Preview

Modeling and Analysis of Information Systems

Advanced search

Estimation of interpolation projectors using Legendre polynomials

https://doi.org/10.18255/1818-1015-2024-3-316-337

Abstract

We give some estimates for the minimum projector norm under linear interpolation on a compact set in ${\mathbb R}^n$. Let $\Pi_1({\mathbb R}^n)$ be the space of polynomials in $n$ variables of degree at most $1$, $\Omega$ is a compactum in ${\mathbb R}^n$, $K={\rm conv}(\Omega)$. We will assume that ${\rm vol}(K)>0$. Let the points $x^{(j)}\in \Omega$, $1\leq j\leq n+1,$ be the vertices of an $n$-dimensional nondegenerate simplex. The interpolation projector $P:C(\Omega)\to \Pi_1({\mathbb R}^n)$ with the nodes $x^{(j)}$ is defined by the equations $Pf\left(x^{(j)}\right)=f\left(x^{(j)}\right)$. By $\|P\|_\Omega$ we mean the norm of $P$ as an operator from $C(\Omega)$ to $C(\Omega)$. By $\theta_n(\Omega)$ we denote the minimal norm $\|P\|_\Omega$ of all operators $P$ with nodes belonging to $\Omega$. By ${\rm simp}(E)$ we denote the maximal volume of the simplex with vertices in $E$. We establish the inequalities $\chi_n^{-1}\left(\frac{{\rm vol}(K)}{{\rm simp}(\Omega)}\right)\leq \theta_n(\Omega)\leq n+1.$ Here $\chi_n$ is the standardized Legendre polynomial of degree $n$. The lower estimate is proved using the obtained characterization of Legendre polynomials through the volumes of convex polyhedra. More specifically, we show that for every $\gamma\ge 1$ the volume of the set $\left\{x=(x_1,...,x_n)\in{\mathbb R}^n : \sum |x_j| +\left|1- \sum x_j\right|\le\gamma\right\}$ is equal to ${\chi_n(\gamma)}/{n!}$. In the case when $\Omega$ is an $n$-dimensional cube or an $n$-dimensional ball, the lower estimate gives the possibility to obtain the inequalities of the form $\theta_n(\Omega)\geqslant c\sqrt{n}$. Also we formulate some open questions.

About the Author

Mikhail V. Nevskii
P.G. Demidov Yaroslavl State University
Russian Federation


References

1. R. A. DeVore and G. G. Lorentz, Constructive Approximation. Springer-Verlag: Berlin -- Heidelberg, 1993.

2. V. Barthelmann, E. Novak, and K. Ritter, “High dimensional polynomial interpolation on sparse grids,” Advances in Computational Mathematics, vol. 12, no. 4, pp. 273–288, 2000, doi: 10.1023/A:1018977404843.

3. C. De Boor, “Polynomial Interpolation in Several Variables,” in Studies in Computer Science, Plenum Press, 1994, pp. 87–119.

4. S. De Marchi, Lectures on Multivariate Polynomial Interpolation. G"ottingen -- Padova, 2015.

5. M. Gasca and R. Sauer, “Polynomial interpolation in several variables,” Advances in Computational Mathematics, vol. 12, no. 4, pp. 377–410, 2000, doi: 10.1023/A:1018981505752.

6. M. Gunzburger and A. Teckentrup, “Optimal Point Sets for Total Degree Polynomial Interpolation in Moderate Dimensions.” 2014, [Online]. Available: https://arxiv.org/abs/1407.3291.

7. V. Kaarnioja, “On applying the maximum volume principle to a basis selection problem in multivariate polynomial interpolation.” 2017, [Online]. Available: https://arxiv.org/abs/1512.07424.

8. S. Pashkovskij, Vychislitel'nye Primeneniya Mnogochlenov i Ryadov Chebysheva. Nauka, 1983.

9. T. J. Rivlin, The Chebyshev Polynomials. John Wiley & Sons, 1974.

10. M. Nevskii, “Optimal Lagrange Interpolation Projectors and Legendre Polynomials.” 2024, [Online]. Available: https://arxiv.org/abs/2405.01254.

11. M. Nevskii, “Geometric Estimates in Linear Interpolation on a Cube and a Ball.” 2024, [Online]. Available: https://arxiv.org/abs/2402.11611.

12. M. V. Nevskii, Geometricheskie Ocenki v Polinomial'noj Interpolyacii. P. G. Demidov Yaroslavl State University, 2012.

13. M. V. Nevskii, “Inequalities for the norms of interpolation projectors,” Modeling and Analysis of Information Systems., vol. 15, no. 3, pp. 28–37, 2008.

14. M. Hall Jr., Combinatorial Theory. Blaisdall Publishing Company, 1967.

15. K. J. Horadam, Hadamard Matrices and Their Applications. Princeton University Press, 2007.

16. P. K. Manjhi and M. K. Rama, “Some new examples of circulant partial Hadamard matrices of type $4 - H(ktimes n)$,” Advances and Applications in Mathe-matical Sciences, vol. 21, no. 5, pp. 2559–2564, 2022.

17. M. Hudelson, V. Klee, and D. Larman, “Largest j-simplices in d-cubes: some relatives of the Hadamard maximum determinant problem,” Linear Algebra and its Applications, vol. 241--243, pp. 519–598, 1996.

18. J. Hadamard, “ R'esolution d'une question relative aux d'eterminants,” Bulletin des Sciences Mathématiques, vol. 2, pp. 240–246, 1893.

19. G. F. Clements and B. Lindstr"om, “A sequence of $(pm 1)$ determinants with large values,” Proceedings of the American Mathematical Society, vol. 16, no. 3, pp. 548–550, 1965.

20. G. M. Fikhtengol'ts, Kurs Differencial'nogo i Integral'nogo Ischisleniya. Tom 3. Moskva: Fizmatlit, 2001.

21. L. Fejes T'ot, Regular Figures. New York: Macmillan/Pergamon, 1964.

22. D. Slepian, “The content of some extreme simplices,” Pacific Journal of Mathematics, vol. 31, pp. 795–808, 1969.

23. D. Vandev, “A minimal volume ellipsoid around a simplex,” Proceedings of the Bulgarian Academy of Sciences, vol. 45, no. 6, pp. 37–40, 1992.

24. M. Lassak, “Approximation of convex bodies by inscribed simplices of maximum volume,” Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, vol. 52, pp. 389–394, 2011, doi: 10.1007/s13366-011-0026-x.

25. P. K. Suetin, Klassicheskie ortogonal'nye mnogochleny. Nauka, 1979.

26. G. Szeg"o, Orthogonal Polynomials. American Mathematical Society: Providence, 1975.

27. A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Integraly i Ryady. Nauka, 2002.

28. M. V. Nevskii, “Geometric estimates in interpolation on an n-dimensional ball,” Modeling and Analysis of Information Systems, vol. 26, no. 3, pp. 441–449, 2019, doi: 10.18255/1818-1015-2019-3-441-449.

29. M. V. Nevskii, “On the minimal norm of the projection operator for linear interpolation on an n-dimensional ball,” Matematicheskie Zametki, vol. 114, no. 3, pp. 477–480, 2023, doi: 10.4213/mzm14044.

30. H. Bauer, “Minimalstellen von Funktionen und Extremal punkte,” Archiv der Mathematik, vol. 9, no. 4, pp. 389–393, 1958, doi: 10.1023/A:1018977404843.

31. M. Nevskii, “Properties of axial diameters of a simplex,” Discrete & Computational Geometry , vol. 46, no. 2, pp. 301–312, 2011, doi: 10.1007/s00454-011-9355-7.

32. M. Nevskii and A. Ukhalov, “Perfect simplices in R⁵,” Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, vol. 59, no. 3, pp. 501–521, 2018, doi: 10.1007/s13366-018-0386-6.

33. M. V. Nevskii, “On a certain relation for the minimal norm of an interpolation projector,” Modeling and Analysis of Information Systems., vol. 16, no. 1, pp. 24–43, 2009.

34. M. V. Nevskii, “On some estimate for the norm of an interpolation projector,” Modeling and Analysis of Information Systems, vol. 29, no. 2, pp. 92–103, 2022, doi: 10.18255/1818-1015-2022-2-92-103.

35. M. V. Nevskii and A. Y. Ukhalov, Izbrannye Zadachi Analiza i Vychislitel'noj Geometrii. Chast' 2. P. G. Demidov Yaroslavl State University, 2022.

36. M. V. Nevskii and A. Y. Ukhalov, “On optimal interpolation by linear functions on an n-dimensional cube,” Modeling and Analysis of Information Systems, vol. 25, no. 3, pp. 291–311, 2018, doi: 10.18255/1818-1015-2018-3-291-311.

37. M. V. Nevskii, “On some problems for a simplex and a ball in Rⁿ,” Modeling and Analysis of Information Systems, vol. 25, no. 6, pp. 680–691, 2018, doi: 10.18255/1818-1015-2018-6-680-691.

38. M. V. Nevskii and A. Y. Ukhalov, “Linear interpolation on a Euclidean ball in Rⁿ,” Modeling and Analysis of Information Systems, vol. 26, no. 2, pp. 279–296, 2019, doi: 10.18255/1818-1015-2019-2-279-296.

39. M. V. Nevskii, “On properties of a regular simplex inscribed into a ball,” Modeling and Analysis of Information Systems, vol. 28, no. 2, pp. 186–197, 2021, doi: 10.18255/1818-1015-2021-2-186-197.


Review

For citations:


Nevskii M.V. Estimation of interpolation projectors using Legendre polynomials. Modeling and Analysis of Information Systems. 2024;31(3):316-337. (In Russ.) https://doi.org/10.18255/1818-1015-2024-3-316-337

Views: 191


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)