Preview

Modeling and Analysis of Information Systems

Advanced search

Parametric Resonance in a Time-Dependent Harmonic Oscillator

https://doi.org/10.18255/1818-1015-2013-3-5-28

Abstract

In this paper, we study the phenomenon of appearance of new resonances in a timedependent harmonic oscillator under an oscillatory decreasing force. The studied equation belongs to the class of adiabatic oscillators and arises in connection with the spectral problem for the one-dimensional Schr¨odinger equation with Wigner–von Neumann type potential. We use a specially developed method for asymptotic integration of linear systems of differential equations with oscillatory decreasing coefficients. This method uses the ideas of the averaging method to simplify the initial system. Then we apply Levinson’s fundamental theorem to get the asymptotics for its solutions. Finally, we analyze the features of a parametric resonance phenomenon. The resonant frequencies of perturbation are found and the pointwise type of the parametric resonance phenomenon is established. In conclusion, we construct an example of a time-dependent harmonic oscillator (adiabatic oscillator) in which the parametric resonances, mentioned in the paper, may occur.

About the Author

P. N. Nesterov
P.G. Demidov Yaroslavl State University
Russian Federation

канд. физ.-мат. наук, доцент,

Sovetskaya str., 14, Yaroslavl, 150000, Russia



References

1. Бурд В.Ш., Каракулин В.А. Асимптотическое интегрирование систем линейных дифференциальных уравнений с колебательно убывающими коэффициентами // Математические заметки. 1998. Т. 64, №5. C. 658–666. (English transl.: Burd V.Sh., Karakulin V.A. On the asymptotic integration of systems of linear differential equations with oscillatory decreasing coefficients // Math. Notes. 1998. V. 64, No. 5. P. 571–578.)

2. Боголюбов Н.Н., Митропольский Ю.А. Асимптотические методы в теории нелинейных колебаний. М.: Наука, 1974. (Bogoliubov N.N., Mitropolskiy Yu.A. Asymptotic Methods in the Theory of Nonlinear Oscillations. New York: Gordon and Breach, 1961.)

3. Заславский Г.М., Сагдеев Р.З. Введение в нелинейную физику: От маятника до турбулентности и хаоса. М.: Наука, 1988. (Sagdeev R.Z., Usikov D.A., Zaslavsky G.M. Nonlinear Physics: From Pendulum to Turbulence and Chaos. New York: Harwood Academic Publishers, 1988.)

4. Коддингтон Э.А., Левинсон Н. Теория обыкновенных дифференциальных уравнений. М.: ИЛ, 1958. (Coddington E.A., Levinson N. Theory of Ordinary Differential Equations. New York: McGraw-Hill, 1955.)

5. Нестеров П.Н. Построение асимптотики решений одномерного уравнения Шредингера с быстро осциллирующим потенциалом // Математические заметки. 2006. Т. 80, №2. C. 240–250. (English transl.: Nesterov P.N. Construction of the asymptotics of the solutions of the one-dimensional Schr¨odinger equation with rapidly oscillating potential // Math. Notes. 2006. V. 80, No. 2. P. 233–243.)

6. Нестеров П.Н. Метод усреднения в задаче асимптотического интегрирования систем с колебательно убывающими коэффициентами // Дифференциальные уравнения. 2007. Т. 43, №6. С. 731–742. (English transl.: Nesterov P.N. Averaging method in the asymptotic integration problem for systems with oscillatory-decreasing doefficients // Differ. Equ. 2007. V. 43, No. 6. P. 745–756.)

7. Переломов А.М. Обобщенные когерентные состояния и их применения. М.: Наука, 1987. (Perelomov A. Generalized Coherent States and Their Applications. Berlin: Springer, 1986.)

8. Якубович В.А., Старжинский В.М. Линейные дифференциальные уравнения с периодическими коэффициентами и их приложения. М.: Наука, 1972. (Yakubovich V.A., Starzhinskii V.M. Linear Differential Equations with Periodic Coefficients, vol. 1 and 2. Jerusalem: Keter Publishing House, 1975.)

9. Burd V. Method of Averaging for Differential Equations on an Infinite Interval: Theory and Applications. Lecture Notes in Pure and Applied Mathematics. Volume 255. — Boca Raton: Chapman & Hall/CRC, 2007.

10. Burd V., Nesterov P. Parametric resonance in adiabatic oscillators // Results Math. 2010. V. 58, No. 1–2. P. 1–15.

11. Denisov S.A., Kiselev A. Spectral properties of Schrödinger operators with decaying potentials // B. Simon Festschrift, Proceedings of Symposia in Pure Mathematics. 2007. Vol. 76, part 2. Amer. Math. Soc., Providence, RI, p. 565–589.

12. Eastham M.S.P. The asymptotic solution of linear differential systems. London Math. Soc. Monographs. Oxford: Clarendon Press, 1989.

13. Harris W.A. Jr., Lutz D.A. On the asymptotic integration of linear differential systems // J. Math. Anal. Appl. 1974. V. 48, No. 1. P. 1–16.

14. Harris W.A. Jr., Lutz D.A. A Unified Theory of Asymptotic Integration // J. Math. Anal. Appl. 1977. V. 57, No. 3. P. 571–586.

15. Levinson N. The asymptotic nature of the solutions of linear systems of differential equations // Duke Math. J. 1948. V. 15. P. 111–126.

16. Lukic M. Schrödinger operators with slowly decaying Wigner-von Neumann type potentials // J. Spectr. Theory. 2013. V. 3, No. 2. P. 147–169.

17. Naboko S., Simonov S. Zeroes of the spectral density of the periodic Schrödinger operator with Wigner–von Neumann potential // Math. Proc. Cambridge Philos. Soc. 2012. V. 153, No. 1. P. 33–58.

18. Nesterov P. On eigenvalues of the one-dimensional Dirac operator with oscillatory decreasing potential // Math. Phys. Anal. Geom. 2012. V. 15, No. 3. P. 257–298.

19. Turner K.L., Miller S.A., Hartwell P.G., MacDonald N.C., Strogatz S.H., Adams S.G. Five parametric resonances in a microelectromechanical system // Nature. 1998. V. 396. P. 149–152.

20. Um C.I., Yeon K.H., George T.F. The quantum damped harmonic oscillator // Phys. Rep. 2002. V. 362, No. 2–3. P. 63–192.

21. Wintner A. The adiabatic linear oscillator // Amer. J. Math. 1946. V. 68. P. 385–397.

22. Wintner A. Asymptotic integration of the adiabatic oscillator // Amer. J. Math. 1946. V. 69. P. 251–272.


Review

For citations:


Nesterov P.N. Parametric Resonance in a Time-Dependent Harmonic Oscillator. Modeling and Analysis of Information Systems. 2013;20(3):5-28. (In Russ.) https://doi.org/10.18255/1818-1015-2013-3-5-28

Views: 1295


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)