Preview

Modeling and Analysis of Information Systems

Advanced search

Construction of an Adaptive Motion Control System Optimal Information Exchange Scheme for a Group of Unmanned Aerial Vehicles

https://doi.org/10.18255/1818-1015-2023-1-16-26

Abstract

The paper considers the problem of modeling an adaptive control system information exchange for a group of unmanned aerial vehicles (UAVs). The movement of the UAV group is carried out in accordance with the adaptive algorithm for optimal control. Optimal controls are constructed to provide a minimum of the total energy expended. The parameters of the mathematical model of the movement of the UAV group are refined during the flight in accordance with changing external conditions. In accordance with this, the control actions are specified. This task requires significant computing resources and imposes special requirements on the information exchange system between the UAV and the control point. A scheme of information exchange between the UAV and the control point is proposed, which makes it possible to calculate the optimal parameters of the transmitting devices.

About the Authors

Leonid Nikolaevich Kazakov
P. G. Demidov Yaroslavl State University
Russian Federation


Evgeniy Pavlovich Kubyshkin
P. G. Demidov Yaroslavl State University
Russian Federation


Dmitry Ezrovich Paley
P. G. Demidov Yaroslavl State University
Russian Federation


References

1. M. Wang and J. N. K. Liu, “Fuzzy logic-based real-time robot navigation in unknown environment with dead ends.,” Robotics and Autonomous Systems, vol. 56, no. 7, pp. 625–643, 2008, doi: 10.1016/j.robot.2007.10.002.

2. M. M. Mohamad, M. W. Dunnigan, and N. K. Taylor, “Ant colony robot motion planning,” EUROCON 2005: Intern. conf. on computer as a tool (Belgrade, Serbia, November 21-24, 2005) , vol. 1, pp. 213–216, 2005, doi: 10.1109/EURCON.2005.1629898 .

3. H.-P. Huang and S.-Y. Chung, “Dynamic visibility graph for path planning.,” IEEE-RSJ intern. conf. on intelligent robots and systems: IROS 2004 (Sendai, Japan, Sept. 28 - Oct. 2, 2004) , vol. 3, pp. 2813–2818, 2004, doi: 10.1109/IROS.2004.1389835 .

4. J. O. Wallgrun, “Voronoi graph matching for robot localization and mapping,” Transactions on computational science IX. B.: , pp. 76–108, 2010, doi: 10.1007/978-3-642-16007-3_4.

5. S. M. LaValle, “Planning algorithms,” Camb.; N.Y.: Camb. Univ. Press, p. 826, 2006.

6. K. Yang and S. Sukkarieh, “3D smooth path planning for a UAV in cluttered natural environments ,” IEEE/RSJ intern. conf. on intelligent robots and systems: IROS 2008 (Nice, France, Sept. 22-26, 2008) , pp. 794–800, 2008, doi: 10.1109/IROS.2008.4650637.

7. J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach to to single-query path planning ,” IEEE intern. conf. on robotics and automation: ICRA’2000 (San Francisco, CA, USA, April 24-28, 2000) , vol. 2, pp. 995–1001, 2000, doi: 10.1109/ROBOT.2000.844730.

8. N. H. Sleumer and N. Tschichold-Gurman, Exact cell decomposition of arrangements used for path planning in robotics. Zurich: Inst. of Theoretical Computer Science, 1999.

9. L. De Filippis, G. Guglieri, and F. Quagliotti, “A minimum risk approach for path planning of UAVs ,” J. of Intelligent and Robotic Systems , vol. 61, no. 1, pp. 203–219, 2011.

10. L. De Filippis, G. Guglieri, and F. Quagliotti, “Path planning strategies for UAVs in 3D environments,” J. of Intelligent and Robotic Systems , vol. 65, no. 1, pp. 247–264, 2012.

11. S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed:algorithms based on Hamilton-Jacobi formulations,” J. of Computational Physics , vol. 79, no. 1, pp. 12–49, 1988.

12. S. Avasker et al., “A method for stabilization of drone flight controlled by autopilot with time delay,” SN Applied Sciences , vol. 2, no. 225, pp. 1–12, 2020.

13. P. Eickhoff, Osnovy identichnosti sistem upravleniya . M.: Mir, 1975.

14. A. G. Aleksandrov, Optimalnye i adaptivnye sistemy. M.: Vyshay shkola, 1989.

15. C. Cao and N. Hovakimyan, “L1 adaptive controller for systems with unknown time-varying parameters and disturbances in the presence of non-zero trajectory initialization error,” International Journal of Control , vol. 81, no. 7, pp. 1147–1161, 2008.

16. A. I. Gavrilov, C. M. Tu, and E. A. Budnikova, “Synthesis of Automatic Control System Quadrocopter,” Collection of Scientific Tr. "Management In Marine And Aerospace Systems" (UMAS–2014), pp. 621–624, 2014.

17. J. Borenstein and Y. Koren, “The vector field histogram-fast obstacle avoidance for mobile robots,” IEEE Trans. on Robotics and Automation., vol. 7, no. 3, pp. 278–288, 1991, doi: 10.1109/70.88137 .

18. I. Ulrich and J. Borenstein, “VFH+: Reliable obstacle avoidance for fast mobile robots,” IEEE intern. conf. on robotics and automation (Leuven, Belgium, May 20, 1998): vol. 2, pp. 1572–1577, 1998, doi: 10.1109/ROBOT.1998.677362.

19. E. P. Kubyshkin, L. N. Kazakov, and D. I. Sterin, “Mathematical modeling of flight reconfiguration of a unmanned aerial vehicles group ,” 2018 Systems of Signal Synchronization, Generating and Processing in Telecommunications, SYNCHROINFO 2018, doi: 10.1109/SYNCHROINFO.2018.8457015.

20. L. N. Kazakov, V. A. Botov, and E. P. Kubyshkin, “Adaptive Algorithm for Flight Restructuring of a Group of Unmanned Aerial Vehicles ,” 2022 Systems of Signal Synchronization, Generating and Processing in Telecommunications, 2022, doi: 10.1109/SYNCHROINFO55067.2022.9840955.

21. V. F. Zhuravlev, “Fundamentals of theoretical mechanics ,” M.: Fizmatlit, 2001.

22. Y. I. Degtyarev, Operations research. M.: M.: Vyshay shkola, 1986.


Review

For citations:


Kazakov L.N., Kubyshkin E.P., Paley D.E. Construction of an Adaptive Motion Control System Optimal Information Exchange Scheme for a Group of Unmanned Aerial Vehicles. Modeling and Analysis of Information Systems. 2023;30(1):16-26. (In Russ.) https://doi.org/10.18255/1818-1015-2023-1-16-26

Views: 388


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)