Methods for Change Parallelism in Process of High-level VLSI Synthesis
https://doi.org/10.18255/1818-1015-2022-1-60-72
Abstract
About the Authors
Igor Nikolaevich RyzhenkoRussian Federation
Oleg Vladimirovich Nepomnyaschy
Russian Federation
Aleksandr Ivanovich Legalov
Russian Federation
Vladimir Viktorovich Shaidurov
Russian Federation
References
1. T. M. Bhatt and D. McCain, “Matlab as a Development Environment for FPGA Design”, in Design Automation Conference, Proceedings 42nd, 2005, pp. 607-610.
2. L. Lavagno, I. L. Markov, G. Martin, and L. K. Scheffer, Electronic Design Automation for IC System Design, Verification, and Testing. CRC Press, 2017.
3. Z. Navabi, System-Level Design and Modeling: ESL Using C/C++, SystemC and TLM-2.0. Springer, 2015.
4. Vivado Design Suite User Guide. High-Level Synthesis. UG902. [Online]. Available: http://www.xilinx.com/support/documentation/sw_manuals/xilinx20181/ug902-vivado-high-level-synthesis.pdf.
5. Z. Yuan, Y. Ma, J. Bian, and K. Zhao, “Automatic enhanced CDFG generation based on runtime instrumentation”, in IEEE 17th International Conference on, 2013, pp. 92-97.
6. G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. He´rault, and J. J. Dongarra, “PaRSEC: Exploiting Heterogeneity to Enhance Scalability”, IEEE Computing in Science and Engineering, vol. 15, no. 6, pp. 36-45, 2013.
7. A. Danalis, G. Bosilca, A. Bouteiller, T. Herault, and J. Dongarra, “PTG: An Abstraction for Unhindered Parallelism”, in Proceedings of the Fourth International Workshop on Domain-Specific Languages and High-Level Frameworks for High Performance Computing, 2014, pp. 21-30.
8. I. I. Levin and A. I. Dordopulo, “Resource-independent programming of hybrid reconfigurable computer systems”, in Proceedings of Russian Supercomputing Days, 2017, pp. 714-723.
9. I. I. Levin, A. I. Dordopulo, I. V. Pisarenko, and A. K. Melnikov, “An approach to architecture-independent programming of computing systems based on the aspect-oriented Set@l language”, Proceedings of the Southern Federal University. Technical sciences, vol. 197, no. 3, pp. 46-57, 2018.
10. O. V. Nepomnyaschy, I. N. Ryzhenko, and A. I. Legalov, “The method of architecturally independent high-level synthesis of VLSI”, Proceedings of the Southern Federal University. Technical sciences, vol. 202, no. 8, pp. 38-47, 2018.
11. A. I. Legalov, “Functional language for creation of architectural independent parallel programmes”, Computational Technologies, vol. 10, no. 1, pp. 71-89, 2005.
12. A. I. Legalov, V. S. Vasilyev, I. V. Matkovskii, and M. S. Ushakova, “A toolkit for the development of data-driven functional parallel programmes”, in International Conference on Parallel Computational Technologies, Springer, 2018, pp. 16-30.
13. V. Vasilev, A. I. Legalov, and S. V. Zykov, “The System for Transforming the Code of Dataflow Programs into Imperative”, Modeling and Analysis of Information Systems, vol. 28, no. 2, pp. 198-214, 2021.
14. O. V. Nepomnyaschy and I. N. Ryzhenko, “The method of high-level synthesis and software toolkit for description algorithm of VLSI”, Software Engineering, vol. 11, no. 1, pp. 34-39, 2020.
15. Vivado Design Suite User Guide. Using the Vivado IDE UG893. [Online]. Available: https://www.xilinx.com/support/documentation/swmanuals/xilinx2020_2/ug893-vivado-ide.pdf.
Review
For citations:
Ryzhenko I.N., Nepomnyaschy O.V., Legalov A.I., Shaidurov V.V. Methods for Change Parallelism in Process of High-level VLSI Synthesis. Modeling and Analysis of Information Systems. 2022;29(1):60-72. (In Russ.) https://doi.org/10.18255/1818-1015-2022-1-60-72