Preview

Modeling and Analysis of Information Systems

Advanced search

Algorithms for asymptotic and numerical modeling of oscillatory modes in the simplest ring of generators with asymmetric nonlinearity

https://doi.org/10.18255/1818-1015-2023-2-160-169

EDN: JEDWKD

Abstract

A system of three ring-connected generators with asymmetric nonlinearity and special nonlinear coupling is considered. The investigated system simulates an electrical circuit of three identical generators. Each generator is an oscillatory circuit with a nonlinear element. The volt-ampere characteristic of this element has a $S$-shaped character. The nonlinear coupling between the generators is organized in such way that it has a transmission coefficient close to one in the forward direction and close to zero in the reverse direction. First, the problem of finding solutions branching from equilibrium states is studied by asymptotic methods. And then the initial system is investigated by numerical methods. The dependence of the system dynamics on the degree of asymmetry of cubic nonlinearity describing the characteristic of a nonlinear element is studied.

About the Authors

Sergey D. Glyzin
P.G. Demidov Yaroslavl State University
Russian Federation


Elena A. Marushkina
P.G. Demidov Yaroslavl State University
Russian Federation


References

1. S. D. Glyzin, A. Y. Kolesov, and N. K. Rozov, “Chaos phenomena in a circle of three unidirectionally connected oscillators,” Computational Mathematics and Mathematical Physics, vol. 46, no. 10, pp. 1724–1736, 2006.

2. S. D. Glyzin, A. Y. Kolesov, and N. K. Rozov, “The buffer phenomenon in ring-like chains of unidirectionally connected generators,” Izvestiya: Mathematics, vol. 78, no. 4, pp. 708–743, 2014.

3. A. Y. Kolesov and N. K. Rozov, “Yavlenie bufernosti v RCLG-avtogeneratore: teoreticheskij analiz i rezul'taty eksperimenta,” Trudy MIAN, vol. 233, pp. 153–207, 2001.

4. A. S. Dmitriev and V. Y. Kislov, Chaotic oscillations in radiophysics and electronics. Nauka, 1989.

5. A. S. Dmitriev, A. I. Panas, and S. O. Starkov, “Dinamicheskij haos kak paradigma sovremennyh sistem svyazi,” Uspekhi sovremennoj radioelektroniki (Zarubezhnaya radioelektronika), no. 10, pp. 4–26, 1997.

6. A. S. Dmitriev and S. O. Starkov, “Peredacha soobshchenij s ispol'zovaniem haosa i klassicheskaya teoriya informacii,” Uspekhi sovremennoj radioelektroniki (Zarubezhnaya radioelektronika), no. 11, pp. 4–32, 1998.

7. A. S. Dmitriev and A. I. Panas, Dynamic chaos: novel type of information carrier for communication systems. Fizmatlit, 2002.

8. B. D. Hassard, N. D. Kazarinoff, and Y.-H. Wan, Theory and Applications of Hopf Bifurcation. Cambridge University Press, 1985.

9. V. V. Migulin, V. I. Medvedev, E. R. Mustel', and V. N. Parygin, Osnovy teorii kolebanij. Nauka, 1988.

10. A. Y. Kolesov and N. K. Rozov, Invariantnye tory nelinejnyh volnovyh uravnenij. Fizmatlit, 2004.

11. D. S. Glyzin, S. D. Glyzin, A. Y. Kolesov, and N. K. Rozov, “The Dynamic Renormalization Method for Finding the Maximum Lyapunov Exponent of a Chaotic Attractor,” Differential Equations, vol. 41, no. 2, 2005.

12. S. P. Kuznecov, Dinamicheskij haos: Kurs lekcij. Fizmatlit, 2001.

13. J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer Science & Business Media, 1983.


Review

For citations:


Glyzin S.D., Marushkina E.A. Algorithms for asymptotic and numerical modeling of oscillatory modes in the simplest ring of generators with asymmetric nonlinearity. Modeling and Analysis of Information Systems. 2023;30(2):160-169. (In Russ.) https://doi.org/10.18255/1818-1015-2023-2-160-169. EDN: JEDWKD

Views: 253


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)