Preview

Modeling and Analysis of Information Systems

Advanced search

Algorithm for Efficient Entropy Estimation

https://doi.org/10.18255/1818-1015-2013-2-178-185

Abstract

We consider the problem of the nonparametric entropy estimation of a stationary ergodic process. Our approach is based on the nearest-neighbor distances. We propose a broad class of metrics on the space Ω = AN of right-sided infinite sequences drawn from a finite alphabet A. The new metric has a parameter which is a non-increasing function. We apply this metrics to nearest-neighbor entropy estimators. We prove that, under certain conditions, the estimators has a small variance. We show that a special selection of the metric parameters reduction of the estimator’s bias. The article is published in the author’s wording.

About the Author

E. A. Timofeev
P.G. Demidov Yaroslavl State University
Russian Federation

д-р физ.-мат. наук, профессор,

Sovetskaya str., 14, Yaroslavl, 150000, Russia



References

1. Deza M., Deza T. Encyclopedia of Distances, Springer, 2009.

2. Kaltchenko A., Timofeeva N. Entropy Estimators with Almost Sure Convergence and an O(n¯¹) Variance //Advances in Mathematics of Communications. 2008. V. 2, №1. P. 1–13.

3. Silvapulle, M.J., Sen, P.K. Constrained statistical inference: Inequality, order and shape restrictions, John Wiley & Sons, USA. 2005.

4. Timofeev E.A. Statistical Estimation of measure invariants // St. Petersburg Math. J. 2006. 17, №3. P. 527–551.

5. Градштейн И.С., Рыжик И.М. Таблицы интегралов, сумм, рядов и произведений. М.: Наука, 1971 (Gradshteyn I.S., Ryzhik I.M. Tablitsy integralov, summ, ryadov i proizvedeniy. Moskva: Nauka, 1971 [in Russian]).


Review

For citations:


Timofeev E.A. Algorithm for Efficient Entropy Estimation. Modeling and Analysis of Information Systems. 2013;20(2):178-185. https://doi.org/10.18255/1818-1015-2013-2-178-185

Views: 991


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)