Preview

Modeling and Analysis of Information Systems

Advanced search

Application of the algorithm for finding the outer median of a graph in the problems of determining the reliability of technical systems

https://doi.org/10.18255/1818-1015-2023-3-258-263

Abstract

The problem of locating a service center for technical systems with known values of failure flows is considered. This problem was solved using the minisum algorithm of graph theory. The dependence of the system availability factor on the average time between failures and the average recovery time of the system elements is obtained. It is shown that the optimal location of the maintenance point is the median of the graph located at one of its vertices.

About the Authors

Yuri A. Plaksa
Yaroslavl Higher Military School of Air Defense
Russian Federation


Svetlana A. Kurochkina
Yaroslavl Higher Military School of Air Defense
Russian Federation


Nataliya A. Prusova
Yaroslavl Higher Military School of Air Defense
Russian Federation


References

1. A. V. Oleinik, E. A. Lukashev, S. P. Poserenin, and M. E. Stavrovskiy, “Graph method in reliability theory and practice of technical service,” Izvestiya MGTU MAMI, vol. 4, no. 2, pp. 236–247, 2010.

2. H. J. Miser, Handbook of Operations Research: foundations and fundamentals. Van Nostrand Reinhold, 1978.

3. M. Aoki, Introduction to optimization techniques. Fundamentals and applications of nonlinear programming. Macmillan, 1971.

4. G. G. Zabudsky and N. S. Veremchuk, “Reshenie zadachi Vebera na ploskosti s minimaksnym kriteriem i zapreshchennymi zonami ,” Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya: Matematika, vol. 9, pp. 10–25, 2014.

5. V. L. Beresnev and A. A. Mel’nikov, “Approximate algorithms for the competitive facility location problem,” Journal of Applied and Industrial Mathematics, vol. 5, pp. 180–190, 2011.

6. V. M. Demidenko, “Generalizing strong feasibility conditions for the quadratic assignment problem with anti-Monge and Toeplitz matrices,” in Doklady Natsionalnoi Akademii Nauk Belarusi, 2003, vol. 47, no. 2, pp. 15–18.

7. A. A. Kolokolov, T. V. Levanova, and M. A. Loresh, “Algoritmy murav'inoj kolonii dlja zadach optimal'nogo razmeshhenija predprijatij,” Omskij nauchnyj vestnik, vol. 38, no. 4, pp. 62–67, 2006.

8. I. L. Vasiliev, K. B. Klimentova, and Y. A. Kochetov, “Novye nizhnie otsenki dlya zadachi razmeshcheniya s predpochteniyami klientov,” Zhurnal vychislitel'noi matematiki i matematicheskoi fiziki, vol. 49, no. 6, pp. 1055–1066, 2009.

9. E. V. Alekseeva and Y. A. Kochetov, “Geneticheskii lokal'nyi poisk dlya zadachi o p-mediane s predpochteniyami klientov,” Diskretnyi analiz i issledovanie operatsii, vol. 14, no. 1, pp. 3–31, 2007.

10. Y. A. Kochetov, M. G. Pashchenko, and A. V. Plyasunov, “O slozhnosti lokal'nogo poiska v zadache o p-mediane,” Diskretnyi analiz i issledovanie operatsii, vol. 12, no. 2, pp. 44–71, 2005.

11. E. K. Gimadi, “O veroyatnostnom analize priblizhennogo algoritma resheniya zadachi o p-mediane,” Diskretnyi analiz i issledovanie operatsii, vol. 17, no. 3, pp. 19–31, 2010.

12. I. N. Rosenberg, “Odnokriterial'naya minisummnaya zadacha razmeshcheniya tsentra obsluzhivaniya s lingvisticheskimi peremennymi,” Izvestiya Yuzhnogo federal'nogo universiteta. Tekhnicheskie nauki, vol. 31, no. 2, pp. 56–63, 2003.

13. “ GOST 27.002-2015: Dependability in technics. Terms and definitions.” 2015.

14. N. Christofides, Graph theory: An algorithmic approach. Academic Press, Inc., 1975.

15. A. M. Polovko and S. V. Gurov, Osnovy teorii nadezhnosti. BHV, 2006.


Review

For citations:


Plaksa Yu.A., Kurochkina S.A., Prusova N.A. Application of the algorithm for finding the outer median of a graph in the problems of determining the reliability of technical systems. Modeling and Analysis of Information Systems. 2023;30(3):258-263. (In Russ.) https://doi.org/10.18255/1818-1015-2023-3-258-263

Views: 215


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)