Preview

Моделирование и анализ информационных систем

Расширенный поиск

Обнаружение прямоугольных импульсных помех на вихретоковых дефектограммах рельсов

https://doi.org/10.18255/1818-1015-2025-2-172-205

Аннотация

Обеспечение безопасности движения на железнодорожном транспорте требует постоянного мониторинга состояния рельсов для своевременного выявления и устранения дефектов. Одним из методов неразрушающего контроля рельсов является вихретоковая дефектоскопия. Данные (дефектограммы), получаемые от вихретоковых дефектоскопов, отличаются значительным объёмом, что делает необходимым разработку эффективных методов их автоматической обработки и анализа. Анализ дефектограмм может быть осложнён присутствием в данных различных помех и шумов. Одними из наиболее опасных помех, существенно искажающих форму полезных сигналов, являются продолжительные импульсные помехи. Они характеризуются выраженной прямоугольной формой. В отличие от мгновенных импульсных помех, продолжительные шумы классическими методами не устраняются. Не существует зарекомендовавших себя эффективных методов не только для подавления прямоугольных помех, но даже для их обнаружения. Данная статья пытается устранить этот недостаток и предлагает действенный метод для обнаружения таких помех на вихретоковых дефектограммах, обладающий хорошей объясняющей способностью. Прямоугольные сигналы исследуются с точки зрения их вероятностного распределения. Введена SW-характеристика, позволяющая оценить правдоподобие данных для распределения биполярных импульсных сигналов. Чем меньше значение SW-характеристики, тем более распределение данных похоже на распределение биполярных импульсных сигналов. Прямоугольные сигналы являются частным случаем биполярных импульсных сигналов. Исследованы свойства SW-характеристики. SW-характеристика вычислена для нормального распределения и распределения гомоскедастичной смеси двух гауссиан. Показано, что значение SW-характеристики нормального распределения примерно разграничивает бимодальную смесь двух гауссиан от унимодального случая. Эти и другие свойства SW-характеристики позволяют использовать её для обнаружения прямоугольных сигналов в данных. Применение критерия на основе SW-характеристики продемонстрировано на реальных примерах вихретоковых дефектограмм, проведено сравнение с критериями на основе EM-алгоритма и многомасштабной дисперсной энтропии. Предложенный в данной статье критерий показал лучшие результаты. Использование SW-характеристики для обнаружения прямоугольного шума доказало свою эффективность на практике при анализе вихретоковых дефектограмм рельсов. Подход может быть адаптирован для работы с другими видами данных.

Об авторах

Леонид Юрьевич Быстров
Ярославский государственный университет им.П.Г. Демидова
Россия


Артемий Николаевич Гладков
Ярославский государственный университет им.П.Г. Демидова
Россия


Егор Владимирович Кузьмин
Ярославский государственный университет им.П.Г. Демидова
Россия


Список литературы

1. K. V. Vlasov and A. L. Bobrov, “Influence of Object Physical Properties Instability on Edge Current Method Sensitivity,” Vestnik IzhGTU imeni M. T. Kalashnikova, vol. 27, no. 1, pp. 55–62, 2024, doi: 10.22213/2413-1172-2024-1-55-62.

2. E. V. Kuzmin, O. E. Gorbunov, P. O. Plotnikov, and V. A. Tyukin, “Finding the Level of Useful Signals on Interpretation of Magnetic and Eddy-Current Defectograms,” Automatic Control and Computer Sciences, vol. 52, pp. 658–666, 2018, doi: 10.3103/S0146411618070179.

3. E. V. Kuzmin and others, “Application of Convolutional Neural Networks for Recognizing Long Structural Elements of Rails in Eddy Current Defectograms,” Automatic Control and Computer Sciences, vol. 55, pp. 712–722, 2021, doi: 10.3103/S0146411621070099.

4. E. V. Kuzmin and others, “Assessing Flaw Severity on Interpretation of Eddy-Current Defectograms,” Automatic Control and Computer Sciences, vol. 56, pp. 723–734, 2023, doi: 10.3103/S0146411622070124.

5. L. Y. Bystrov, A. N. Gladkov, and E. V. Kuzmin, “Suppression of additive periodic low-frequency interference on eddy current defectograms,” Modeling and Analysis of Information Systems, vol. 31, no. 2, pp. 164–181, 2024, doi: 10.18255/1818-1015-2024-2-164-181.

6. P. A. Lyakhov and A. R. Orazaev, “New method for detecting and removing random-valued impulse noise from images,” Computer Optics, vol. 47, pp. 262–271, 2023, doi: 10.18287/2412-6179-CO-1145.

7. R. Kunsoth and M. Biswas, “Modified decision based median filter for impulse noise removal,” in Proceedings of the International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), 2016, pp. 1316–1319, doi: 10.1109/WiSPNET.2016.7566350.

8. G. Manmadha Rao and others, “Reduction of Impulsive Noise from Speech and Audio Signals by using Sd-Rom Algorithm,” International Journal of Recent Technology and Engineering, vol. 10, no. 1, pp. 265–268, 2021, doi: 10.35940/ijrte.A5943.0510121.

9. S. Pham and A. Dinh, “Adaptive-Cognitive Kalman Filter and Neural Network for an Upgraded Nondispersive Thermopile Device to Detect and Analyze Fusarium Spores,” Sensors, vol. 19, no. 22, p. 4900, 2021, doi: 10.3390/s19224900.

10. Y. Huo, K. Yang, Y. Qi, and T. Xu, “Robust Maximum Correlation Entropy Kalman Filtering Algorithm Based on S-functions under Impulse Noise,” Signal, Image and Video Processing, vol. 18, pp. 1–15, 2024, doi: 10.1007/s11760-024-03135-y.

11. Y. Cheng, C. Li, S. Chen, and Z. Zhou, “An Enhanced Impulse Noise Control Algorithm Using a Novel Nonlinear Function,” Circuits, Systems, and Signal Processing, vol. 42, pp. 1–20, 2023, doi: 10.1007/s00034-023-02421-3.

12. C. Xing, Y. Ran, G. Tan, Q. Meng, and M. Lu, “Impulse Noise Mitigation and Channel Estimation Method in OFDM Systems Based on TMSBL,” IEEE Access, vol. 12, pp. 123376–123387, 2024, doi: 10.1109/ACCESS.2024.3454316.

13. J. Behboodian, “On the Modes of a Mixture of Two Normal Distributions,” Technometrics, vol. 12, no. 1, pp. 131–139, 1970, doi: 10.1080/00401706.1970.10488640.

14. M. 'A. Carreira-Perpi n'an and C. K. I. Williams, “On the Number of Modes of a Gaussian Mixture,” Scale Space Methods in Computer Vision, pp. 625–640, 2003, doi: 10.1007/3-540-44935-3_44.

15. Y. A. Dubnov и A. V. Bulychev, «Bayesian Identification of a Gaussian Mixture Model», Journal of Information Technologies and Computing Systems, вып. 1, сс. 101–111, 2017.

16. S. Jammalamadaka and Q. Jin, “A Bayesian Test for the Number of Modes in a Gaussian Mixture,” Asian Journal of Earth Sciences, vol. 1, pp. 9–22, 2021.

17. L. Dan, W. Xue, W. Guiqin, and Q. Zhihong, “A Methodological Approach for Detecting Burst Noise in the Time Domain,” World Academy of Science, Engineering and Technology, vol. 58, pp. 974–978, Oct. 2009.

18. X. Chen, Y. Han, and J. Wu, “Burst Noise Measuring on the Basis of Wavelet and Fourier Transform,” in Proceedings of the International Conference on Measuring Technology and Mechatronics Automation, 2010, pp. 769–771, doi: 10.1109/ICMTMA.2010.366.

19. R. Zhou, J. Han, Z. Guo, and T. Li, “De-Noising of Magnetotelluric Signals by Discrete Wavelet Transform and SVD Decomposition,” Remote Sensing, vol. 13, no. 23, pp. 1–19, 2021, doi: 10.3390/rs13234932.

20. X. Zhang and others, “Separation of magnetotelluric signals based on refined composite multiscale dispersion entropy and orthogonal matching pursuit,” Earth, Planets and Space, vol. 73, pp. 1–18, 2021, doi: 10.1186/s40623-021-01399-z.

21. L. Zhang and others, “Identification and Suppression of Magnetotelluric Noise via a Deep Residual Network,” Minerals, vol. 12, p. 766, 2022, doi: 10.3390/min12060766.

22. G. Zuo and others, “Magnetotelluric Noise Attenuation Using a Deep Residual Shrinkage Network,” Minerals, vol. 12, no. 9, p. 1086, 2022, doi: 10.3390/min12091086.

23. G. Li and others, “Low-Frequency Magnetotelluric Data Denoising Using Improved Denoising Convolutional Neural Network and Gated Recurrent Unit,” IEEE Transactions on Geoscience and Remote Sensing, vol. 62, pp. 1–16, 2024, doi: 10.1109/TGRS.2024.3374950.

24. W. Feller, An Introduction to Probability Theory and Its Applications, 3rd ed., vol. 1. John Wiley & Sons, 1970, p. 509.

25. V. Boss, Lekcii po matematike: Veroyatnost', informaciya, statistika, vol. 4. KomKniga, 2005.

26. A. N. Shiryaev, Veroyatnost', 3rd ed., vol. 1. MCNMO, 2004, p. 520.

27. A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood from Incomplete Data Via the EM Algorithm,” Journal of the Royal Statistical Society: Series B (Methodological), vol. 39, no. 1, pp. 1–22, 1977, doi: 10.1111/j.2517-6161.1977.tb01600.x.

28. K. P. Burham and D. R. Anderson, Model Selection and Multimodel Inference, 2nd ed. Springer New York, 2002.

29. L. D. Kudryavcev, Kurs matematicheskogo analiza, vol. 1. Vysshaya shkola, 1981.


Рецензия

Для цитирования:


Быстров Л.Ю., Гладков А.Н., Кузьмин Е.В. Обнаружение прямоугольных импульсных помех на вихретоковых дефектограммах рельсов. Моделирование и анализ информационных систем. 2025;32(2):172-205. https://doi.org/10.18255/1818-1015-2025-2-172-205

For citation:


Bystrov L.Y., Gladkov A.N., Kuzmin E.V. Detection of square wave impulse interference in eddy current rail defectograms. Modeling and Analysis of Information Systems. 2025;32(2):172-205. (In Russ.) https://doi.org/10.18255/1818-1015-2025-2-172-205

Просмотров: 15


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)