Preview

Modeling and Analysis of Information Systems

Advanced search

Local Dynamics of a Laser with Rapidly Oscillating Parameters

https://doi.org/10.18255/1818-1015-2013-5-45-61

Abstract

The dynamics of class B lasers with the incoherent optical feedback formed by quickly vibrating external mirrors is viewed. The problem of the stability of equilibrium in a model system with rapidly oscillating coefficients is studied. The averaged system with the distributed delay is received. It is determined that in the presence of fast delay oscillation the limit of instability of a balance state moves towards significantly greater values of the feedback coefficient. The dependence of the shift with increasing the amplitude modulation has a band structure, so the rapid oscillations of delay can stabilize or destabilize the equilibrium. Normal forms which show changes of the sign of Lyapunov quantityalong border are constructed. They describe characteristics of periodic and quasiperiodic modes close to the balance state.

About the Authors

E. V. Grigorieva
Belarus State Economical University
Russian Federation

доктор физ.-мат. наук, профессор,

Partizanskii av., 26, Minsk, 220070, Belarus



S. A. Kaschenko
P.G. Demidov Yaroslavl State University
Russian Federation

доктор физ.-мат. наук, профессор, зав. кафедрой математического моделирования,

Sovetskaya str., 14, Yaroslavl, 150000, Russia



References

1. Ikeda K. and Matsumoto K. High-dimensional chaotic behavior in systems with timedelayed feedback // Physica D. 1987. V. 29. P. 223–235.

2. Kittel A., Pyragas K., Richter R. Prerecorded history of a system as an experimental tool to control chaos // Phys. Rev. 1994. E 50. P. 262–268.

3. Pyragas K. Control of Chaos via an Unstable Delayed Feedback Controller // Phys. Rev. Lett. 2001. Mar 12;86(11): 2265–8.

4. Pyragas K., Pyragas V., Kiss I. Z., Hudson J. L. Stabilizing and Tracking Unknown Steady States of Dynamical Systems // Phys. Rev. Lett. 2002. Dec 9;89(24):244103. Epub 2002 Nov 22.

5. Ahlborn A., Parlitz U. Controlling dynamical systems using multiple delay feedback control // Phys Rev E Stat Nonlin Soft Matter Phys. 2005. Jul;72(1 Pt 2):016206.

6. Schuster H.G., Stemmler M. P. Control of chaos by oscillating feedback // Phys. Rev. 1997. E 56, 6410.

7. Gjurchinovski A., Urumov V. Stabilization of unstable steady states by variable-delay feedback control // EPL. 2008. 84, 40013 // www.epljournal.org doi: 10.1209/0295-5075/84/40013.

8. Gjurchinovski A., Urumov V. Variable-delay feedback control of unstable steady states in retarded time-delayed systems // Physical Review. 2010. E 81, 016209.

9. Ju¨ngling T., Gjurchinovski A., Urumov V. Experimental time-delayed feedback control with variable and distributed delays // Physical Review. 2012. E 86, 046213.

10. Stephenson A. On a new type of dynamical stability // Memoirs and Proceedings of the Manchester Literary and Philosophical Society. 1908. V. 52, №8. P. 1–10.

11. Боголюбов Н. Н. Теория возмущений в нелинейной механике // Сборник трудов ин-та строительной механики АН УССР. 1950. Т. 14, № 2. С. 9–34. (Bogolyubov N. N. Teoriya vozmushcheniy v nelineynoy mekhanike // Sbornik trudov in-ta stroitel’noy mekhaniki AN USSR. 1950. T. 14, № 2. P. 9–34 [in Russian].)

12. Колесов Ю. С., Колесов В. С., Федик И. И. Автоколебания в системах с распределенными параметрами. Киев: Наукова думка, 1979. 162 с. (Kolesov YU. S., Kolesov V. S., Fedik I. I. Avtokolebaniya v sistemakh s raspredelennymi parametrami. Kiyev: Naukova dumka, 1979. 162 p. [in Russian].)

13. Skripal A. V., Usanov D. A., Vagarin V. A., Kalinkin M.Yu. Autodin detection by a semiconductor laser under moving external reflector // Russian J. Tech. Physics. 1999. V. 69. №1. P. 72–75.

14. Yang T., Wu C. W., Chua L. O. Cryptography based on chaotic systems // IEEE Trans. Circuits Syst., I: Fundam. Theory Appl. 1997. V. 44. P. 469–472.

15. Goedgebuer J.P., Larger L., Porte H. Optical cryptosystem based on synchronization of hyperchaos generated by delayed feedback tunable laser diode // Phys. Rev. Lett. 1998. V. 80. 2249.

16. Chern J.-L., Otsuka K. Coexistence of two attractors in lasers with delayed incoherent optical feedback // Opt. Commun. 1993. V. 96. P. 259–266.

17. Hale J. K. Theory of Functional Differential Equations. Springer-Verlag, 1977.

18. Брюно А. Д. Локальный метод нелинейного анализа дифференциальных уравнений. М.: Наука, 1979. 200 с.

19. Grigorieva E. V., Kaschenko S. A. Regular and chaotic pulsations in laser diode with delayed feedback // Int. J. Bifurcation Chaos. 1993. V. 3. P. 1515–1528.

20. Grigorieva E. V. Instabilities of periodic orbits in lasers with oscillating delayed feedback // Nonlinear Phenomena in Complex Systems. 2001. V. 4. P. 333–340.

21. Martin-Regalado J., van Tartwijk G.H.M., Balle S., San Miguel M. Mode control and pattern stabilization in broad-area lasers by optical feedback // Phys. Rev. A. 1996. V. 54. P. 5386–5393.

22. Tartwijk G.H.M., Lenstra D. Semiconductor lasers with optical injection and feedback // Quantum. Semiclass. Opt. 1995. V. 7. P. 87–143.

23. Lang R., Kobayashi K. External optical feedback effects on semiconductor injection laser properties // IEEE J. Quantum. Electron. 1980. QE-16. P. 347–355.

24. Grigorieva E. V., Haken H., Kaschenko S. A. Theory of quasiperiodicity in model of lasers with delayed optoelectronic feedback // Opt. Commun. 1999. V. 165. P. 279–292.

25. Bestehorn M., Grigorieva E. V., Haken H., Kaschenko S. A. Order parameters for class-B lasers with a long time delayed feedback // Physica D. 2000. V. 145. P. 110–129.

26. Митропольский Ю. А. Метод усреднения в нелинейной механике. Киев: Наукова думка, 1971. (Mitropol’skiy YU. A. Metod usredneniya v nelineynoy mekhanike. Kiyev: Naukova dumka, 1971 [in Russian].)

27. Кащенко С. А., Майоров В. В. Алгоритм исследования устойчивости решений линейных дифференциальных уравнений с последствием и быстро осциллирующими почти периодическими коэффициентами // Исследования по устойчивости и теории колебаний. Ярославль, 1977. С. 70–82. (Kaschenko S. A., Mayorov V. V. Algoritm issledovaniya ustoychivosti resheniy lineynykh differentsial’nykh uravneniy s posledstviyem i bystro ostsilliruyushchimi pochti periodicheskimi koeffitsiyentami // Issledovaniya po ustoychivosti i teorii kolebaniy. Yaroslavl’, 1977. S. 70–82 [in Russian].)

28. Кащенко С. А. Исследование устойчивости решений линейных параболических уравнений с близкими к постоянным коэффициентами и малой диффузией // Тр. семинара им. И.Г. Петровского. 1991. Вып. 15. C. 128–155. (Kaschenko S. A. Issledovaniye ustoychivosti resheniy lineynykh parabolicheskikh uravneniy s blizkimi k postoyannym koeffitsiyentami i maloy diffuziyey // Tr. seminara im. I.G. Petrovskogo. 1991. Vyp. 15. C. 128–155. [in Russian].)


Review

For citations:


Grigorieva E.V., Kaschenko S.A. Local Dynamics of a Laser with Rapidly Oscillating Parameters. Modeling and Analysis of Information Systems. 2013;20(5):45-61. (In Russ.) https://doi.org/10.18255/1818-1015-2013-5-45-61

Views: 1451


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)