого и его реализация на основе технологии параллельных вычислений. Моделирование и анализ информационных систем. 2022;29(1):6-19. https://doi.org/10.18255/1818-1015-2022-1-6-19

For citation:


Mishchenko S.E., Shatskiy N.V. The Algorithm of Angular Superresolution Using the Cholesky Decomposition and its Implementation Based on Parallel Computing Technology. Modeling and Analysis of Information Systems. 2022;29(1):6-19. (In Russ.) https://doi.org/10.18255/1818-1015-2022-1-6-19

Просмотров: 114


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)