Algorithms for asymptotic and numerical modeling of oscillatory modes in the simplest ring of generators with asymmetric nonlinearity
https://doi.org/10.18255/1818-1015-2023-2-160-169
EDN: JEDWKD
Abstract
About the Authors
Sergey D. GlyzinRussian Federation
Elena A. Marushkina
Russian Federation
References
1. S. D. Glyzin, A. Y. Kolesov, and N. K. Rozov, “Chaos phenomena in a circle of three unidirectionally connected oscillators,” Computational Mathematics and Mathematical Physics, vol. 46, no. 10, pp. 1724–1736, 2006.
2. S. D. Glyzin, A. Y. Kolesov, and N. K. Rozov, “The buffer phenomenon in ring-like chains of unidirectionally connected generators,” Izvestiya: Mathematics, vol. 78, no. 4, pp. 708–743, 2014.
3. A. Y. Kolesov and N. K. Rozov, “Yavlenie bufernosti v RCLG-avtogeneratore: teoreticheskij analiz i rezul'taty eksperimenta,” Trudy MIAN, vol. 233, pp. 153–207, 2001.
4. A. S. Dmitriev and V. Y. Kislov, Chaotic oscillations in radiophysics and electronics. Nauka, 1989.
5. A. S. Dmitriev, A. I. Panas, and S. O. Starkov, “Dinamicheskij haos kak paradigma sovremennyh sistem svyazi,” Uspekhi sovremennoj radioelektroniki (Zarubezhnaya radioelektronika), no. 10, pp. 4–26, 1997.
6. A. S. Dmitriev and S. O. Starkov, “Peredacha soobshchenij s ispol'zovaniem haosa i klassicheskaya teoriya informacii,” Uspekhi sovremennoj radioelektroniki (Zarubezhnaya radioelektronika), no. 11, pp. 4–32, 1998.
7. A. S. Dmitriev and A. I. Panas, Dynamic chaos: novel type of information carrier for communication systems. Fizmatlit, 2002.
8. B. D. Hassard, N. D. Kazarinoff, and Y.-H. Wan, Theory and Applications of Hopf Bifurcation. Cambridge University Press, 1985.
9. V. V. Migulin, V. I. Medvedev, E. R. Mustel', and V. N. Parygin, Osnovy teorii kolebanij. Nauka, 1988.
10. A. Y. Kolesov and N. K. Rozov, Invariantnye tory nelinejnyh volnovyh uravnenij. Fizmatlit, 2004.
11. D. S. Glyzin, S. D. Glyzin, A. Y. Kolesov, and N. K. Rozov, “The Dynamic Renormalization Method for Finding the Maximum Lyapunov Exponent of a Chaotic Attractor,” Differential Equations, vol. 41, no. 2, 2005.
12. S. P. Kuznecov, Dinamicheskij haos: Kurs lekcij. Fizmatlit, 2001.
13. J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer Science & Business Media, 1983.
Review
For citations:
Glyzin S.D., Marushkina E.A. Algorithms for asymptotic and numerical modeling of oscillatory modes in the simplest ring of generators with asymmetric nonlinearity. Modeling and Analysis of Information Systems. 2023;30(2):160-169. (In Russ.) https://doi.org/10.18255/1818-1015-2023-2-160-169. EDN: JEDWKD