Preview

Modeling and Analysis of Information Systems

Advanced search

Homology Groups of a Pipeline Petri Net

https://doi.org/10.18255/1818-1015-2013-2-92-103

Abstract

Petri net is said to be elementary if every place can contain no more than one token. In this paper, it is studied topological properties of the elementary Petri net for a pipeline consisting of n functional devices. If the work of the functional devices is considered continuous, we can come to some topological space of “intermediate” states. In the paper, it is calculated the homology groups of this topological space. By induction on n, using the Addition Sequence for homology groups of semicubical sets, it is proved that in dimension 0 and 1 the integer homology groups of these nets are equal to the group of integers, and in the remaining dimensions are zero. Directed homology groups are studied. A connection of these groups with deadlocks and newsletters is found. This helps to prove that all directed homology groups of the pipeline elementary Petri nets are zeroth.

About the Authors

A. A. Husainov
Komsomolsk-on-Amur State Technical University
Russian Federation

профессор, доктор физико-математических наук,

Lenina prosp., 27, Komsomolsk-on-Amur, 681013, Russia



E. S. Bushmeleva
Komsomolsk-on-Amur State Technical University
Russian Federation

аспирант,

Lenina prosp., 27, Komsomolsk-on-Amur, 681013, Russia



T. A. Trishina
Komsomolsk-on-Amur State Technical University
Russian Federation

студентка,

Lenina prosp., 27, Komsomolsk-on-Amur, 681013, Russia



References

1. Husainov A. A. On the homology of small categories and asynchronous transition systems // Homology Homotopy Appl. 2004. V. 6, №1. P. 439–471. http://www.rmi.acnet.ge/hha

2. Goubault E. The Geometry of Concurrency: Thesis Doct. Phylosophy (Mathematics). Ecole Normale Supérieure, 1995.

3. Gaucher P. About the globular homology of higher dimensional automata // Topol. Geom. Differ. 2002. V. 43, №2. P. 107–156.

4. Goubault E., Haucourt E., Krishnan S. Covering space theory for directed topology // Theory Appl. Categ. 2009. V. 22, №9. P. 252–268.

5. Husainov A.A. The Homology of Partial Monoid Actions and Petri Nets // Appl. Categor. Struct. 2012. DOI: 10.1007/s10485–012–9280–9

6. Хусаинов А.А., Бушмелева Е.С. Гомологии асинхронных систем // Актуальные проблемы математики, физики, информатики в вузе и школе: материалы Международной научно-практической конференции 23 марта 2012 г. Комсомольск-на-Амуре. Комсомольск-на-Амуре: Изд-во АмГПГУ, 2012. С. 24–31 (Husainov A.A., Bushmeleva E.S. Gomologii asinhronnyh sistem // Aktualnye problemy matematiki, fiziki, informatiki v vuze i shkole: materialy Mezhdunarodnoj nauchno-prakticheskoj konferencii 23 marta 2012, Komsomolsk-na-Amure. Komsomolsk-na-Amure: Izd-vo AmGPGU, 2012. S. 24–31 [in Russian]).

7. Winskel G., Nielsen M. Models for Concurrency. Handbook of Logic in Computer Science. Vol. IV / ed. Abramsky, Gabbay and Maibaum. Oxford University Press, 1995. P. 1–148.

8. Nielsen M., Winskel G. Petri nets and bisimulation // Theoretical Computer Science. 1996. V. 153, №1–2. P. 211–244.

9. Хусаинов А. А. О группах гомологий полукубических множеств // Сиб. мат. журн. 2008. Т. 49, № 1. С. 224–237 (English transl.: Khusainov A. A. Homology groups of semicubical sets // Sib. Math. J. 2008. V. 49, No 1. P. 593–604).


Review

For citations:


Husainov A.A., Bushmeleva E.S., Trishina T.A. Homology Groups of a Pipeline Petri Net. Modeling and Analysis of Information Systems. 2013;20(2):92-103. (In Russ.) https://doi.org/10.18255/1818-1015-2013-2-92-103

Views: 926


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)