The Estimation of the Number of Lattice Tilings of a Plane by a Given Area Polyomino
https://doi.org/10.18255/1818-1015-2013-5-148-157
Abstract
About the Authors
A. V. ShutovRussian Federation
канд. физ.-мат. наук, доцент,
Stroitelei str., 11, Vladimir, 600024, Russia
E. V. Kolomeykina
Russian Federation
канд. физ.-мат. наук, доцент,
2-nd Bauman str., 5, Moscow, 105005, Russia
References
1. Голомб С.В. Полимино. М.: Мир, 1975. (Golomb S.W. Polyominoes. 1996. 198 p. ISBN: 9780691024448)
2. Golomb S.W. Checkerboards and polyominoes // Amer. Math. Monthly. 1954. 61. P. 672–682.
3. Гарднер М. Математические головоломки и развлечения. 2-е изд. М.: Мир, 1999, 447 с. (Gardner M. Mathematical puzzles and diversions. The University of Chicago press, 1987. ISBN: 978-0226282534.)
4. Гарднер М. Математические досуги. М.: Мир, 1972. 496 с. (Gardner M. Mathematical Recreations: A Collection in Honor of Martin Gardner. Dover, 1998. ISBN 0-486-40089-1.)
5. Гарднер М. Математические новеллы. М.: Мир, 1974. 456 с. (Gardner M. Mathematical Carnival: A New Round-up of Tantalizers and Puzzles from «Scientific American». Knopf Publishing Group, 1975. ISBN 0-394-49406-7.)
6. Гарднер М. Путешествие во времени. М.: Мир, 1990. 341 с. (Gardner M. Time Travel and Other Mathematical Bewilderments. W.H. Freeman and Company, 1987. ISBN 0-7167-1925-8.)
7. Klarner D. A Cell growth problems // Cand. J. Math. 1967. 19. P. 851–863.
8. Barequet G., Moffie M., Rib A., Rote G. Counting polyominoes on twisted cylinders // Integers. 2006. 6. A22.
9. Klarner D.A., Rivest R.L. A procedure for improving the upper bound for the number of n-ominoes // Canad. J. Math. 1973. 25. P. 585–602.
10. Jensen I. Counting polyominoes: A parallel implementation for cluster computing // Lecture Notes in Computer Science. 2003. 2659. P. 203–212.
11. Bousquet-Melou M., Brak R. Exactly Solved Models // In Polygons, Polyominoes and Polycubes. / Ed. A. J. Guttman // Lecture Notes in Physics. Springer, 2009. P. 43–78.
12. Glenn C. Rhoads Planar tilings by polyominoes, polyhexes, and polyiamonds // Journal of Computational and Applied Mathematics. 2005. 174. P. 329–353.
13. Rhoads G. C. Planar Tilings and the Search for an Aperiodic Prototile: PhD dissertation, Rutgers University, 2003.
14. Myers J. Polyomino, polyhex and polyiamond tiling. http://www.srcf.ucam.org/jsm28/tiling/
15. Ammann R., Grunbaum B., Shephard G. Aperiodic tiles // Discrete and Computational Geometry. 1991. 6. P. 1–25.
16. Малеев А.В. Алгоритм и компьютерная программа перебора вариантов упаковок полимино в плоскости // Кристаллография. 2013. Т. 58, № 5. С. 749–756. ( Maleev A.V. Algorithm and Computer-Program Search for Variants of Polyomino Packings in Plane // Crystallography. 2013. V. 58, No 5. P. 749–756 [in Russian].)
17. Srecko Brlek, Andrea Frosini, Simone Rinaldi, Laurent Vuillon. Tilings by translation: enumeration by a rational language approach// The electronic journal of combinatorics. 2006. 13, R15.
18. Ian Gambini, Laurent Vuillon. An algorothm for deciding if a polyomino tiles the plane by translations // RAIRO – Theoretical Informatics and Applications. 2007. 41.2. P. 147–155.
19. Brlek S., Provencal X., Fedou J.-M. On the tiling by translation problem // Discrete Applied Mathematics. 2009. 157, P. 464–475.
20. Keating K., Vince A. Isohedral Polyomino Tiling of the Plane // Discrete and Computational Geometry. 1999. 21. P. 615–630.
21. Fukuda H., Mutoh N., Nakamura G., Schattschneider D. Enumeration of Polyominoes, Polyiamonds and Polyhexes for Isohedral Tilings with Rotational Symmetry // H. Ito et al. (Eds.): KyotoCGGT 2007, LNCS 4535, Springer-Verlag, Berlin, Heidelberg, 2008. P. 68–78.
22. Fukuda H., Mutoh N., Nakamura G., Schattschneider D. A Method to Generate Polyominoes and Polyiamonds for Tilings with Rotational Symmetry // Graphs and Combinatorics. 2007. 23. P. 259–267.
23. Beauquier D., Nivat M. On Translating One Polyomino To Tile the Plane// Discrete Comput. Geom. 1991. V. 6. P. 575–592.
24. Madras N., Slade G. The self-Avoiding Walk // Birkh¨auser. ISBN 978–0–8176–3891–7.
Review
For citations:
Shutov A.V., Kolomeykina E.V. The Estimation of the Number of Lattice Tilings of a Plane by a Given Area Polyomino. Modeling and Analysis of Information Systems. 2013;20(5):148-157. (In Russ.) https://doi.org/10.18255/1818-1015-2013-5-148-157