On the Construction of Self-Complementary Codes and their Application in the Problem of Information Hiding
https://doi.org/10.18255/1818-1015-2022-3-182-198
Abstract
About the Authors
Yury V. KosolapovRussian Federation
Fedor S. Pevnev
Russian Federation
Margarita V. Yagubyants
Russian Federation
References
1. D. Jungnickel and V. D. Tonchev, “The classification of antipodal two-weight linear codes”, Finite Fields and Their Applications, vol. 50, pp. 372-381, 2018. doi: https://doi.org/10.1016/j.ffa.2017.12.010.
2. T. Klove and S. Yari, “Proper self-complementary codes”, in Proceedings of the 2010 International Symposium On Information Theory & Its Applications, 2010, pp. 118-122. doi: 10. 1109 / ISITA. 2010. 5649432.
3. E. M. Gabidulin and M. Bossert, “Codes Resistant to the Phase Rotation”, in Proceedings of the 4-th Simposium on Communication and Applications, 1997, pp. 65-84.
4. Y. V. Kosolapov and F. S. Pevnev, “Error-tolerant ZZW-construction”, Siberian Electronic Mathematical Reports, vol. 18, no. 2, pp. 1506-1516, 2021.
5. L. D. Grey, “Some bounds for error-correcting codes”, IRE Transactions on Information Theory, vol. 8, no. 3, pp. 200-202, 1962.
6. G. McGuire, “Qyasi-Symmetric Designs and Codes Meeting the Grey-Rankin Bound”, Journal of Combinatorial Theory, Series A, vol. 78, no. 2, pp. 280-291, 1997. doi: https : / /doi.org / 10. 1006 /jcta. 1997.2765.
7. I. Bouyukliev, S. Bouyuklieva, and S. Dodunekov, “On binary self-complementary [120, 9, 56] codes having an automorphism of order 3 and associated SDP designs”, Problems of Information Transmission, vol. 43, pp. 89-96, 2007. doi: https://doi.org/10.1134/S0032946007010020.
8. S. Dodunekov, S. Encheva, and S. Kapralov, “On the [28, 7, 12] binary self-complementary codes and their residuals”, Designs, Codes and Cryptography, vol. 4, pp. 57-67, 1994. doi: https://doi.org/10.1007/BF01388560.
9. I. Asemota, Binary Self-Complementary Codes. B. Sc., Benson Idahosa University, Nigeri, 2016.
10. R. H. Morelos-Zaragoza, The Art of Error Correcting Coding, 2nd Edition. Wiley, 2006.
11. R. Hill and D. Newton, “Optimal ternary linear codes”, in, vol. 2, 1992, pp. 137-157. doi: https://doi.org/10.1007/BF00124893.
12. M. Tomlinson, C. J. Tjhai, M. A. Ambroze, M. Ahmed, and M. Jibril, Error-Correction Coding and Decoding: Bounds, Codes, Decoders, Analysis and Applications. Springer Nature, 2017.
13. V. M. Deundyak, A. E. Maevskij, and M. N. C., Metody pomekhoustojchivoj zashchity dannyh. Rostov-na-Donu: Izdatelstvo yuzhnogo federalnogo universiteta, 2014, in Russian.
14. D. B. Jaffe, Binary Linear Codes: New Results on Nonexistence, 1996. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.44.628&rep=rep1&type=pdf.
Review
For citations:
Kosolapov Yu.V., Pevnev F.S., Yagubyants M.V. On the Construction of Self-Complementary Codes and their Application in the Problem of Information Hiding. Modeling and Analysis of Information Systems. 2022;29(3):182-198. (In Russ.) https://doi.org/10.18255/1818-1015-2022-3-182-198