On Some Estimate for the Norm of an Interpolation Projector
https://doi.org/10.18255/1818-1015-2022-2-92-103
Abstract
Let $Q_n=[0,1]^n$ be the unit cube in ${\mathbb R}^n$ and let $C(Q_n)$ be a space of continuous functions $f:Q_n\to{\mathbb R}$ with the norm $\|f\|_{C(Q_n)}:=\max_{x\in Q_n}|f(x)|.$ By $\Pi_1\left({\mathbb R}^n\right)$ denote a set of polynomials in $n$ variables of degree $\leq 1$, i. e., a set of linear functions on ${\mathbb R}^n$. The interpolation projector $P:C(Q_n)\to \Pi_1({\mathbb R}^n)$ with the nodes $x^{(j)}\in Q_n$ is defined by the equalities $Pf\left(x^{(j)}\right)= f\left(x^{(j)}\right)$, $j=1,$ $\ldots,$ $ n+1$. Let $\|P\|_{Q_n}$ be the norm of $P$ as an operator from $C(Q_n)$ to $C(Q_n)$. If $n+1$ is an Hadamard number, then there exists a non-degenerate regular simplex having the vertices at vertices of $Q_n$. We discuss some approaches to get inequalities of the form $||P||_{Q_n}\leq c\sqrt{n}$ for the norm of the corresponding projector $P$.
References
1. M. V. Nevskii, Geometricheskie Ocenki v Polinomial’noj Interpolyacii. Yaroslavl: P. G. Demidov Yaroslavl State University, 2012, p. 218, in Russian.
2. M. Hall Jr., Combinatorial Theory. Mass., Toronto, London: Blaisdall Publishing Company, 1967.
3. K. J. Horadam, Hadamard Matrices and Their Applications. Princeton: Princeton University Press, 2007.
4. P. K. Manjhi and M. K. Rama, “Some new examples of circulant partial Hadamard matrices of type - H (k × n)”, Advances and Applications in Mathematical Sciences, vol. 21, no. 5, pp. 2559-2564, 2022.
5. M. Hudelson, V. Klee, and D. Larman, “Largest j-simplices in d-cubes: some relatives of the Hadamard maximum determinant problem”, Linear Algebra and its applications, vol. 241-243, pp. 519-598, 1996.
6. M. V. Nevskii, “Minimal projectors and largest simplices”, Modeling and Analysis of Information Systems, vol. 14, no. 1, pp. 3-10, 2007. On Some Estimate for the Norm of an Interpolation Projector
7. J. Hadamard, “Re´solution d’une question relative aux de´terminants”, Bull. Sciences Math. (2), vol. 17, pp. 240-246, 1893.
8. G. Barba, “Intorno al. teorema di Hadamard sui determinanti a valore massimo”, Glornale Mat. Battaglini (3), vol. 71, pp. 70-86, 1933.
9. M. V. Nevskii, “Estimates for the minimal norm of a projector in linear interpolation over the vertices of an n-dimensional cube”, Modeling and Analysis of Information Systems, vol. 10, no. 1, pp. 9-19, 2003.
10. M. V. Nevskii, “On a certain relation for the minimal norm of an interpolation projector”, Modeling and Analysis of Information Systems, vol. 16, no. 1, pp. 24-43, 2009.
11. M. V. Nevskii and A. Y. Ukhalov, “On optimal interpolation by linear functions on an n-dimensional cube”, Modeling and Analysis of Information Systems, vol. 25, no. 3, pp. 291-311, 2018. doi: 10.18255/ 1818-1015-2018-3-291-311.
12. I. S. Kudryavcev, E. A. Ozerova, and A. Y. Ukhalov, “Novye ocenki dlya norm minimal’nyh proektorov”, in Sovremennye Problemy Matematiki i Informatiki, vol. 17, in Russian, Yaroslavl: P. G. Demidov Yaroslavl State University, 2017, pp. 74-81.
13. L. Fejes To´t, Regular Figures. New York: Macmillan/Pergamon, 1964.
14. D. Slepian, “The content of some extreme simplices”, Pacific J. Math, vol. 31, pp. 795-808, 1969.
15. D. Vandev, “A minimal volume ellipsoid around a simplex”, C. R. Acad. Bulg. Sci., vol. 45, no. 6, pp. 37-40, 1992.
16. M. V. Nevskii and A. Y. Ukhalov, “Linear interpolation on a Euclidean ball in lRn”, Modeling and Analysis of Information Systems, vol. 26, no. 2, pp. 279-296, 2019. doi: 10.18255/1818-1015-2019-2-279-296.
Review
For citations:
Nevskii M.V. On Some Estimate for the Norm of an Interpolation Projector. Modeling and Analysis of Information Systems. 2022;29(2):92-103. (In Russ.) https://doi.org/10.18255/1818-1015-2022-2-92-103