Formation of Machine Learning Features Based on the Construction of Tropical Functions
https://doi.org/10.18255/1818-1015-2022-3-200-209
Abstract
Keywords
MSC2020: 68T10, 14T25
About the Authors
Sergey N. ChukanovRussian Federation
Ilya S. Chukanov
Russian Federation
References
1. G. Carlsson, “Topology and data”, Bulletin of the American Mathematical Society, vol. 46, no. 2, pp. 307-309, 2009. doi: 10.1090/S0273-0979-09-01249-X.
2. H. Edelsbrunner and J. Harer, Computational topology: an introduction. American Mathematical Soc., 2010.
3. A. J. Zomorodian, Topology for computing. Cambridge UP, 2005.
4. R. Ghrist, “Barcodes: the persistent topology of data”, Bulletin of the American Mathematical Society, vol. 15, no. 1, pp. 61-75, 2008. doi: 10.1090/S0273-0979-07-01191-3.
5. S. N. Chukanov, “Comparison of objects’ images based on computational topology methods”, Informatics and Automation, vol. 18, no. 3, pp. 1043-1065, 2019. doi: 10.15622/sp.2019.18.5.1043-1065.
6. S. N. Chukanov, “The Comparison of Diffeomorphic Images based on the Construction of Persistent Homology”, Automatic Control and Computer Sciences, vol. 54, no. 7, pp. 758-771, 2020. doi: 10.3103/ S0146411620070056.
7. A. Hatcher, Algebraic Topology. Cambridge UP, 2005.
8. C. Hofer, R. Kwitt, M. Niethammer, and A. Uhl, “Deep learning with topological signatures”, in Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017, pp. 1633-1643.
9. P. Bubenik, “The persistence landscape and some of its properties”, Topological Data Analysis, pp. 97-117, 2020. doi: 10.1007/978-3-030-43408-3 4.
10. P. Bubenik, “Statistical Topological Data Analysis Using Persistence Landscapes”, Journal of Machine Learning Research, vol. 16, no. 1, pp. 77-102, 2015.
11. S. Kalisnik, “Tropical coordinates on the space of persistence barcodes”, Foundations of Computational Mathematics, vol. 19, no. 1, pp. 101-129, 2019. doi: 10.1007/s10208-018-9379-y.
12. R. Kwitt, S. Huber, M. Niethammer, W. Lin, and U. Bauer, “Statistical topological data analysis: a kernel perspective”, Advances in Neural Information Processing Systems, vol. 28, pp. 3052-3060, 2015.
13. V. P. Maslov, “Motivation and essence of the term ”Tropical mathematics””, Russian Journal of Mathematical Physics, vol. 27, no. 4, pp. 478-483, 2020. doi: 10.1134/S106192082004007X.
14. A. Aadcock, E. Carlsson, and G. Carlsson, “The Ring of Algebraic Functions on Persistence Bar Codes”, Homology, Homotopy and Applicationse, vol. 18, pp. 381-402, 2016. doi: 10.4310/HHA.2016.v18.n1.a21.
Review
For citations:
Chukanov S.N., Chukanov I.S. Formation of Machine Learning Features Based on the Construction of Tropical Functions. Modeling and Analysis of Information Systems. 2022;29(3):200-209. (In Russ.) https://doi.org/10.18255/1818-1015-2022-3-200-209