Features of Oscillations in Adiabatic Oscillators with Delay
https://doi.org/10.18255/1818-1015-2013-5-25-44
Abstract
In this paper, we describe the features of oscillations in adiabatic oscillators when the delay is introduced into the equation. We give a short description of the method of asymptotic integration of one class of linear delay differential systems in the neighborhood of infinity. This method is based on the idea of transforming the initial system in order to reduce it to the system that is close in some sense to the system of ordinary differential equations. When applying this method, we need to extend the phase space of the initial system. The averaging changes of variables are also used to simplify the procedure of constructing the asymptotic formulas. Finally, we apply the functional differential analog of the Levinson theorem. We use this method to get the asymptotic formulas for adiabatic oscillators with delay under a monotonely and also oscillatory tending to zero perturbations. In conclusion, we study the transformation of the parametric resonance zone of one adiabatic oscillator when the delay is varied.
About the Authors
P. N. NesterovRussian Federation
канд. физ.-мат. наук, доцент,
Sovetskaya str., 14, Yaroslavl, 150000, Russia
E. N. Agafonchikov
Russian Federation
аспирант,
Sovetskaya str., 14, Yaroslavl, 150000, Russia
References
1. Беллман Р. Теория устойчивости дифференциальных уравнений. М.: ИЛ, 1954. 216 с. (Bellman R. Stability theory of differential equations. New York: McGraw-Hill, 1953.)
2. Бурд В.Ш., Каракулин В.А. Асимптотическое интегрирование систем линейных дифференциальных уравнений с колебательно убывающими коэффициентами // Математические заметки. 1998. Т. 64, №5. C. 658–666. (English transl.: Burd V.Sh., Karakulin V.A. On the asymptotic integration of systems of linear differential equations with oscillatory decreasing coefficients // Math. Notes. 1998. V. 64, No. 5. P. 571–578.)
3. Демидович Б.П. Лекции по математической теории устойчивости. М.: Наука, 1967. 472 с. (Demidovich B.P. Lekcii po matematicheskoy teorii ustoychivosti. Moskva: Nauka, 1967. 472 p. [in Russian])
4. Коддингтон Э.А., Левинсон Н. Теория обыкновенных дифференциальных уравнений. М.: ИЛ, 1958. 475 с. (Coddington E.A., Levinson N. Theory of Ordinary Differential Equations. New York: McGraw-Hill, 1955.)
5. Майоров В.В. Исследование устойчивости решений одного линейного дифференциального уравнения с последействием, встречающегося в приложениях // Вестник Ярославского университета. Исследования по устойчивости и теории колебаний. 1973. Вып. 5. С. 86–93. (Mayorov V.V. Issledovanie ustoychivosti resheniy odnogo lineynogo differentsial’nogo uravneniya s posledeystviem, vstrechayushchegosya v prilozheniyah // Vestnik Yaroslavskogo universiteta. Issledovaniya po ustoychivosti i teorii kolebaniy. 1973. Issue 5. P. 86–93 [in Russian])
6. Нестеров П.Н. Метод усреднения в задаче асимптотического интегрирования систем с колебательно убывающими коэффициентами // Дифференциальные уравнения. 2007. Т. 43, №6. С. 731–742. (English transl.: Nesterov P.N. Averaging method in the asymptotic integration problem for systems with oscillatory-decreasing coefficients // Differ. Equ. 2007. V. 43, No. 6. P. 745–756.)
7. Хейл Дж. Теория функционально-дифференциальных уравнений. М.: Мир, 1984. (Hale J.K. Theory of functional differential equations. New York: Springer-Verlag, 1977.)
8. Burd V., Nesterov P. Parametric resonance in adiabatic oscillators // Results Math. 2010. Vol. 58, No. 1-2. P. 1–15.
9. Cassel J.S., Hou Z. Asymptotically diagonal linear differential equations with retardation // J. Lond. Math. Soc. 1993. Vol. 47. P. 473–483.
10. Eastham M.S.P. The asymptotic solution of linear differential systems. London Math. Soc. Monographs. Oxford: Clarendon Press, 1989.
11. Harris W.A. Jr., Lutz D.A. On the asymptotic integration of linear differential systems // J. Math. Anal. Appl. 1974. Vol. 48, №1. P. 1–16.
12. Harris W.A. Jr., Lutz D.A. A Unified Theory of Asymptotic Integration // J. Math. Anal. Appl. 1977. Vol. 57, №3. P. 571–586.
13. Nesterov P. Asymptotic integration of functional differential systems with oscillatory decreasing coefficients // Monatsh. Math. 2013. Vol. 171, No. 2. P. 217–240.
14. Wintner A. The adiabatic linear oscillator // Amer. J. Math. 1946. V. 68. P. 385–397.
15. Wintner A. Asymptotic integration of the adiabatic oscillator // Amer. J. Math. 1946. V. 69. P. 251–272.
Review
For citations:
Nesterov P.N., Agafonchikov E.N. Features of Oscillations in Adiabatic Oscillators with Delay. Modeling and Analysis of Information Systems. 2013;20(5):25-44. (In Russ.) https://doi.org/10.18255/1818-1015-2013-5-25-44